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ABSTRACT

We develop and study general�purpose techniques for
improving the e	ciency of the stochasticmeshmethod
that was recently developed for pricing American op�
tions via Monte Carlo simulation� First� we develop a
mesh�based� biased�low estimator� By recursively av�
eraging the low and high estimators at each stage� we
obtain a signi
cantly more accurate point estimator
at each of the mesh points� Second� we adapt the im�
portance sampling ideas for simulation of European
path�dependent options in Glasserman� Heidelberger�
and Shahabuddin �����a to pricing of American op�
tions with a stochastic mesh� Third� we sketch gen�
eralizations of the mesh method and we discuss links
with other techniques for valuing American options�
Our empirical results show that the bias�reduced point
estimates are much more accurate than the standard
mesh�method point estimates� Importance sampling
is found to increase accuracy for a smooth option�
payo� functions� while variance increases are possible
for non�smooth payo�s�

� INTRODUCTION

In the 
nancial markets� sophisticated� complex prod�
ucts are continuously o�ered and traded� With the
increasing complexity of these products� Monte Carlo
simulation is steadily becoming an important tool
used in valuing and hedging the products� In this pa�
per� the term American option refers to a discretely�
as opposed to coninuously� exercisable option�that is�
the option holder can exercise the option at a 
xed
set of time points �also called exercise opportunities�
or stages up to expiration� When valuing such op�
tions through simulation� one is jointly estimating the
value of the option and the optimal exercise policy�

An important method developed recently for valu�
ing American options through simulation is the stochas�
tic mesh method �Broadie and Glasserman� ����a �
henceforth referred to as BG����a� We postpone the

description and discussion of the mesh method until
Section ��

In this paper� we are concerned with improving
the e	ciency of the stochastic mesh method by re�
sorting to general�purpose techniques that can be cus�
tomized to a given problem instance rather easily�
For example� although control� variate�based meth�
ods were found to be very e�ective in BG����a� we
view them as special�purpose� as they must be care�
fully tailored to the speci
c option in hand� Without
resorting to variance reduction techniques� it is likely
that a plain�vanilla mesh�based estimation of the op�
tion value will su�er from bias much more than from
variance�

Our primary contribution is to develop general�
purpose bias�reduced versions of the mesh estimators�
A within�mesh biased�low estimator is developed by
splitting the set of states in disjoint sets and using
one of the two sets for estimation of the optimal ex�
ercise policy and the other set for the estimation �if
necessary of the option�s continuation value� By re�
cursively averaging the low and high estimators at
each stage� we obtain a signi
cantly more accurate
point estimator at each of the mesh points�

As a further contribution� we adapt the impor�
tance sampling ideas for simulation of Europeanpath�
dependent options proposed and studied in Glasser�
man� Heidelberger� and Shahabuddin �����a in the
pricing of American options hrough a stochasticmesh�
We also propose generalizations of the mesh method
including variable shapes� and mechanisms for sam�
pling paths conditional on the state of all paths at
a given stage� and we discuss links with other tech�
niques for valuing American options�

This paper is organized as follows� In Section �
we review American�option pricing and the stochastic
mesh method� In Section � we detail new estimation
methods and results� and discuss generalizations of
the mesh method� In Section � we present Monte
Carlo results quantifying the performance of the new
estimators�



� AMERICAN OPTION PRICING� BACK�
GROUND

Let St � �S�t � � � � � S
n
t  denote the vector of securities

underlying the option� modeled as a Markov process
on Rn with discrete time�parameter t � �� �� � � � � T �
The argument t � �� �� � � � � T indexes the set of times
when the option is exerciseble� also called exercise

opportunities or simply stages�
Let h�t� x be the payo� from exercise at time t

in state x� discounted to time � with the possibly
stochastic discount factor recorded in St� The option
value starting at time t in state x is

q�t� x � max �h�t� x� c�t� x for t � T

where

c�t� x � E
�
q�t� �� St��jSt � x

�
��

is the value of the option when not exercised at time
t in state x� discounted to time �� and called the con�
tinuation value at �t� x� and q�T� x � h�x for all
states x� Arbitrage�pricing theory suggests that the
arbitrage�free price of the option is obtained when
the conditional expectation in �� is with respect to
the risk�neutral measure� de
ned as the measure that
makes the value of any tradeable security� discounted
to time �� a martingale� The problem is to compute
the option value at time �� qo � q��� so� where so is
the known state of underlyings at time ��

Examples� In a simple application� St is a vector of
n stock prices� A max option has payo� function

h�t� St �
�
max

�
S�t � � � � � S

n
t

��K
��

�

whereK is the strike price and x� stands for max�x� ��
A geometric average option has

h�t� St �

��� nY
k��

Sk
t

����n�
�K

	A�

�

��� Mesh Method Description

In reviewing the method� we follow BG����a� The
method generates a stochastic mesh of sample states
�also called points St�i� i � �� � � � � b for each t �
�� � � � � T � Let S��i � so� i � �� � � � � b� For t � �� � � � � T �
let gt�� denote the probability density from which
the points St�i� i � �� � � � � b are sampled �to be speci�

ed later� and let ft�x� � denote the conditional risk�
neutral density of St�� given St � x� �In accor�
dance with the authors� we assume throughout the
paper the existence of such densities� Finally� let
B � f�� � � � � bg be the set of indices of mesh points at

each stage� The mesh estimator of the option value
is de
ned recursively�

bqH�T� ST�i � h�T� ST�i

for i � �� � � � � b� and for t � T � �� � � � � � and for
i � �� � � � � b� the high mesh estimator is

bqH�t� St�i � max�h�t� St�i�bc�t� St�i� B ��

where the continuation value of each point sampled
at stage t depends on the previously calculated con�
tinuation values of all points sampled at stage t� ��

bc�t� St�i� B
�

�

b

X
j�B

bqH�t� �� St���jw�t� St�i� St���j

where

w�t� St�i� St���j �
ft�St�i� St���j

gt���St���j
� ��

The weighing of the combination of points �St�i� St���j
above is necessary in light of the fact that the points
at stage t � � were sampled from the density gt����
instead of the density ft�St�i� � appropriate for point
St�i� We make the dependence of bc on B explicit for
subsequent convenience� Finally� note that bc�t� St�i� B
would be an unbiased estimator of the correspond�
ing continuation values if the estimated values bqH�t�
�� St���j were unbiased for the corresponding option
values �which� generally� is not the case� We refer
to bqH as the high mesh estimator� in view of the fact
that it is biased high as an estimate of the option
value at the corresponding time and state�

The choice of densities gt is crucial� BG����a
make a strong case for using the average density func�

tion

gt�u �
�

b

bX
j��

ft���St���j� u ��

which corresponds to generating b independent paths
of St and then �forgetting� the path to which each
sampled point belongs at each stage t � �� � � � � T �
In agreement with the authors� we call this partic�
ular case the strati�ed implementation of the mesh
method�

For actually pricing options� BG����a suggest ob�
taining a second estimator by simulating paths of the
process St independent of the mesh points St�i until
the exercise region implied by the mesh is reached�
Speci
cally� the approximate optimal policy implied
by the mesh exercises at b� � minft � h�t� St �bqH�t� Stg� with bqH�t� St as in ��� The path esti�

mator is then bqP � h�b� � Sb� �



See BG����a for other properties of the estima�
tors� considerable computational enhancements �mainly
through control variates� and an extensive numerical
study of the method�s performance�

The main alternative for pricing high�dimensional
American options using provably consistent estima�
tors is a tree�based simulation where simulated paths
branch out at each sampled point for each exercise
opportunity �Broadie and Glasserman� ����b� Com�
pared to this alternative� the mesh method has two
important advantages� �a it alleviates the exponen�
tial growth of the number of points to be sampled
with the number of exercise opportunities� and �b
sampled paths help each other in the estimation� all
states sampled at stage j � � are used in the esti�
mation of option values at stage j� On the down�
side� the applicability and ease of use of the mesh
method in application might be restricted by the re�
quirement to calculate the conditional risk�neutral
densities ft�St�i� ��

� ENHANCING MESH EFFICIENCY

��� Bias Reduction for Mesh Estimation

The idea behind the construction of a biased�low esti�
mate is to use disjoint sets of points for estimation of
the optimal exercise policy and the estimation of con�
tinuation values �in case the estimated optimal policy
is to continue�

Assume the mesh points are sampled from the av�
erage density function ��� Let I � B denote an
arbitrary subset of all indices� and I � � B � I its
complement with respect to B� To simplify notation�
we occasionally drop the explicit dependence of esti�
mators on t� writing� for example� bc�St�i for bc�t� St�i�

To calculate the low estimator at each stage t �
T��� � � � � �� assume the low estimator of the values at
all sampled points at stage t�� has been calculated�
De
ne the estimate of the continuation values at t
using only the points in I from stage t� ��

bc�t� St�i� I
�

�

jIj
X
j�I

bqL�t� �� St���jw�t� St�i� St���j�

wherew�t� St�i� St���j are as in �� and jIj is the num�
ber of elements in I� De
ne the estimate of the option
value at point St�i

bqL�t� St�i� I � 
 h�t� St�i� if h�t� St�i � bc�t� St�i� Ibc�t� St�i� I �� otherwise�

Note that the dependence of bqL on I� the set of points
used to estimate the optimal exercise policy� was made
explicit� and note the implicit dependence on I �� To

maximize usage of known information at stage t � �
on the estimation at stage t� we form the overall low
estimator by averaging b copies of bqL where the j�th
copy uses B�j � B�fjg in place of I� The low mesh

estimator of the option value is de
ned recursively�

bqL�T� ST�i � h�T� ST�i

for i � �� � � � � b� and for t � T � �� � � � � � and for
i � �� � � � � b� the low mesh estimator is

bqL�t� St�i � �

b

bX
j��

bqL�t� St�i� B�j

Theorem �� The estimator bqL is biased low� i�e��

E�bqL�t� x� � q�t� x

for all t� x�

For a proof� see Avramidis and Hyden ������

A key component in the development and proofs of
properies of bqH and bqL is that the points at stage t��
are sampled from the average density function ��� In
particular� this implies that� conditional on St�i� the
points fSt���j � j � Bg are independent and identi�
cally distributed �i�i�d�� We claim that in most ap�
plications� better estimation can be achieved by �re�
membering� the path to which each point belongs�
This changes the densities gt�� and thus the weights
of all point combinations� and the i�i�d� property of
points stated above is lost� For more details and re�
sults on this new view of the mesh� see Avramidis and
Hyden ������

Both bqH and bqL su�er from recursive bias� assum�
ing that bqH�t � �� x and bqL�t � �� x are unbiased
for all x� one can show that the estimates bqH�t� x
and bqL�t� x are biased high and low as estimates of
q�t� x� respectively� A simple glance at the derivation
of these properties shows that bias is accumulating
from stage T � � down to stage � for both estima�
tors� see BG����a for the high mesh estimator and
Avramidis and Hyden ����� for the low mesh es�
timator� As an intuitive bias reduction scheme� we
propose the average mesh estimator which is de
ned
recursively�

bqA�T� ST�i � h�T� ST�i

for i � �� � � � � b� and for t � T � �� � � � � � and for
i � �� � � � � b� the average mesh estimator is

bqA�t� St�i � �

�
�bqH�t� St�i � bqL�t� St�i �

where the values bqA�t��� � are used as substitutes for
the values bqH�t��� � and bqL�t��� � in the calculation
of bqH�t� � and bqL�t� �� respectively�



��� Importance Sampling

Our discussion in this section is restricted to option�
pricing problems that can be cast in a way such that
all input random variates are normally distributed�
To our knowledge� the majority of option�pricingmod�
els 
t this framework� Our approach is an adaption
of the importance sampling techniques proposed and
studied in Glasserman� Heidelberger� and Shahabud�
din ����� in the context of pricing path�dependent
European�style options via simulation�

Let Z be the vector of k independent standard nor�
mal random variables necessary for sampling an en�
tire path of the underlying securities� fS�� S�� � � � � ST g�
We denote this as Z � N��� Ik� where Ik is the k	k
identity matrix� Note that any multivariate Normal
distribution can be generated as a deterministic func�
tion of Z� We obtain a new sampling density for paths
of St as follows� Treating the option as if it were Eu�
ropean� we form the product of option payo� at expi�
ration and likelihood under the risk�neutral measure
as a function of Z� The value of Z that maximizes
the function above� say �o suggests a new sampling
density for Z� namely N��o� Ik� Noting that the lat�
ter normal density has its maximum at �o� we have
e�ectively chosen the new sampling density so that its
maximum is attained at the point where the product
of payo� at expiration and likelihood under the risk�
neutralmeasure is maximized� For further motivation
on this choice of change of measure� see Glasserman�
Heidelberger� and Shahabuddin �����a�

In view of the results and suggestions in BG����a�
we maintain a pathwise sampling of mesh points� fol�
lowed by �forgetting� the path to which each point
belongs� For each t � �� � � � � T � �� let ft��o

�x� � de�
note the new conditional density of St�� given St � x�
in view of the fact that transitions were simulated
by sampling Z from N��o� Ik instead of the origi�
nal �risk�neutral measureN��� Ik� The new average
density function becomes

gt��o
�u �

�

b

bX
j��

ft����o
�St���j � u

for t � �� � � � � T � This in turn implies new weights
with gt��o

replacing gt in ��� Except for the weight
adjustment� all other estimators remain as in Sections
��� for the standard mesh method and as in Section
� for the enhanced estimators� For a speci
c example
of the choice of new mesaure� see Section ��

Since the optimal exercise policy for many options
is to hold until expiration� our treatment of an Amer�
ican option as if it were European for the purposes
of determining a change of measure is likely to be a
good approximation� In light of the successful results

with this change of measure reported in Glasserman�
Heidelberger� and Shahabuddin �����a� we expect
similar to slightly less successful results in improving
estimation e	ciency for American options�

��� Mesh Generalizations and Links to Other
Methods

We propose generalizations of the mesh method and
sketch ideas for dynamically growing the mesh� aim�
ing at more e	cient sampling of the entire mesh points�
We introduce the concept of parent and child� When
a mesh point B is generated by extending the path of
mesh point A� mesh point A is called the parent rel�
ative to the child mesh point B� In this terminology�
the strati
ed implementation in BG����a generates
exactly one child per parent� Also� de
ne the budget
at any stage t as the number of points to sample�

First note that the current choice of a 
xed bud�
get per stage is arbitrary� Intuitively� we can say that
the density of the sampled mesh points is spreadmore
thinly in later stages� More concretely� our experience
with realistic sample sizes� say b � ����� suggests
that the importance of non�children to any parent is
orders of magnitude lower than the importance of its
child� This e�ect is progressively stronger in higher
dimensions and� more important to our discussion�
later stages� In other words� the e�ective sample size
for the estimation at each parent is generally small�
certainly much less than b� and decreasing with di�
mensionality and stage� Although there appears to
be no cure for the e�ect of dimensionality� this sug�
gests that an increasing budget over stages should
enhance e	ciency� Preliminary experimentation �not
reported here has con
rmed this conjecture�

Thus� our 
rst generalization is to allow the bud�
get to vary with stage� so we have bt points at stage
t� At stage t� and assuming no preference to giving
more children to any parent� we can a�ord on av�
erage bt���bt children per parent� called the growth

rate at stage t� One choice is to allocate to each par�
ent a number of children equal at least to the inte�
gral part of this ratio� and then choose randomly the
parents to receive the additional children up to the
stage�s budget bt��� Interestingly� this method leaves
the computation of the actual sampling densities gt��
unchanged with respect to the strati
ed implementa�
tion�

In tree�based simulations for american options as
in Broadie and Glasserman �����b� the minimum
growth rate for meaningful estimation is two �every
parent gets at least two children� requiring �T points
to be sampled at stage T � Instead� the generalized
mesh allows any non�integer growth rate� with rates
greater than one but less than two� thus allowing a



less explosive growth than the tree�based case� But
for now� we have no formal procedure for optimally
allocating the bt�s�

A second important generalization is to allocate a
varying number of children to the points at a given
stage� De
ne the cum�weight �short for cumulative
weight of a point at stage t as

wC�St�i �

bt��X
j��

wC�St���jw�t� �� St���j � St�i�

where wC�so � �� It is easy to see that wC�St�i is
also equal to the sum of the path weights of all paths
from so to St�i� where a path weight is equal to the
product of weights of all ��step transitions of the path�
The cumweight wC�St�i measures the importance of
point St�i on the estimation of the option value at so�
Asumming no a priori importance sampling of the
paths� the higher the cumweight of a point at stage
T � the higher its importance in the overall estimation�
In early experiments� we have observed strong ��step
cumweight correlation� de
ned as the correlation of
the cumweight of parents to their children� This sug�
gests that more e	cient growth of the mesh can be
dynamically achieved by allocating more children to
higher�cumweight points� More complex rules that
also take into account surrogates to the option value
�as the immediate�exercise value of a point might
prove even more e�ective in growing the mesh e	�
ciently� For example� if a path on a call option is way
out of the money� it is highly likely that the optimal
decision is to delay exercise of the option� Increas�
ing the number of children for that kind of parent is
unlikely to be an e	cient choice�

What about allocating zero children to a point�
For such a point i at stage t� the estimation of the op�
tion value will depend on only non�children at stage
t � �� Of these� the ones that �look� more than i�s
children will get the greatest weight in the estimation
of i�s value� In this way� the estimation at i is �tied�
to random neighbors of i� namely the parents of the
stage��t � � points with the highest weight in the
estimation of i� This is reminiscent of the bundling
methods of Tilley ������ where paths are bundled at
each stage according to a prede�ned similarity �the
resulting estimators are not consistent� in general�
Yet� the mesh method and its generalizations do not
preconceive a path similarity criterion� likely preserv�
ing most desirable theoretical properties�

� NUMERICAL RESULTS AND RECOM�
MENDATIONS

We report limited results to demonstrate the degree
of e	ciency improvement achieved over a standard

implementation of the mesh method with no variance
reduction techniques� As test cases� we use a subset
of the test cases in BG����a� Under the risk�neutral
measure� the n assets are independent� and each fol�
lows a geometric Brownian motion process�

dSk
t � Sk

t ��r � �dt� �dW k
t �� k � �� � � � � n�

whereW k
t is standard Brownian motion� r is the risk�

less interest rate� � is the divident rate� and � is the
stock volatility parameter� Exercise opportunities oc�
cur at the set of calendar times ti � iT�d� i � �� � � � � d�
where T is the calendar option expiration time �note
that t and T denoted indices of the calendar times
ti and T in the earlier sections� Under the risk�
neutral measure� ln�Sti�Sti�� is normally distributed
with mean �r � � � �����ti � ti�� and variance
���ti � ti���

Case � is a max option with n � �� r � �����
� � ���� � � ���� T � �� d � �� so � ��� andK � ����
Case � is a geometric average option with n � ��
r � ����� � � ����� � � ���� T � �� d � ��� so �
�� and K � ���� We remark that these cases were
selected as the most di	cult cases �based on our own
computations from the set in BG����a�

No variance reduction techniques are applied in
Cases � and �� Case � is the same option as Case
�� where the mesh is sampled through importance
sampling as in Section ���� Speci
cally� we let ZT

denote a �	 n row vector of n independent standard
normal variates that drive the sampling of ST � Let
	 be a � 	 n row vector with �r � � � ����T at
each entry� The new mean of ZT � �o� is found as the
solution to

max
z

h�T� so exp�	 � �
p
Tz exp���

�
zz�

where z is a �	 n row vector and z� is the transpose
of z� In view of the new mean for ST � the paths of St
are sampled with a new drift implied by �o�

We report point�estimator performance �as opposed
to con
dence�interval performance for two estima�
tors� �a bqBG is the point estimator suggested in
BG����a� de
ned as the average of the high mesh
estimator and the path estimator based on a num�
ber of simulated paths equal to the parameter b of
the mesh� and �b bqA is the average mesh estimator
de
ned in Section ����

The performance measures are all relative to the
true option value� We measure RBIAS� RSTDE� and
RRMSE� which are acronyms for relative bias� rel�
ative standard error� and relative root mean square
error of an estimator� respectively� Figures � and �
show performance for bqBG and bqA� respectively� as a
function of estimator work� measured in CPU time in



0 50 100 150 200 250 300
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

CPU TIME (secs)

Figure �� Estimated RBIAS��� RSTDE�o� and
RRMSE�� of bqBG for Case �

0 20 40 60 80 100 120 140 160
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

CPU TIME (secs)

Figure �� Estimated RBIAS��� RSTDE�o� and
RRMSE�� of bqA for Case �

a SUN Ultra � workstation� Figures ��� and ��� are
analogs of Figures ��� for Cases � and �� respectively�

Overall� these results and additional experience
not reported here suggest the following�


 The estimator bqBG in a standard implementa�
tion of the stochasticmeshmethodwith no vari�
ance reduction techniques as in BG����a su�ers
seriously from bias� This bias is mainly due to
the very strong bias of bqH� the mesh high esti�
mator�


 The recursively averaged mesh estimator bqA has
small to moderate bias without resorting to vari�
ance reduction techniques and appears to be the
best point estimator for a general�purposemesh
implementation�


 Even the better bqA estimatorwill generally yield
only moderate accuracy with realistic sample
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sizes� Although the cases we studied here are
the hardest from the set of cases in BG����a�
they underline that general�purpose mesh es�
timation needs deeper study and that there is
substantial room for accuracy improvement�


 Importance sampling for the mesh method is
fairly straightfowrward to implement� For smooth
payo� functions such as the geometric average
option� it yields substantial e	ciency improve�
ments� For non�smooth payo�s such as the max
option� results not reported here show that im�
portance sampling may back
re�
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