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ABSTRACT

We develop and study general-purpose techniques for

improving the efficiency of the stochastic mesh method
that was recently developed for pricing American op-

tions via Monte Carlo simulation. First, we develop a

mesh-based, biased-low estimator. By recursively av-

eraging the low and high estimators at each stage, we

obtain a significantly more accurate point estimator

at each of the mesh points. Second, we adapt the im-

portance sampling ideas for simulation of European

path-dependent options in Glasserman, Heidelberger,

and Shahabuddin (1998a) to pricing of American op-

tions with a stochastic mesh. Third, we sketch gen-

eralizations of the mesh method and we discuss links

with other techniques for valuing American options.

Our empirical results show that the bias-reduced point
estimates are much more accurate than the standard

mesh-method point estimates. Importance sampling

is found to increase accuracy for a smooth option-

payoff functions, while variance increases are possible

for non-smooth payoffs.

1 INTRODUCTION

In the financial markets, sophisticated, complex prod-
ucts are continuously offered and traded. With the
increasing complexity of these products, Monte Carlo
simulation is steadily becoming an important tool
used in valuing and hedging the products. In this pa-
per, the term American option refers to a discretely,
as opposed to coninuously, exercisable option—that is,
the option holder can exercise the option at a fixed
set of time points (also called exercise opportunities,
or stages) up to expiration. When valuing such op-
tions through simulation, one is jointly estimating the
value of the option and the optimal exercise policy.
Animportant method developed recently for valu-

ing American options through simulation is the stochas-

tic mesh method (Broadie and Glasserman, 1997a) ,
henceforth referred to as BG1997a. We postpone the

description and discussion of the mesh method until
Section 2.

In this paper, we are concerned with improving
the efficiency of the stochastic mesh method by re-
sorting to general-purpose techniques that can be cus-
tomized to a given problem instance rather easily.
For example, although control- variate-based meth-
ods were found to be very effective in BG1997a, we
view them as special-purpose, as they must be care-
fully tailored to the specific option in hand. Without
resorting to variance reduction techniques, it is likely
that a plain-vanilla mesh-based estimation of the op-
tion value will suffer from bias much more than from
variance.

Our primary contribution is to develop general-
purpose bias-reduced versions of the mesh estimators.
A within-mesh biased-low estimator is developed by
splitting the set of states in disjoint sets and using
one of the two sets for estimation of the optimal ex-
ercise policy and the other set for the estimation (if
necessary) of the option’s continuation value. By re-
cursively averaging the low and high estimators at
each stage, we obtain a significantly more accurate
point estimator at each of the mesh points.

As a further contribution, we adapt the impor-
tance sampling ideas for simulation of European path-
dependent options proposed and studied in Glasser-
man, Heidelberger, and Shahabuddin (1998a) in the
pricing of American options hrough a stochastic mesh.
We also propose generalizations of the mesh method
including variable shapes, and mechanisms for sam-
pling paths conditional on the state of all paths at
a given stage; and we discuss links with other tech-
niques for valuing American options.

This paper is organized as follows. In Section 2
we review American-option pricing and the stochastic
mesh method. In Section 3 we detail new estimation
methods and results, and discuss generalizations of
the mesh method. In Section 4 we present Monte
Carlo results quantifying the performance of the new
estimators.



2 AMERICAN OPTION PRICING: BACK-
GROUND

Let St = (S7,...,S}) denote the vector of securities
underlying the option, modeled as a Markov process
on R" with discrete time-parameter ¢ = 0,1,...,7.
The argument ¢t = 0,1,....T indexes the set of times
when the option is exerciseble, also called exercise
opportunities or simply stages.

Let h(t,z) be the payoff from exercise at time ¢
in state x, discounted to time O with the possibly
stochastic discount factor recorded in Sy. The option
value starting at time ¢ in state = is

q(t,z) = max (h(t,z),c(t,z)) fort<T
where
o(t,z) = Eq(t + 1. St11)|S: = z] (1)

is the value of the option when not exercised at time
t in state =, discounted to time 0, and called the con-
tinuation value at (t,z); and ¢(T,x) = h(x) for all
states . Arbitrage-pricing theory suggests that the
arbitrage-free price of the option is obtained when
the conditional expectation in (1) is with respect to
the risk-neutral measure, defined as the measure that
makes the value of any tradeable security, discounted
to time 0, a martingale. The problem is to compute
the option value at time 0, g, = ¢(0, s,), where s, is
the known state of underlyings at time 0.

Ezamples. In a simple application, .S; is a vector of
n stock prices. A maxz option has payoff function

h(t,S;) = (max (St....,S) — K)+ )

where K is the strike price and 1 stands for max(z, 0).

A geometric average option has

+

n (1/n)
h(t,S;) = (H Sf) -K
k=1

2.1 Mesh Method Description

In reviewing the method, we follow BG1997a. The
method generates a stochastic mesh of sample states
(also called points) S;;,¢ = 1,...,b for each t =
1,...,T. Let Sy; = sp,¢ =1,....,b. For t =1,...,T,
let g:(+) denote the probability density from which
the points St ;,4 = 1,...,b are sampled (to be speci-
fied later), and let fi(w,-) denote the conditional risk-
neutral density of Si1q1 given S = z. (In accor-
dance with the authors, we assume throughout the
paper the existence of such densities.) Finally, let
B ={1,...,b} be the set of indices of mesh points at

each stage. The mesh estimator of the option value
is defined recursively:

qu(T, St,i) = h(T, Sr,)

fore = 1,...,b; and for ¢t = T —1,...,0 and for
1 =1,...,b, the high mesh estimator is

qu(t. St;) = max (h(t, St,;), (¢, St,i, B)) (2)

where the continuation value of each point sampled
at stage t depends on the previously calculated con-
tinuation values of all points sampled at stage t + 1:

E'\(t, St,'i-, B)

1 ~
) Z gu(t + 1, Se+1,5)w(t, Sty Stt1,5)
JjEB

where

(St Sie1j)
wi(t, Sty Sey15) = = — ’
( s Ot f+1,.l) gt+1(5t+1’j) ( )

The weighing of the combination of points (St ;, St41,7)
above is necessary in light of the fact that the points
at stage t + 1 were sampled from the density gi41(-)
instead of the density fi(St,i,-) appropriate for point
Sts. We make the dependence of ¢ on B explicit for
subsequent convenience. Finally, note that ¢(t, S; 5, B)
would be an unbiased estimator of the correspond-
ing continuation values if the estimated values gu (¢ +
1, S141,) were unbiased for the corresponding option
values (which, generally, is not the case). We refer
to gg as the high mesh estimator, in view of the fact
that it is biased high as an estimate of the option
value at the corresponding time and state.

The choice of densities g; is crucial. BG1997a
make a strong case for using the average density func-
tion

b
gln) = 5 3 (S (@)

which corresponds to generating b independent paths
of S; and then “forgetting” the path to which each
sampled point belongs at each stage t = 1,...,T.
In agreement with the authors, we call this partic-
ular case the stratified implementation of the mesh
method.

For actually pricing options, BG1997a suggest ob-
taining a second estimator by simulating paths of the
process S; independent of the mesh points S;; until
the exercise region implied by the mesh is reached.
Specifically, the approximate optimal policy implied
by the mesh exercises at 7 = min{t : h(t,Sy) >
qu(t,S:)}, with gu(t,S:) as in (2). The path esti-
mator is then gp = h(7, 5>).



See BG1997a for other properties of the estima-
tors, considerable computational enhancements (mainly
through control variates), and an extensive numerical
study of the method’s performance.

The main alternative for pricing high-dimensional
American options using provably consistent estima-
torsis a tree-based simulation where simulated paths
branch out at each sampled point for each exercise
opportunity (Broadie and Glasserman, 1997b). Com-
pared to this alternative, the mesh method has two
important advantages: (a) it alleviates the exponen-
tial growth of the number of poiuts to be sampled
with the number of exercise opportunities; and (b)
sampled paths help each other in the estimation: all
states sampled at stage j + 1 are used in the esti-
mation of option values at stage 7. On the down-
side, the applicability and ease of use of the mesh
method in application might be restricted by the re-
quirement to calculate the conditional risk-neutral

densities f;(St, ).

3 ENHANCING MESH EFFICIENCY

3.1 Bias Reduction for Mesh Estimation

The idea behind the construction of a biased-low esti-
mate is to use disjoint sets of points for estimation of
the optimal exercise policy and the estimation of con-
tinuation values (in case the estimated optimal policy
is to continue).

Assume the mesh points are sampled from the av-
erage density function (4). Let I C B denote an
arbitrary subset of all indices, and I' = B — I its
complement with respect to B. To simplify notation,
we occasionally drop the explicit dependence of esti-
mators on ¢, writing, for example, ¢(Sy ;) for ¢(t, St,).

To calculate the low estimator at each stage ¢t =
T—1,...,0, assume the low estimator of the values at
all sampled points at stage £+ 1 has been calculated.
Define the estimate of the continuation values at ¢
using only the points in I from stage t + 1:

c(t, St,iﬁf)

1 .
= D Gt + 1, Sepr ) w(t St Serag)s
Jjel

where w(t, S,i, St41,;) ave asin (3) and |I] is the num-
ber of elements in I. Define the estimate of the option
value at point S ;

~ h(t.5S:;),
qu(t, St 1) = { ?f((t{sf},)ﬁ),

Note that the dependence of g, on I, the set of points
used to estimate the optimal exercise policy, was made
explicit; and note the implicit dependence on I’. To

if h(t St,l) Z E(t S’t’i7 I)
otherwise.

maximize usage of known information at stage ¢t + 1
on the estimation at stage ¢, we form the overall low
estimator by averaging b copies of g, where the j-th
copy uses B_; = B —{j} in place of I. The low mesh
estimator of the option value is defined recursively:

qu(T, S7;) = h(T, St,;)
fore = 1,...,b; and for ¢t = T —1,...,0 and for
1 =1,...,b, the low mesh estimator is

b
N Il
qu(t, Sei) = 3 > au(t, Sti. B—j)

The estimator gy, 1s biased low, i.e.,

Efdi(t.2)] < q(t,)

Theorem 1.

for all t,x.
For a proof, see Avramidis and Hyden (1999).

A key component in the development and proofs of
properies of gg and gr, is that the points at stage t+ 1
are sampled from the average density function (4). In
particular, this implies that, conditional on S ;, the
points {S¢11,; : j € B} are independent and identi-
cally distributed (i.i.d.). We claim that in most ap-
plications, better estimation can be achieved by “re-
membering” the path to which each point belongs.
This changes the densities g;(-) and thus the weights
of all point combinations, and the i.i.d. property of
points stated above is lost. For more details and re-
sults on this new view of the mesh, see Avramidis and
Hyden (1999).

Both gg and gy, suffer from recursive bias: assum-
ing that gu(t + 1,2) and qn(t + 1,%) are unbiased
for all z, one can show that the estimates gu(t, z)
and @i, (¢, z) are biased high and low as estimates of
q(t, z), respectively. A simple glance at the derivation
of these properties shows that bias is accumulating
from stage T'— 1 down to stage 0 for both estima-
tors; see BG1997a for the high mesh estimator and
Avramidis and Hyden (1999) for the low mesh es-
timator. As an intuitive bias reduction scheme, we
propose the average mesh estimator which is defined
recursively:

(/I\A(T-, STJ') = }L(T, ST,i)

for ¢« = 1,...,b; and for t = T — 1,...,0 and for
1 =1,...,b, the average mesh estimator is

~ 1. ~

qa(t, Sti) = 3 (qu(t, St,i) +qu(t, Sti))
where the values @a (t+1, -) are used as substitutes for
the values gy (¢+1, ) and g (t+1,-) in the calculation
of gu(t,-) and gu(¢, ), respectively.



3.2 Importance Sampling

Our discussion in this section is restricted to option-
pricing problems that can be cast in a way such that
all input random variates are normally distributed.
To our knowledge, the majority of option-pricing mod-
els fit this framework. Our approach is an adaption
of the importance sampling techniques proposed and
studied in Glasserman, Heidelberger, and Shahabud-
din (1998) in the context of pricing path-dependent
European-style options via simulation.

Let Z be the vector of k independent standard nor-
mal random variables necessary for sampling an en-
tire path of the underlying securities, {S1, Sa, ..., St }.
We denote this as Z ~ N(0,I1,), where Ij, is the k x k
identity matrix. Note that any multivariate Normal
distribution can be generated as a deterministic func-
tion of Z. We obtain a new sampling density for paths
of S; as follows. Treating the option as if it were Eu-
ropean, we form the product of option payoff at expi-
ration and likelihood under the risk-neutral measure
as a function of Z. The value of Z that maximizes
the function above, say p, suggests a new sampling
density for Z, namely N(p,,I1). Noting that the lat-
ter normal density has its maximum at p,, we have
effectively chosen the new sampling density so that its
maximum is attained at the point where the product
of payoff at expiration and likelihood under the risk-
neutral measure is maximized. For further motivation
on this choice of change of measure, see Glasserman,
Heidelberger, and Shahabuddin (1998a).

In view of the results and suggestions in BG1997a,
we maintain a pathwise sampling of mesh points, fol-
lowed by “forgetting” the path to which each point
belongs. For each t =0,...,T — 1, let f: , (z,-) de-
note the new conditional density of Sy given S; = =z,
in view of the fact that transitions were simulated
by sampling Z from N(u,,I};) instead of the origi-
nal (risk-neutral) measure N (0, I;;). The new average
density function becomes

b
1 .
e, (4) = Y fetu,(Si-1j.u)
i=1

for t = 1,...,T. This in turn implies new weights
with g ,, replacing g; in (3). Except for the weight
adjustment, all other estimators remain as in Sections
2.1 for the standard mesh method and as in Section
3 for the enhanced estimators. For a specific example
of the choice of new mesaure, see Section 4.

Since the optimal exercise policy for many options
is to hold until expiration, our treatment of an Amer-
ican option as if it were European for the purposes
of determining a change of measure is likely to be a
good approximation. In light of the successful results

with this change of measure reported in Glasserman,
Heidelberger, and Shahabuddin (1998a), we expect
similar to slightly less successful results in improving
estimation efficiency for American options.

3.3 Mesh Generalizations and Links to Other
Methods

We propose generalizations of the mesh method and
sketch ideas for dynamically growing the mesh, aim-
ing at more efficient sampling of the entire mesh points.
We introduce the concept of parent and child. When
a mesh point B is generated by extending the path of
mesh point A, mesh point A is called the parent rel-
ative to the child mesh point B. In this terminology,
the stratified implementation in BG1997a generates
exactly one child per parent. Also, define the budget
at any stage ¢ as the number of points to sample.

First note that the current choice of a fixed bud-
get per stage is arbitrary. Intuitively, we can say that
the density of the sampled mesh points is spread more
thinly in later stages. More concretely, our experience
with realistic sample sizes, say b < 1000, suggests
that the importance of non-children to any parent is
orders of magnitude lower than the importance of its
child. This effect is progressively stronger in higher
dimensions and, more important to our discussion,
later stages. In other words, the effective sample size
for the estimation at each parent is generally small,
certainly much less than b, and decreasing with di-
mensionality and stage. Although there appears to
be no cure for the effect of dimensionality, this sug-
gests that an increasing budget over stages should
enhance efficiency. Preliminary experimentation (not
reported here) has confirmed this conjecture.

Thus, our first generalization is to allow the bud-
get to vary with stage, so we have by points at stage
t. At stage t, and assuming no preference to giving
more children to any parent, we can afford on av-
erage b1 /by children per parent, called the growth
rate at stage . One choice is to allocate to each par-
ent a number of children equal at least to the inte-
gral part of this ratio, and then choose randomly the
parents to receive the additional children up to the
stage’s budget by+1. Interestingly, this method leaves
the computation of the actual sampling densities g¢(-)
unchanged with respect to the stratified implementa-
tion.

In tree-based simulations for american options as
in Broadie and Glasserman (1997b), the minimum
growth rate for meaningful estimation is two (every
parent gets at least two children), requiring 27 points
to be sampled at stage T. Instead, the generalized
mesh allows any non-integer growth rate, with rates
greater than one but less than two, thus allowing a



less explosive growth than the tree-based case. But
for now, we have no formal procedure for optimally
allocating the b;’s.

A second important generalization is to allocate a
varying number of children to the points at a given
stage. Define the cum-weight (short for cumulative
weight) of a point at stage ¢ as

be—1
we(St,i) = Z we(St—1,5)w(t — 1, St-1,5, 544),

i=1

where wc(s,) = 1. It is easy to see that wc(S;;) is
also equal to the sum of the path weights of all paths
from s, to S;;, where a path weight is equal to the
product of weights of all 1-step transitions of the path.
The cumweight 'wc(Sm-) measures the importance of
point S; ; on the estimation of the option value at s,.
Asumming no a priori importance sampling of the
paths, the higher the cumweight of a point at stage
T, the higher its importancein the overall estimation.
In early experiments, we have observed strong 1-step
cumweight correlation, defined as the correlation of
the cumweight of parents to their children. This sug-
gests that more efficient growth of the mesh can be
dynamically achieved by allocating more children to
higher-cumweight points. More complex rules that
also take into account surrogates to the option value
(as the immediate-exercise value of a point) might
prove even more effective in growing the mesh effi-
ciently. For example, if a path on a call option is way
out of the money, it is highly likely that the optimal
decision is to delay exercise of the option. Increas-
ing the number of children for that kind of parent is
unlikely to be an efficient choice.

What about allocating zero children to a point?
For such a point ¢ at stage ¢, the estimation of the op-
tion value will depend on only non-children at stage
t + 1. Of these, the ones that “look” more than ¢’s
children will get the greatest weight in the estimation
of 7’s value. In this way, the estimation at ¢ is “tied”
to random neighbors of ¢, namely the parents of the
stage-(¢ + 1) points with the highest weight in the
estimation of ¢. This is reminiscent of the bundling
methods of Tilley (1993), where paths are bundled at
each stage according to a predefined similarity (the
resulting estimators are not counsistent, in general).
Yet, the mesh method and its generalizations do not
preconceive a path similarity criterion, likely preserv-
ing most desirable theoretical properties.

4 NUMERICAL RESULTS AND RECOM-
MENDATIONS

We report limited results to demonstrate the degree
of efficiency improvement achieved over a standard

implementation of the mesh method with no variance
reduction techniques. As test cases, we use a subset
of the test cases in BG1997a. Under the risk-neutral
measure, the n assets are independent, and each fol-
lows a geometric Brownian motion process:

dSF = SF[(r = §)dt + cdW}], k=1,...,n,

where Wt_"' is standard Brownian motion, 7 is the risk-
less interest rate, d is the divident rate, and o is the
stock volatility parameter. Exercise opportunities oc-
cur at the set of calendar times t; = iT/d,i = 0,...,d,
where T is the calendar option expiration time (note
that t and T denoted indices of the calendar times
t; and T in the earlier sections). Under the risk-
neutral measure, In(St,/St,_, ) is normally distributed
with mean (r — 0 — 02/2)(¢; — t;—1) and variance

(72(ti - ti—l)-

Case 1 is a max option with n = 5, » = 0.05,
0=01,0=02,T=3,d=9, s, =90, and K = 100.
Case 2 is a geometric average option with n = 7,

r =003 6 =005 0c=04T=1,d = 10, s, =
90 and K = 100. We remark that these cases were
selected as the most difficult cases (based on our own
computations) from the set in BG1997a.

No variance reduction techniques are applied in
Cases 1 and 2. Case 3 is the same option as Case
2, where the mesh is sampled through importance
sampling as in Section 3.2. Specifically, we let Zp
denote a 1 x n row vector of n independent standard
normal variates that drive the sampling of Sp. Let
a be a 1 x n row vector with (r — & — 02/2)T at
each entry. The new mean of Zr, u,, is found as the
solution to

1
max h(T, s, exp(a + U\/Tz) exp(— 522')

where z is a 1 x n row vector and 2’ is the transpose
of z. In view of the new mean for St ., the paths of S;
are sampled with a new drift implied by p,.

We report point-estimator performance (as opposed
to confidence-interval performance) for two estima-
tors: (a) gpg is the point estimator suggested in
BG1997a, defined as the average of the high mesh
estimator and the path estimator based on a num-
ber of simulated paths equal to the parameter b of
the mesh; and (b) ga is the average mesh estimator
defined in Section 3.1.

The performance measures are all relative to the
true option value. We measure RBIAS, RSTDE, and
RRMSE, which are acronyms for relative bias, rel-
ative standard error, and relative root mean square
error of an estimator, respectively. Figures 1 and 2
show performance for ggg and ga, respectively, as a
function of estimator work, measured in CPU time in
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Figure 2: Estimated RBIAS(*), RSTDE(o), and
RRMSE(+) of ga for Case 1

a SUN Ultra 1 workstation. Figures 3-4 and 5-6 are
analogs of Figures 1-2 for Cases 2 and 3, respectively.

Overall, these results and additional experience
not reported here suggest the following:

e The estimator ggg in a standard implementa-
tion of the stochastic mesh method with no vari-
ance reduction techniques as in BG1997a suffers
seriously from bias. This bias is mainly due to
the very strong bias of gy, the mesh high esti-
mator.

e The recursively averaged mesh estimator ga has
small to moderate bias without resorting to vari-
ance reduction techniques and appears to be the
best point estimmator for a general-purpose mesh
implementation.

e Even the better ga estimator will generally yield
only moderate accuracy with realistic sample
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Figure 3: Estimated RBIAS(*), RSTDE(o), and
RRMSE(+) of gpg for Case 2
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Figure 4: Estimated RBIAS(*), RSTDE(o), and
RRMSE(+) of ga for Case 2

sizes. Although the cases we studied here are
the hardest from the set of cases in BG1997a,
they underline that general-purpose mesh es-
timation needs deeper study and that there is
substantial room for accuracy improvement.

e Importance sampling for the mesh method is
fairly straightfowrward to implement. For smooth
payoff functions such as the geometric average
option, it yields substantial efficiency improve-
ments. For non-smooth payoffs such as the max
option, results not reported here show that im-
portance sampling may backfire.
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