
Discussion Paper No. B{399

The Random{Time Binomial Model

Dietmar P.J. Leisen

University of Bonn� and CREST, Paris��

February 1997.

I am grateful to Dieter Sondermann for comments and assistance. Document typeset in LATEX.

� University of Bonn, Department of Statistics, Adenauerallee 24{42, D{53113 Bonn, Germany, e{mail:

leisen@addi.�nasto.uni-bonn.de

�� CREST, Laboratoire de Finance{Assurance, Timbre J320, 15 Boulevard Gabriel P�eri, F{92245

Malako� Cedex, France, Tel.: +33 1 41177825, Fax.: +33 1 41177666, e-mail: leisen@ensae.fr



Abstract

In this paper we study Binomial Models with random time steps. We explain, how

calculating values for European and American Call and Put options is straightfor-

ward for the Random{Time Binomial Model. We present the conditions to ensure

weak{convergence to the Black{Scholes setup and convergence of the values for Eu-

ropean and American put options. Di�erently to the CRR{model the convergence

behaviour is extremely smooth in our model. By using extrapolation we therefore

achieve order of convergence two. This way it is an e�cient tool for pricing purposes

in the Black{Scholes setup, since the CRR model and its extrapolations typically

achieve order one. Moreover our model allows in a straightforward manner to con-

struct approximations to jump{di�usions. The simple valuation approaches and the

convergence properties carry immediatly over from the Black{Scholes case.
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1. Introduction

In a continuous setup, where stock evolution is modeled by geometric Brownian

Motion Black and Scholes[73] derived a closed{form solution for the value of the

European{style option. Later Harrison and Kreps[79] and Harrison and Pliska[81]

developed the concept of equivalent martingale measure, which gave an elegant

technique to express and solve pricing problems.

Corresponding to the original Black{Scholes framework Cox, Ross and Rubin-

stein[79] (henceforth CRR) and Rendleman and Bartter[79] independently presented

the binomial model. This is a discrete re
ection of the continuous process since it

merges into the continuous model in the limit. These models are an easy way to

explain how continuous trade takes place and in�nitely many states are spanned.

Besides these didactical advantages it turned out that binomial models can serve

in an easy way to give approximations for option values where no closed form solu-

tion is available as for example for the American put option. Moreover they are an

elegant alternative to PDE{methods for pricing purposes.

The idea to approximate the Black{Scholes setup by a Binomial Model with ran-

dom time{steps appears already in the works of F�ollmer and Sondermann[86] and

Sondermann[87] calculating risk{minimizing strategies for a two{sided compound

jump{processes. Sondermann[87] suggested this as a way to approximate the pro-

cess resulting from hedging only when the stock{process reaches certain prespeci�ed

discrete levels. It is only recently that Binomial Models with random time{steps

came back into consideration. Dengler and Jarrow[96] used it as an incomplete

markets approximation justi�ng the use of Delta and Gamma for hedging by mar-

ket participants. Recently Rogers and Stapelton[97] reconsidered the approach of

hedging when crossing prespeci�ed levels to price e�ciently barrier options. The

idea is that incorporting a discrete barrier can be done easily by adjusting the corre-

sponding probabilities. Valuation is simply a mixture of CRR{trees. Unfortunately

the distribution on the number of jumps can only be approximated using the work of

Petrov[95]. It is easy to see that the simple valuation approach works for any renewal

process, yet being limited to time{homogeneous options. We will therefore imme-

diatly suppose that a poisson{process is driving the jumps, which makes valuation

much more accessible. Another major contribution is the extension to the valuation

of American put options. In all these cases we achieve a very smooth convergence

behaviour by choosing the S{spacing suitably, which we can signi�cantly improve

through extrapolation in the lines of Leisen[96]. This makes it a very competitive

valuation tool.

It is well known that the volatilities implicit in market prices exhibits a strong

dependence of volatility on the strike price. According to market participants this is
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due to the inherent fear of sudden strong price changes (\crashes"). The assumption

of continuous sample paths may also be criticized from empirical studies (see for

example Jarrow and Rosenfeld[84], Ball and Torous[85] and Jorion[88]).

Already Merton[76] proposed a model in which he superimposed on the Black{

Scholes setup a compound jump process (\jump{di�usions"). Whereas geomet-

ric Brownian motion describes the arrival of \normal" information, the jump{part

models large (discontinuous) price changes due to the arrival of rare \information

shocks".

A framework for the valuation using Binomial Models was given by Amin[93]

using multinomial models with suitably chosen factors and probabilities. Weak

convergence of the processes and using the results of Kushner and DiMasi[78] for

the American put was proven. Mercurio and Runggaldier[93] relaxed the assumption

of constant intensity by assuming that the jump{part has time{dependent intensity.

The value of European Options is now the multidimensional summation of in�nite

series. Thus it is at least di�cult to evaluate. Mulinacci[96] extended the study to

american put options and proved convergence of the algorithm to the continuous

solution.

The remainder of the paper is organised as follows. In section 2 we will brie
y

review the properties of the Binomial Model and conditions for weak{convergence in

the Skorohod{topology, as well as the extension of Amin[93]. Section 3 presents the

model and necessary and su�cient conditions for weak{convergence to geometric

Brownian Motion. Section 4 discusses the valuation of European and American

Options. Section 5 discusses jump{di�usions.

2. The Binomial Model

On a probability space (
;F ; P ) we suppose the stock price process to be de-

scribed by

dSt = rStdt+ �StdWt(2.1)

() St = exp f�t + �Wtg(2.2)

where � := r � �2

2
and the interest rate r as well as the volatility � are supposed

to be constant. (Wt)t is a standard Wiener{process on the probability space. It is

more convenient to work on the logarithm:

Xt := lnSt(2.3)

= �t+ �Wt(2.4)

Now suppose we are given a re�nement n, a set T n = f0 = tn;0 < tn;1 : : : < tn;n = Tg
of equidistant trading dates: tn;i+1 � tn;i = �tn :=

T
n
and a sequence (�n;i)i=0;::: ;n �
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IR. Then de�ne the independent random variables:

Rn;i �
(

�n;i + vn;i ; pn;i

�n;i � vn;i ; 1� pn;i � qn;i
(2.5)

Denote:

X
(n)

t :=

NtX
i=1

Rn;i

S
(n)

t := expX
(n)

t

where Nt :=

�
t

�tn

�

The process S
(n)

t is called a Binomial Model with re�nement n. In the sequel

we restrict ourselves to Binomial Models, where Rn;1; : : : ; Rn;n are identically dis-

tributed. Thus we assume that �n;i = �n, vn;i = vn and call (un; dn; pn) = (exp(�n+

vn); exp(�n � vn); pn) its characteristics.

Please note that di�erently to the common literature where the discrete process

are de�ned only at dates tn;i 2 T n we de�ne it on the whole interval [0; T ] as a

c�adl�ag process. This is for technical convenience. Yet, as long as we assume that

trading takes place only at the discrete dates this makes no di�erence.

We will further suppose that the space D of c�adl�ag processes is equipped with the

Skorohod topology and denote by
d

=) the weak{convergence in distribution on D.
We are then interested in X

(n) d
=) X as processes.

Obviously necessary conditions are

E

�
Rn;1

�tn

�
n�! r � �2

2
(2.6)

Var
�
Rn;1

�
�tn

n�! �2(2.7)

Theorem 2.1:

Suppose that conditions (2.6) and (2.7) are ful�lled.

Then:

X
(n) d

=) X(2.8)

S
(n) d

=) S(2.9)

Proof. For (2.8) we refer to Donsker's theorem (see corollary VII.3.11 in Jacod and

Shiryaev[87]) and for (2.9) we note that the function exp is continuous.

The martingale measure condition is E[expfRn;1g] = expfr�tng. Similarly to the

transfer from (2.2) to (2.4) it can be shown by applying the Itô { formula that
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condition (2.6) corresponds to this. We therefore require to hold with equality:

E
�
Rn;i

�
= ��tn. Easy calculations reveal immediatly:

pn =
��tn � �n + vn

2vn
(2.10)

It is easy to see that (2.7) requires:

jvnjp
�tn

n�! �(2.11)

To ful�ll this property we set vn := �
p
�tn. The models proposed in the literature

di�er in the speci�cation of �n:

1. Jarrow and Rudd[83]:

Setting 8n : �n :=
�
r � �2

2

�
�tn, we get pn =

1
2

2. Cox, Ross and Rubinstein[79]:

Setting 8n : �n := 0, we get pn =
1
2
+

r��2

2

2�
p
�tn

Similarly to Merton[76] we will now suppose that our stock{process can described

by

dSt = (r + �)Stdt+ �StdWt + StdJt(2.12)

where Jt =

NtX
i=1

Ui(2.13)

for a sequence of iid random variables (Ui)i2IIN with Ui �] � 1;1[ and a poisson{

process (Nt)t with intensity �. � is called the risk{premium.

Then setting again Xt = lnSt and � := r � �2

2
� �E[Ui] + � an easy application

of Itô's formula yields:

Xt = �dt+ �dWt + dJ t(2.14)

where J t =

NtX
i=1

Vi(2.15)

with Vi := ln(1 + Ui)(2.16)

Since we are working on the logarithm, equation (2.16) makes sense only for

Ui > �1. This is the reason we excluded �1 in the assumption for Ui. Yet, this is

of only technical nature.

By assuming that jumps occur, markets are no longer complete. Thus there is no

longer a unique equivalent martingale measure, describing the stock process, which

precludes arbitrage. The choice of a martingale measure was performed implicitly in

Merton[76] by assuming that jump{risk could be fully diversi�ed and was therefore

not priced (� = 0). Assuming that markets require an exogenously �xed risk{

premium for bearing risk requires this to the above formula. Another approach was
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suggested by F�ollmer and Sondermann[86] who speci�ed the measure endogenously

by adopting those which minimizes the writers risk in some sense.

Merton[76] obtained the call option price as a mixture of Black{Scholes prices:

e��T
1X
n=0

(�T )n

n!
E[c(S0Xne

��kT ; T;K; �2; r)](2.17)

where c(S0; T;K; �
2; r) is the Black{Scholes formula and Xn

d
= U1 + : : :+ Un.

In the case where there is a probability of immediate ruin, i.e. Ui = �1 this

formula simpli�es to:

e��T c(S0e
�T ; T;K; �2; r)(2.18)

which can be further simpli�ed to the standard Black{Scholes formula where the

interest rate is replaced by r + �.

N being a poisson{process with intensity �, on a discrete interval �tn the proba-

bility of one jump equals ��tn. The probability of more than one jump is small in

comparison to this. Therefore Amin[93] assumed that between two dates exactly one

jump occurs. Using a Binomial Model with grid vn;i := �
p
�tn, �n;i = ��tn he su-

perimposed the jump{process by assuming that jumps occur only into points of the

grid. Amin[93] explains how to approximate Ui suitably by Un;i on the grid{points.

The return Rn;i is now modeled by

Rn;i �

8><
>:

�n;i + vn;i ; (1� ��tn)pn;i

�n;i � vn;i ; (1� ��tn)(1� pn;i)

Un;i ;��tn

(2.19)

Choosing its probability pn;i suitably, i.e. by setting it according to (2.10) with

� := r � �2

2
� �E[Ui], Amin[93] presents weak{convergence results and convergence

results for American Options.

In �gure 2.1 we present calculations for the value of a European call option with

the following selection S = 100; K = 90; T = 1; r = 0:05; � = 0:3; � = 0:1 of

parameters and iterating re�nement n = 10; : : : ; 110. The left hand part corresponds

to the Black{Scholes setup using the CRR Binomial Model. We observe very wavy

patterns and that prices converging very erratically to the continuous time solution.

Prices which overestimate are followed by others which underestimate. Moreover

we need very high re�nements to achieve su�ciently high accuracy. For example to

ensure \penny{accuracy" in the example of �gure 2.1 we need at least a re�nement

of n = 200.

On the right hand in �gure 2.1 we present calculations using the model of Amin[93]

as an approximation to a model allowing immediate ruin (Ui = �1, � = 0:1). This

model inherits the poor convergence properties from the Binomial Model. Yet, this
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Figure 2.1. typical pattern resulting from European Call option

price calculations in the BS{setup using the CRR Model resp. in

Merton's setup using the Amin Model

is not the only drawback. Superimposing jumps in Amin's way corresponds more

to a numerical caluation scheme than to the original idea of the Binomial Model,

which presented a didactically simple analogue to the continuous{time model and

explained how continuous trading may take place and in�nitely many states may be

spanned.

3. Randomization of the Binomial Model

In this section we will extend the approach of the previous section by allowing

random time steps between two trading dates. We explain, how to construct the

process suitably, in order to ensure weak{convergence to the Black{Scholes setup.

In the next section we will address the valuation task.

To be as general as possible, we suppose to be given a sequence of renewal processes

N (m) = (N
(m)
t )t�0. If we denote the i{th interarrival time by �m;i this means that

1. (�m;i)i are iid non{negative random variables

2. N
(m)
t = max fn jPn

i=1 �m;i � tg
We will denote �m(t) = E[N

(m)
t ] the renewal function.

The simplest example of a renewal process is a poisson process with parameter �m.

It has the renewal function �m(t) = �mt.

In section 2 we approximated the processX between two trading dates tn;i; tn;i+1 2
T n by iid random variables Rn;i. Similarly here we will now approximate it by iid

random variables Rm;i between two interarrival times �m;i; �m;i+1, i.e.

Rm;i �
(

�xm ; pm

��xm ; 1� pm
(3.1)
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Under this assumption we have set the drift �n � 0. This is concenvient, because the

grid becomes stationary, i.e. the process will evolve in the grid �xm �ZZ, independent
of any i.

This yields the approximation:

X
(m)

t =

N
(m)
tX
i=1

Rm;i

We will moreover assume that N (m) is independent of (Rm;i)i. Then we have the

following

Theorem 3.1:

Necessary conditions for X
(m) d

=) X are that for all t 2 T :

E
�
Rm;i

� �m(t)
t

n�! r � �2

2
(3.2)

Var
�
Rm;i

� �m(t)
t

n�! �2(3.3)

Proof. For the �rst moment we have, using the Wald equality:

E
h
X

(m)

t

i
= E

2
4N

(m)

tX
i=1

Rm;i

3
5

= E
h
N

(m)
t

i
E
�
Rm;i

�
= �m(t)E

�
Rm;i

�
Since E [Xt] =

�
r � �2

2

�
t, condition (3.2) follows.

For the second moment we have, using the Wald equality again:

E

�
X

(m)

t �
�
r � �2

2

�
t

�

= E

��
X

(m)

t

�2�

= E

2
64
0
@N

(m)
tX
i=1

Rm;i

1
A

2
3
75�

�
r � �2

2

�2

t2

= E

2
4N

(m)

tX
i=1

�
Rm;i

�2
+

N
(m)

tX
i=1

N
(m)

tX
j=1;j 6=i

Rm;iR
(m)

j

3
5� �r � �2

2

�2

t2

= E[N
(m)
t ]E

h�
Rm;i

�2i
+ E

h
N

(m)
t

i2
E
h�
Rm;i

�2i� �r � �2

2

�2

t2

= �m(t)E
h�
Rm;i

�2i
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Since E
�
X2

t � E [Xt]
2
�
= �2t, condition (3.3) follows.

If we model the return as in (2.5) then the counterpart to theorem 2.1 becomes:

Theorem 3.2:

Suppose that conditions (3.2) and (3.3) are ful�lled.

Then:

X
(m) d

=) X(3.4)

S
(m) d

=) S(3.5)

Proof. From (3.2) and (3.3) follows that X
(m)

t �X
(m)

s

d
=) Xt �Xs. Since X

(m)
has

independent increments, according to Lemma VII.1.3 in Jacod and Shiryaev[87] this

is su�cient to deduce (3.4).

(3.5) follows from (3.4), since the function exp is continuous.

If � is su�ciently great, jumps will occur almost always. Thus in the limit �m
m�!1

we can expect that with suitably adjusted return expRm;i we obtain geometric

Brownian Motion, which is exactly what theorem 3.2 tells us.

To ful�ll (3.2) or (3.3) we need that
�m(t)

t
is \almost" constant. For simplicity we

will subsequently assume that

9�m 8t : �m(t)

t
= �m(3.6)

This means that here we are assuming that N (m) is a poisson process with parameter

�m.

Then condition (3.2) in theorem (3.1) can be resolved by setting

pm =
1

2
+

r � �2

2

�m�xm
(3.7)

An important question is now how to choose the jump{intensity �m. From condition

(3.3) follows immediatly:

Lemma 3.1:

Asymptotically we have:

�m �
�

�

�xm

�2

Allowing the Binomial Model to jump at Random Times the market becomes

incomplete. Whereas in the original Binomial Model framework of the previous

section there was a unique equivalent martingale measure, represented by pm;i, here

we are loosing this property. Instead we have a whole set of equivalent martingale

measures, all compatible with the assumption of absence of arbitrage opportunities.

We can index the possible martingale measures by the choice of the jump{intensity
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�m. For valuation purposes we need to choose one measure among all these mea-

sures. Di�erent approaches from utility to risk{minimization have been studied.

Yet, according to theorem 3.2 in the limit this problem cancels out. The easiest

way to meet the conditions of this theorem is according to Lemma 3.1 obtained by

setting

�m =

�
�

�xm

�2

(3.8)

which we will adopt in the sequel. We will describe the probability measure by Qm

and its expectation by Em.

Under this choice we deduce from (3.7) that

pm =
1

2
+
r � �2

2

2�2
�xm(3.9)

Since in the CRR model we have �xm = �
p
�tn the only di�erence with the model

of CRR obviously consists in replacing �tn by random times (�m;i)i. However all

formulas hold with the expected time �tn = E[�m;1] =
1
�m

.

Rogers and Stapleton[96] presented another approach to obtain Rm;i. For some

�x is any real number they obtain the interarrival times by stopping X at the grid

�x � ZZ. Thus with �0 = 0:

�i+1 = infft � �ij jXt �X�i j = �xg
We can view the process X

(m)
also as the sum of two poisson{processes. If we

denote by N+ (resp. N�) a poisson{process with intensity �+m = �m
2
+

r��2

2

2�xm
(resp.

��m = �m
2
� r��2

2

2�xm
) then it follows easily that the process (X

(m)
t ) is equal in distribution

to the di�erence between the two jump{processes when the amplitude is �xm, i.e.

X(m) d
= �xm(N

+ �N�)

Taking �xm = �p
2n

and the jump{intensities �+n = n(1+ �

�
p
2n
), ��n = n(1� �

�
p
2n
) in

this form the Random{Time Binomial Model was studied by Dengler and Jarrow[96]

to explain, why market participants use Delta and Gamma for Hedging purposes.

In this context they derived Lemma 3.1 using the Brownian scaling relation.

4. Valuation

In the previous section we introduced the Random{Time Binomial Model and

motivated our choice of the intensity �m.

In this section we will present a valuation algorithm, which resolves the further

randomness in an easy and straightforward manner for European and American call

and put options and we will give convergence results.
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A European option is completely described by its payo� function f . For example

for a European call with strike K this is f : x 7! (x�K)+. Due to the independence

of N (m) and the random variables in the sequence Rm, we can derive the Merton[76]

formula (equation (2.17)) by conditioning �rst on the N
(m)
T and then averaging over

all possible values. More speci�cally under our choice of the equivalent martingale

measure its value is equal to

v em(0; S0) := e�rTEm

�
f(ST )

�
(4.1)

= e�rTEm

h
Em[f(ST )jN (m)

T ]
i

(4.2)

= e�rT
1X
n=0

Em

h
f(ST )jN (m)

T = n
i
� P

h
N

(m)
T = n

i
(4.3)

Em

h
f(ST )jN (m)

T = n
i
is the value calculated by backward{induction in an n{step

tree grid with characteristics (um; dm; pm), if we do not perform discounting. If we

denote this value by

�m
n (0; S0) :=

nX
i=1

�
n

j

�
pim(1� pm)

n�if(uimd
n�i
m S0)(4.4)

then we have:

v em(0; S0) = e�(r+�m)T

1X
n=0

(�mT )
n

n!
�m
n (0; S0)(4.5)

This holds for European put as well as for European call options. Whereas con-

vergence of put prices follows immediatly from weak{convergence of the respective

processes, convergence of call prices follows via put{call-parity.
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Figure 4.1. Example grids for n even (n = 0; 2; 4)
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Figure 4.2. Example grids for n odd (n = 1; 3)

Please note that we need di�erent grids for odd and even n. However �m
n+2(0; S0) =

p2m ��m
n (0; u

2
mS0) + pm(1� pm) ��m

n (0; S0) + (1� pm)
2 � �m

n (0; d
2
mS0) (see �gures 4.1

and 4.2). Thus we can calculate prices as intermediate calculations in an 2b�mc step
resp. in an 2b�mc � 1 step tree with parameters (um; dm; pm).

This works for any renewal process N
(m)
T . Yet, it remains to calculate P [N

(m)
T = n]

for any n 2 IIN. Unfortunately for the \stopping{approach" proposed by Rogers and

Stapelton[96] the distribution of the the stopping times is unknown. We only know

its Laplace transform (see Karatzas and Shreve[]):

'(�) = E [expf���1g]
=

cosh ���2�x

cosh
p
�2 + 2��2=�2�x

This allows for a calculation of the mean and variance of �1. Rogers and Stapel-

ton[96] now calculate the probabilities through the application of a Limit theorem

in Petrov[95]. This procedure is quite complicated and does in our eyes not add a

survalue. Therefore we restrict ourselves to a jump{process in the sequel and prefer

a suitable choice of �xm.

Of course in a �rst step we need simplify the in�nite series in (4.5) to a �nite one.

From the Central Limit Theorem for renewals we deduce:

N
(m)
T � T�mp

T�m

d
=)N (0; 1)

Thus:

lim
m!1

P [N
(m)
T 2 f0; : : : ; 2b�mcg] = 1

11



Therefore it is not necessary to calculate the in�nite series in (4.5) and we will

subsequently use the approximation:

v em(0; S0) � e�(r+�m)T

2b�mcX
n=0

(�mT )
n

n!
�m
n (0; S0)(4.6)

In �gures 4.3 and 4.4 we present the results of calculating European Put Option

prices with the CRR Binomial Model and our Randomized Binomial Model.

For a given Call or Put option with strike K and a re�nement m we will in the

sequel always take �xm :=
lnS=K

m
, yielding the grid Gm := �xm � ZZ. The same grid

results in a CRR Binomial Model if we take a re�nement of n = b( �
�xm

)2c. Since we
can calculate the values �m

n (0; S0) as intermediate calculations in an in an 2b�mc step
resp. in an 2b�mc � 1 step tree with parameters (um; dm; pm), in order to compare

both approaches properly depending on its complexity, we index calculations in

the Random{Time Binomial Model by 2b�mc and calculate the corresponding CRR

prices taking this as re�nement. Figure 4.3 contains calculations for an out{of{the{
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Figure 4.3. typical pattern resulting from european put option

price calculations using the randomized model and its extrapolation

with the following selection of parameters: S = 100; K = 110; T =

1; r = 0:05; � = 0:3; n = 10; : : : ; 700

money Option, whereas �gure 4.4 presents calculations for in{the{money Option.

Left hand we display the values according to the re�nement which shows us the

convergence behaviour. As we are interested in the convergence, we make use of the

fact that we know the true (continuous time) price from the Black{Scholes formulae.

Thus the right hand part contains the absolute di�erence. We have chosen a log{

log{scale in the error pricture for the following reason: On this scale the function

log �
n�

= log ����logn becomes a straight line with slope �. Such an upper{bounding

function gives us the order of convergence �.
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We observe in the �gures that due to our judicious choice of the re�nement n the

CRR model shows a much smoother structure than in the �gures in section 2. Yet

convergence is not completely monotonical, since there is under{ and overestimation

remaining (left hand �gure). In contrast to this, the Random{Time Binomial Model

exhibits an extremely smooth structure. Moreover it has slightly lower initial error

than the CRR Model.

According to Leisen[96] the smooth convergence structure of the randomized

model allows us to make use of extrapolation. To apply this properly we need

to know the order of convergence. We see that the error is bounded by the line 1=x

for the CRR as well as the Random{Time Binomial Model. Thus we deduce that

both models converge with order one. It was proven by Leisen and Reimer[96] that

the CRR model converges with order one. The following theorem establishes the

corresponding result for the Random{Time Binomial Model:

Theorem 4.1:

For European Call and Put Option prices, if we denote by v e(0; S0) the Black{Scholes

formula, and by v em(0; S0) the value of equation (4.5), then:

jv e(0; S0)� v em(0; S0)j � O
�

1

m2

�

13



Proof. We have according to theorem 2 in Leisen and Reimer[96]:

jpm � pj �
1X
n=0

P [N
(m)
T = n] � ��e�rT�m

n (0; S0)� c(0; S0)
��

�
1X
n=0

P [N
(m)
T = n] � � � n �

�
m
1
n +m

2
n +m

3
n + pn +

1

n2

�

where m1
n :=

���E �Rm;1

�� er
T
n

���, m2
n :=

���E h�Rm;1

�2i� e(2r+�
2)T

n

���,
m
3
n :=

���E h�Rm;1

�3i� e(3r+3�
2)T

n

��� and pn := ���E h�ln Rm;1

� �
Rm;1 � 1

�3i���
We have

1X
n=0

P [N
(m)
T = n] �m1

n = O
�

1

m2

�

since

1X
n=0

P [N
(m)
T = n]

n
= e��mT

1X
n=0

(�mT )
n

n!n| {z }
�2 (�mT )n

(n+1)!

� 2e��mT

1X
n=0

(�mT )
n

(n+ 1)!

= 2e��mT 1

�mT

1X
n=1

(�mT )
n+1

(n + 1)!

� 2e��mT 1

�mT

1X
n=1

(�mT )
n

n!

� 2

�mT
= O

�
1

�m

�

= O
�

1

m2

�

From Leisen and Reimer[96] follows that pn = O � 1
m2

�
. We will prove now that:P1

n=0 P [N
(m)
T = n] � m1

n = O � 1
m2

�
Since m1

n =
���E �Rm;1

�� er
T
n

��� = ���er T
�m � er

T
n

��� =
14



er
T
�m j1� erT (

1
n
� 1
�m

)j, we will study:
1X
n=0

P [N
(m)
T = n]

���1� erT (
1
n
� 1
�m

)
���

=
X
n��m

P [N
(m)
T = n] (1� erT (

1
n
� 1
�m

)| {z }
��er

T
�m

)

| {z }
�1�e�r

T
�m �r T

�m

+
X
n��m

P [N
(m)
T = n] (erT (

1
n
� 1
�m

)| {z }
�er Tn

�1)

| {z }
er

T
n �r T

n

�
X
n��m

P [N
(m)
T = n] r

T

�m| {z }
=O( 1

�
)=O( 1

m2 )

+
X
n��m

P [N
(m)
T = n] r

T

n| {z }
=O( 1

m2 )

With the methods in Appendix B of Leisen and Reimer[96] it is easy to derive from

this, that:
P1

n=0 P [N
(m)
T = n] �m2

n = O � 1
m2

�
,
P1

n=0 P [N
(m)
T = n] �m3

n = O � 1
m2

�
We can derive from this result the following extrapolation rule (see Leisen[96]) for

both models, where (m1; m2) 2 IIN2:

p(m1;m2) =
m2

2pm2
�m2

1pm1

m2
2 �m2

1

In �gures 4.3 and 4.4 we applied it with the values calculated earlier, i.e. (m;m+1).

We applied it to the CRR model, too. Extrapolated prices in the CRR Model behave

much more like those in the original CRR Model. The wavy patterns seem to be

even enforced. Although there are very accurate results we are forced to rely on the

upper error bound, which is not better than in the original CRR Model.

Di�erently, extrapolating the Random{Time Binomial Model yields very impres-

sive results. We have very small initial errors which give us almost immediatly

\penny{accuarcy". Moreover extrapolated prices seem to converge with the higher

order of two. We would like to remark that this result is in line with those of

Leisen[96] who predicts this for models with su�ciently smooth convergence struc-

ture.

Next we come to American Options. Unfortunately it is not straightforward

to generalize equation (4.5) to American Options, since discounting will typically

introduce path{dependency. Thus valuation of American Options is slightly more

di�cult.

Proposition 4.1:

For �xed m, the value of the American Put Option is

vam(0; S0) = e��mT

1X
n=0

(�mT )
n

n!
�m
n (0; S0)
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where �m
n is its price in an n{step tree with characteristics (um; dm; pm) performing

discounting in each time{step as in the original CRR-model.

Proof. Fix some n 2 IIN and t 2 [0; T ].

On An;t := fN (m)
T � N

(m)
t = ng we have a sequence of exactly n jumps (�1; : : : ; �n)

on [t; T ].

Any such sequence denotes a tree with varying time step sizes �m;i � �m;i�1, where

we can easily calculate using the usual backward{induction argument the \value"

of the american put

J
n;t

(�1;::: ;�n)

Denote the maximum over all such sequences by

~Jn
t := max

(�1;::: ;�n)
J
n;t

(�1;::: ;�n)

and

J t := E
h
~J
NT (!)�Nt

t

���St; Nt

i
Then a little thought immediatly reveals that (J t)t is the smallest supermartingale

which majorizes f(St).

Since (St)t is c�adl�ag, J t is the value of the above american put option (see El

Karoui[79]).

A case study of deviations to the left resp. right reveals that for any n; t and any

sequence (�1; : : : ; �n) and � 0i 6= �i�1+�i+1

2
we have:

J
n;t

(�1;::: ;� 0i ;::: ;�n)
� J

n;t

(�1;::: ;
�i�1+�i+1

2
;::: ;�n)

Thus:

~Jn
t = J

n;t

(�tn;2�tn;::: ;T )

where �tn :=
T � t

n

This completes the proof.

Theorem 4.2:

vam(0; S0)
m�! va(0; S0)

Proof. Lamberton and Pag�es[90] by checking condition (H) using the su�cient con-

ditions of Mulinacci and Pratelli[96].

Thus we can calculate continuous{time prices via the above algorithm.

In �gures 4.5 and 4.6 we present American Put Option Price calculations. True

values are calculated using the CRR BinomialModel with a re�nement of n = 50000.
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Figure 4.5. typical pattern resulting from American put option

price calculations using the randomized model and its extrapolation

with the following selection of parameters: S = 100; K = 110; T =

1; r = 0:05; � = 0:3; n = 10; : : : ; 700
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Besides this the �gures correspond to �gures 4.3 resp. 4.4. Moreover the analysis

and the conlusions immediatly carry over to this case.

Through extrapolation the complication resulting from randomization is more

than o�set. Although randomization complicates valuation we observe that through

extrapolation it gives a very competitive pricing tool.

5. Approximating Jump{Diffusions

In the approach of Amin the jump{process was simply put on top of the Binomial

Model. Thus it inherited its poor convergence properties from this. Moreover though
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the model of Amin[96] is computationally correct, it does not match the original idea

of jump{di�usions of a rare event at random time.

Using the randomized Binomial Model it is straightforward to add the jump{part:

The sum of two jump{processes is simply a jump{process whose intensity is the sum

of the two parts. The tools developed in section 4 carry immediatly over to this case.

They can be very simple and competitive for valuation purposes.

Suppose we are in the jump{di�usion framework presented at the end of sec-

tion 2 and suppose we are given a sequence (Nm; R
m
)m, independent from N and

converging weakly to the following process:

Xt := �t+ �Wt(5.1)

where here � := r � �2

2
� �E[Ui] + �. Such a sequence can be constructed easily

with the results of section 3 by applying equations (3.1) and (3.9) using this �. The

process N
m
:= N +Nm is a poisson with intensity �+�m. Now de�ne the sequence

of random variables (Zm
i )i by

Zm
i �

(
Vi ; �

�+�m

R
m

i ; �m
�+�m

(5.2)

and the process X
m
, S

m
by

X
m

t :=

N
m
tX

i=1

Zm
i(5.3)

S
m

t := expX
m

t(5.4)

This approximation is very easy to perform. We believe also that due to the fact

that it is straightforward, it represents much better the didactical advantages of the

original CRR Binomial Model.

We have the following:

Theorem 5.1:

X
m d

=) X(5.5)

S
m d

=) S(5.6)

Proof. Denote by h the function h : x 7! x+
PN

i=1 Ui and by C where it is continuous.
We have

NmX
i=1

R
m d
=)

�
r � �2

2

�
t + �Wt
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Since this is continuous, we have according to proposition VI.1.23 in Jacod and

Shiryaev[87] that

P

"
NmX
i=1

2 C
#
= 1

Thus according to VI.3.8 (ii) in Jacod and Shiryaev[87]:

X
m
=

NmX
i=1

R
m
+

NX
i=1

Ui
d

=) X

The put Payo�{function is continuous and bounded. This and the above theorem

immediatly gives us:

Proposition 5.1:

For European Put Options we have:

v em(0; S0)
m�! v e(0; S0)

From Put{Call Parity follows then:

Proposition 5.2:

For European Call Options we have:

v em(0; S0)
m�! v e(0; S0)

This means that we have convergence for european calls, especially in the case of

Merton to the formula (2.17).

The methods and proofs presented in the previous section carry immediatly over:

Proposition 5.3:

For European Options we can calculate its value by

v em(0; S0) = e�(r+�+�m)T

1X
n=0

((�+ �m)T )
n

n!
�m
n (0; S0)

where �m
n (0; S0) can be calculated through intermediate calculations in backward{

induction as in section 4.

For American Options we can calculate its value by

vam(0; S0) = e�(�+�m)T

1X
n=0

((�+ �m)T )
n

n!
�m
n (0; S0)

where �m
n (0; S0) is its price in an n{step tree with characteristics (um; dm; pm).

Theorem 5.2:

For American Put Options we have:

vam(0; S0)
m�! va(0; S0)

19



11.31

11.32

11.33

11.34

11.35

11.36

11.37

11.38

11.39

11.4

11.41

100 200 300 400 500 600

va
lu

e

refinement n

randomized
randomized with extrapolation

Amin
Amin with extrapolation

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100

er
ro

r

refinement n

randomized
randomized with extrapolation

Amin
Amin with extrapolation

1/x
1/x/x

Figure 5.1. typical pattern resulting from American put option
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domized model and the Amin Model resp. their extrapolations with
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Figure 5.2. typical pattern resulting from American put option

price calculations in a model allowing immediate ruin using the ran-

domized model and the Amin Model resp. their extrapolations with
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For the problem of approximating a jump{di�usion allowing immediate ruin in

the stock, we presented in section 2 the formula of Merton[76] (equation (2.18)).

According to this formula the value for a European Call Option can be calculated via

the Black{Scholes formula with adjusted interested rate r+�. The argumentation of

Merton[73] tells us that in the original Black{Scholes framework the right to exercise

an American Call Option is worthless, i.e. both prices coincide. Adjusting it to this

case we deduce that in the framework of Merton[76], where there is a probability
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of immediate ruin, the problem of pricing European and American Call Options

is exactly equal to those in the Black{Scholes framework. Since we discussed this

detailed in section 4 and explained its superiour performance we will now restrict

ourselves to American Put Options.

Figures 5.1 and 5.1 are organised as �gures 4.5 and 4.6: Figure 5.1 contains

out{of{the{money options, whereas 5.2 contains in{the{money options. Left{hand

�gures contain the values; right{hand �gures the error to the true value. The true

value is calculated using the Amin model with re�nement n = 50000.

We observe in the �gures that in contrast to the Amin model, the Random{

Time Binomial Model exhibits an extremely smooth structure. Moreover the upper

bounding error line has slightly lower initial error. Extrapolated prices in the Amin

Model behave much more like those in the original CRR Model. The wavy patterns

seem to be even enforced. Although there are some accurate results we are forced

to rely on the upper error bound, which is not better than in the original CRR

Model. Di�erently, extrapolating the Random{Time Binomial Model yields very

small initial errors which give us almost immediatly \penny{accuracy". Moreover

extrapolated prices seem to converge with the higher order of two. Thus the re-

markable convergence properties of the Random{Time Binomial Model carry over

to the approximation of jump{di�usions.

6. Conclusion

In this paper we studied a Binomial Model with Random Time steps. We showed

how price approximations for European and American Put and Call Options can

be calculated easily in the Black{Scholes setup. We prove convergence to the

continuous{time solution. For European Put Options we proved order{of{convergence

one. Extrapolation improved the results impressively. Thus this Model can serve

as an e�cient tool in the Black{Scholes setup. A second important contribution is

that the Random{Time Binomial Model gives intuitive and straightforward approx-

imations to jump{di�usions.
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