Pricing American Stock Options by Linear
Programming

M.A.H. Dempster
Judge Institute of Management Studies
University of Cambridge
Trumpington Street, Cambridge, England CB2 1AG
and
J.P. Hutton
Asset Trading Group,
Nomura Research Institute (Europe) Ltd.,

1 St. Martins-le-Grand,

London EC1A 4NP

August 24, 1999

Abstract

We investigate numerical solution of finite difference approximations to American
option pricing problems, using a new direct numerical method — simplex solution
of a linear programming formulation. This approach is based on an extension to
the parabolic case of the equivalence between linear order complementarity problems
and abstract linear programmes known for certain elliptic operators. We test this
method empirically, comparing simplex and interior point algorithms with the pro-
jected successive overrelaxation (PSOR) algorithm applied to the American vanilla
and lookback puts. We conclude that simplex is roughly comparable with projected
SOR on average (faster for fine discretisations, slower for coarse), but is more de-
girable for robustness of solution time under changes in parameters. Furthermore,
significant speed-ups over the results given here have been achieved and will be pub-
lished elsewhere.

1 Introduction

The aim of this paper is to investigate the numerical solution of finite difference approxima-
tions to partial differential equation (PDE) problems arising in pricing American options.
We use a novel linear programming approach and test it empirically against other methods



for such problems. Our results show that with the current state of solver and computer
technology it is efficient to solve numerically for the value function of a wide range of
American derivative securities by simplex solution of the linear programming formulation.

In §3, after a brief summary of well-known results for the American vanilla put option
in §2, we study equivalent formulations of an American option problem as a free boundary
problem, a linear complementarity problem and a variational inequality. Results from the
literature on uniqueness of the variational inequality solution give us uniqueness of the order
formulation of the complementarity problem. Our main theoretical result is an extension to
the parabolic case of a known equivalence for coercive elliptic partial differential operators
of type Z; namely that this order complementarity problem is equivalent to a least element
problem and hence to an abstract linear programme.

In §4, we consider finite difference approximations to the various equivalent formulations
of the American put problem in §3. Again, results from the literature on convergence
of the solution of the discretised variational inequality to the continuous American put
value function give convergence for the equivalent discretised linear programme. Standard
numerical algorithms are described.

In §5, we test empirically — for the American vanilla and lookback puts — the new linear
programming approach against the PSOR algorithm for the complementarity problem
using modern simplex and interior point algorithms. We reproduce known solution values
from the literature and investigate solver behaviour with respect to discretisation and
market parameters.

2 The American Put Option

Consider the well-known problem of pricing an American stock option in the standard
Black-Scholes economy. This problem has been extensively studied and we refer the reader
to any standard text, for example, Duffie (1992); for a literature review see Myneni (1992).
The stock price process is modelled under the equivalent martingale (risk neutral) measure
as

L = rdt+0dW(t)  te[0,T), (1)

where S(0) > 0, o0 > 0 is the constant volatility of the stock, and W is a Wiener process
under this measure.

We consider here a standard (vanilla) American put option on a stock, a security
whose payoff to the holder on exercise at any stopping time 7 € [0,7T] is given by the
payoff function ¥(S(7)) = (K — S(7))™, for a given maturity date T > 0 and exercise
price K. The security would be European in case exercise were only possible at maturity.
We wish to characterise, in a manner suitable for numerical solution, the value function
u: RY x [0,7] — R, giving the option fair value u(z,t) to the holder at stock price z > 0
and time ¢ € [0, 7.



In case the security were European, then u is simply the solution of the quasilinear
parabolic partial differential equation (PDE) derived by Black & Scholes (1973), viz.

ou
ﬁBs’U/ + E =0 (2)

for (z,t) € RY x [0,T) and terminal condition u(-,T) = v, where the differential operator
Lps = 10?22 +red —r. In this case Mania (1997) has recently obtained results which
show that u possesses two weak derivatives for ¢ € [0,7'), see § 3.2.

The case of American-style payoffs is more difficult. The value function is the solution
of a classical optimal stopping problem, namely to choose the stopping time that maximises
the conditional expectation of the discounted payoff — indeed the optimal stopping time

p(t) may be shown to be given by

p(t) =inf{s € [, T] : u(S(s),s) = ¥(S(s)}, (3)

i.e. the first time the option value falls to simply that of the payoff for immediate exercise.

The discounted stopped price process is a martingale, but only up to the stopping time,
so that u satisfies the same PDE (2) on an implicitly defined region C where u(x,t) > ¢(z),
since (3) tells us that exercise occurs when u(x,t) falls to ¢(z). Thus the domain of the
value function may be partitioned into a continuation region C and a stopping region S
given by

C = {(z,t) e R"
S = {(z,t) e RT

[0,T) : u(z,t) > ¢(z)}
[0,T) : u(z,t) = ¢(x)}- (4)
Clearly this is a partition, because we have u(z,t) > 1(x) everywhere.

On the whole domain IR™ x [0, T'), we have Lpgu + % < 0, since, to preclude arbitrage
opportunities, the drift of the (undiscounted) price process cannot be greater than the
risk-free rate. However, as long as the current position of the stock price process (t,S(t))
is in C, it is optimal to continue, and hence the PDE (2) is satisfied on this region. As
soon as the process crosses into S, it is apparent from (3) it is optimal to stop, and on
the stopping region u(x,t) = K — z, hence Lggsu + % < 0. These features will be neatly
encapsulated in the complementarity problem of §3.

Instead of a simple terminal condition for the PDE, however, we now have a free
boundary condition: that u(z,t) = ¢(x) for (z,t) on the optimal stopping boundary between
C and §. One more condition is necessary to define the optimal stopping boundary, and
for the American put this is usually taken to be the smooth fit condition g—z = —1 on the
boundary. For further discussion of these matters see van Moerbecke (1976), Jacka (1991)
and Myneni (1992).

Figure 1 is a sketch of the American put value function. The projections of the contin-
uation and stopping regions on to the value surface are labelled C? and SP respectively.
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3 Equivalent Formulations of the American Put Prob-
lem

The characterisations of the American put value function as optimal stopping and free
boundary problems are adequate mathematically, but are not sufficiently explicit to lead
to simple numerical schemes. The following formulations of the American put problem
as a linear order complementarity problem and a wvariational inequality allow us to treat
the domain of the value function as an entire region, dispensing with the need to consider
explicitly the optimal stopping boundary. For the remainder of this section, we make the
usual change of variables to the log-stock price £ := log z, with respect to which the Black-
Scholes PDE for the American put is given by Lu + %u = 0, where L is the constant
coefficient elliptic operator

1 0
g;:§aa_§2+(r-502)a—§—r, (5)

and u now refers to the option value as a function of £&. The various inequalities for the
operator Lps in the §2 carry over to the log-transformed version £. Note that we now have
a new payoff function given by ¥(£) := (K — €f)* and continuation and stopping regions
C and S defined with respect to the new variable &.

3.1 The order complementarity problem

The American put value function u satisfies Lu + 86_1;, =0 and u > QZ on (f, so that
(Lu—+ %) A (u—1) =0, where A denotes pointwise minimum of the two functions. On S,
Lu + % < 0 and ~u(§ ,t) = (&), so that if we formally require Lu + 68—1; > 0 we again have
(Lu+ %) A (u—1)) = 0. We may express the free boundary problem for the American put
option in a form that encapsulates these main complementary properties as the following

order complementarity problem of Borwein & Dempster (1989).

Theorem 1 The American put value function is the unique solution to the linear order
complementarity problem

u >
(OCP) Lu+3>0

(Lu+ %)/\(u—zﬁ)zo a.e. IR x[0,T].
u

For (OCP) to be well-posed, we must restrict it to a vector lattice, which is a vector
space with a partial order defined by a positive cone P such that for any points x and
y the maximum z V y and the minimum x A y exist in the given order. See Borwein &



Dempster (1989) and Cryer & Dempster (1980) for further discussion. We give the precise
setting in the sequel. To prove that the American put value function is the unique solution
of (OCP), we express it in another equivalent form, namely as a parabolic variational
inequality, in which form we may apply some standard results on uniqueness of solutions
to such variational inequalities.

3.2 (OCP) as a variational inequality

Before we give the variational inequality formulation some definitions will be needed. Tech-
nically, we must specify a function space for the variational inequality solution, chosen
ideally as a minimal set of restrictions so that it is well-posed. Define the Sobolev space
WmPH#(IR,) as the space of functions u € LP (IRy, e #I*ldz) whose weak derivatives of
order not exceeding m € IN exist and are also in L? (Ry, e #ldz), for p € [0,00] and
p € (0,00). (Here |.| denotes the L' norm on IR and dz denotes Lebesgue measure on
IR, and it should be noted that the extension of the results in the sequel to R, , for
arbitrary n € IN, is completely straightforward.) We shall be interested in the Hilbert
space H'(Ry) := WH2H(IRy), for some fixed p > 0, of square integrable functions with
square integrable derivatives defined on IRy. The Hilbert space H'(IRy) has as Banach
dual the Sobolev space H'(IRz) := W~1%#(IRy), also a Hilbert space of Radon measures,
with which it may be identified. Consider the pairing {-,-) : H' x H™! — IR between dual
spaces given by

(0, v) = /IR w(E, o (, t)eHEHD g g, (6)

where we may interpret v € H~! as the density function of the Radon measure element of
the dual space H~! of H' with respect to e #&I+1t) d¢ d¢. Alternatively, we may consider
{-,+) given by (6) as an inner product on the Hilbert space H°(IRy) := L?(IRy, e *I"ldx)
by virtue of the canonical injections H' — H® — H~!' see Baiocchi & Capelo (1984,
p.79). In this setting the partial differential operator £ may be interpreted either as a map
H' — H~! or as an operator on H'. Consider also the bilinear form a(-,-) : H' x H' - R,
given by

2
a(u,v) = / U_ugvge—u(lilﬂtl)dfdt_/
1353 2

o? ¢
((7“ — 02/2) + u——) ugve_”“ﬂﬂt') dé dt
R

2 [¢]
+/ ruve MIEFD qe dt. Vu, v e HY. (7)
Ro

Finally, note that H' (and hence H™') is a vector lattice Hilbert space (but not a Hilbert
lattice) with positive cone defined in terms of (Lebesgue) almost everywhere nonnegativity.
See Baiocchi & Capelo (1984), Cryer & Dempster (1980) and Borwein & Dempster (1989,
p.553-554), for more details on these ideas, which have been adapted here to match the
more general setting of Jaillet, Lamberton & Lapeyre (1990). In particular, we shall assume



all functions in H' (2 H~') considered to be defined as u(-, |¢|) on IR X (—o0,0) and as
u(.,T) on IR x [T, 00) (see Cryer & Dempster (1980, p.89 et seq.).

The following lemma relates the bilinear form a(-,-) to the elliptic part of the partial
differential operator £, and we will use it to show variational inequality (VI) and (OCP)
equivalence.

Lemma 1 The bilinear form a satisfies

a(u,v) = (v, Lu) wu,ve€ H. (8)

Proof: See Cryer & Dempster (1980, p.80-81), and Jacka (1991, p.72 et seq.). However,
the idea is simple enough — simply integrate the first term of (7) by parts. |

With the preceding definitions and Lemma 1 we may now state the variational inequal-
ity formulation in the form of the following theorem.

Theorem 2 The variational inequality (VI) given by

STy =4

(2

2/—\

(VI) > ¢
> ae. = alu,v—u)+ (v—u,)>0 ae [0,T]
is equivalent to the order complementarity problem (OCP).

Proof: This is again a well known result, due to Borwein & Dempster (1989). We can
rewrite the third line of (VI) using Lemma 1 as

<v—u,£u+g—?>20 Yo > 4. (9)

Let u solve (VI): Choosing arbitrary v > u in (9) gives Lu + £ > 0, which is the second
constraint in (OCP). This in turn implies, since u—1 > 0, that <u — 9, Lu + %—QZ> > 0. Now
if we choose v = 1, (9) becomes <u — ), Lu+ 66—1;> < 0, which two inequalities together give

the complementarity condition <u — ), Lu+ 68—1;> = 0, equivalent to the third constraint

of (OCP) (Borwein & Dempster (1989, p.549)).
Let u solve (OCP): Then

< u£u+g—?> = < zﬂﬁu—i- > < u£u+a>

_ j 1
(o= us at> 0 Vo2 (10)
So we see that (VI) and (OCP) are equivalent. |
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The key property that will determine uniqueness of the solution to (VI), and hence
(OCP), is that of coercivity of the bilinear form or differential operator, defined as follows.

Definition A continuous bilinear form af(-,-) defined on a Hilbert space H is coercive on
H iff
Ja € R s.t. a(u,u) > a||u* Yu € H.

Similarly, an operator 7 on H is coercive iff
Ja € RT s.t. {u, Tu) > aflu|* Vue€ H.

|
It can be shown that a given by (7), and hence L, is coercive (see Jaillet et al. (1990,
p.267), whose spaces L?([0,7],V,) and L*([0,T], H,) may be considered restrictions re-
spectively of our spaces H' and H®.). Then the Lions-Stampacchia theorem implies that
the solution to (VI) is unique (see, for example, Baiocchi & Capelo (1984, p. 24 et seq.)).
This result completes the proof of Theorem 1, since (VI) has a unique solution and is
equivalent to (OCP). The formulation (VI) is a type of classical physical problem, termed
the (Stefan) obstacle problem, where the payoff function ¢ is the obstacle below which the
solution cannot fall.

3.3 Abstract linear programme equivalent formulation

In the previous section we have established the uniqueness of the solution to (OCP) by
considering its formulation as the variational inequality (VI). We now derive the key result
which will eventually enable us to compute a numerical approximation to the value function
of the American put — and indeed many other types of American derivative securities — as
an ordinary linear programme. First we need some definitions.

Definition A linear operator 7 on a Hilbert space H is of type Z iff
(u,v) =0= (u,Tv) <0 Vu,veH. (11)
]

Definition Define, for a closed subset ' C P C H of a vector lattice Hilbert space H with
positive cone P := {v € H : v > 0}, the least element problem

(LE) findue Fst.u<v YveF.

|
The least element is denoted by v = LE(F'), and is illustrated in Figure 2. Note that if it
exists, the least element is always unique since, if u; and u, are least elements of F', then
uy < ug and us < uy, so from the vector lattice property u; = us.
We now define an associated problem, the abstract linear programme (LP).



Definition Define, for a subset ' C P C H of a vector lattice Hilbert (function) space H
with positive cone P and constant vector ¢ > 0 a.e. with respect to Lebesgue measure on
its domain, the abstract linear programme

(LP) 52}@(0, v) s.t. v € F.
]
The following theorem, giving equivalence between (OCP), (LE) and (LP), is an ex-
tension of a result of Cryer & Dempster (1980) for elliptic partial differential operators to
the parabolic case.

Theorem 3 In the setting described above, if T is a coercive type Z temporally homoge-
neous elliptic differential operator, then there exists a unique solution u to the following
equivalent problems:

u >
(OCP) Tu—i—%—?ZO

(Tu+2)A(u-9)=0 ae Rx[0,7],

(LE)  find u = LE(F),

(LP)  inf(v,c) s.t. v € F,

for any ¢ > 0 a.e. on R x [0,T], where

Fzz{v: v(,T) =1, v>1, Tv—i—%ZO}. (12)

Proof: We first prove the equivalence between (OCP) and (LE), after making the trivial
domain extensions of the problem functions given above to set them in H!. It will be
du

necessary to reverse time, so that in backwards time Tu — % > 0 and the terminal

condition becomes the initial condition u(.,0) = 9. Let L denote the Laplace transform
operator with respect to the measure e “Ifl so that, for (¢, \) € Ry, the Laplace transform
@ € H! of a function u € H' is defined by

o0
(8, A) = Lu(€,)(A) = / e Mtu(e, t)edt. (13)
0

As noted above, we have extended the temporal domain of our value functions u to [0, co)
as constant on (T, 00), so that this generalised Laplace transform is well defined. L is a
linear operator and 7 is temporally homogeneous, i.e. has time-independent coefficients,
and therefore commutes with the Laplace operator, so that taking the Laplace transform

8



of the operator 7 — % gives TL — L%. The Laplace transform of the first order time
derivative is given by

( a“)(f N = /0 T el (5 t)e~Hdt

= )T+ (N ) [ e e ey
= —u(£,0) + (Al + waE, N) (14

and u(¢,0) is given by the initial condition u(-,0) = 1.

Now, note that the Laplace transform is positivity-preserving in the sense that u
0 = @ > 0 a.e. on IRy. Then, writing the initial condition, constant in A, as ¢(-,A) :
u(-,0) = [A| — p to agree with the notation of Borwein & Dempster (1989), (OCP)

equivalent to the transformed order complementarity problem (OCP), also posed in H!,
given by

~—

v

[

S

(OCP) Ta
(Ta+§ A(@—1) =0 ae. on Ry,

where ¥ is the Laplace transform of the log-transformed payoff function ¥, given by
P&, A) = (§)/(|A[ + ). Since T is coercive, type Z and elliptic, 4(-,A) is the unique
solution to the projected (OCP) obtained from (OCP) by fixing A € IR. We can now
apply the order complementarity-least element equivalence result of Borwein & Dempster
(1989) for coercive type Z elliptic operators, so that for each A € IR, 4(-, A), is the solution
(necessarily unique) to the least element problem defined by LE(F}), where Fy is defined
by

By o= {a(, ) 1 0, 0) 2 9, ), Ta(, A) +4(,A) 2 0} (15)

It follows that 4 is the unique solution to the least element problem (ﬁ) defined by LE(F),
where F'is defined by

Fo={a: a>4, Ta+¢> 0} (16)
Applying the inverse Laplace transform L~! to 4 shows that
u=L""4

solves both (LE), given by LE(F), and (OCP), as required. Indeed suppose the contrary,
i.e. that there exists v € F such that v < u, v # u. Then it follows since L is positivity
preserving that & € F and % < 4, ¥ # 4, a contradiction to @ = LE(F)

With this least element result, the LP equivalence is immediate — w is the least element
of F < wu<wforallveF, andso (c,u) < {c,v) for all v € F and any vector ¢ > 0.

9



Therefore u minimises (c, v) over all v in F' and is thus the solution to the abstract linear
programme (LP). Restricting to the original problem domain yields the result. |

It should be noted that the above proof depends on time running ‘backwards’, that
is, expressed in terms of time to maturity, otherwise we cannot substitute ¢ for u(-,0) in
(14). The finite dimensional least element-linear programme equivalence is illustrated for
IR? in Figure 2. The least element result tells us that the linear constraint set lies within
the positive cone translated so that its apex lies at u, since in finite dimensions the least
vector is least in every element. We see immediately that we pick out the least element
of the constraint set by minimising (c,u) over the set u € F, where ¢ > 0; specifically in
IR? by minimising the intercept of negatively sloped lines defined by ¢’u with normal ¢ > 0
intersecting F'.

This general result gives equivalence between (VI), (OCP), (LE) and (LP) for the
American put, since £ is coercive type Z (see Jaillet et al. (1990)). It should be stressed
that Theorem 3 is very general, and applies to virtually any parabolic partial differential
operator with a temporally homogeneous coercive type Z elliptic part, and virtually any
payoff function. For example, it may be applied to the Black-Scholes operator Lpg directly.

The first part of the proof of Theorem 3 is easily generalised to the case of parabolic op-
erators with time-dependent coefficient elliptic part 7 by considering the operator LT L~!
on functions defined on the price-frequency domain. However, the difficulty in extending
the result to the time-dependent coefficient case by this method lies in verifying that the
new operator inherits the coercive type Z properties from 7. Replacing L by the norm-
preserving orthogonal Fourier transform verifies the required inheritance trivially, but in-
troduces complex valued functions which cannot be naturally ordered. A more delicate
argument involving step function coefficient approximation and a suitable passage to the
limit can be however be used to establish the results of Theorem 3 for time-dependent
coeflicient operators; the details will appear elsewhere.

Theorem 3 also suggests a simple way to solve the equivalent problems numerically
— by a suitable discretisation, the infinite-dimensional abstract linear programme (LP)
reduces to an ordinary linear programme with solutions in IR". This is a standard problem
type with an extensive literature devoted to rapid solution, and efficient solution software is
readily available. In the next section we discretise the problem and consider our suggested
LP and alternative numerical solution methods.

4 Numerical Methods

In general, there is no known closed form solution to an American option problem, and we
are unlikely to find one. In this section, we consider numerical solution of the American
vanilla put problem using the novel formulation of the value function in §3.1 as the solution
to an abstract linear programme. When we discretise space and time by standard finite
differences this becomes an ordinary linear programme which we may solve by well-known
algorithms.

10



4.1 Localisation and Discretisation of the value function

As a first approximation, we restrict the domain of the value function IR x [0, T] to a finite
region [L,U] x [0, T}, for any L < log K < U, and set the value function on the boundaries
as u(L,+) = (L) and u(U,") = (V).

Defining the localised inner product as in (6) but integrated over [L,U] in the first
variable, gives a localised version of the linear programme (LP), for which there still exists
a unique solution, since the operator is unchanged. As L,U — oo, this solution tends uni-
formly to the solution to (LP), i.e. the American put value function on the whole domain, a
result demonstrated by Jaillet et al. (1990) for the equivalent localised variational inequal-
ity — naturally the equivalent localised (OCP) and (LP) inherit this same convergence
property.

We discretise the localised LP by approximating the value function by a piecewise
constant function, constant on rectangular intervals around points in a regular lattice or
mesh, on the domain [L, U] x [0,T]. (Note that everything that follows holds for irregular
meshes with trivial modifications.) Write u[" as the value of the general function u at mesh
points (¢, m) defined by

ul* = u (L +3AE, T — mAt), (17)

)

where m € {0,1,... ,M}:= M and i € {0,1,...,I} := Z. Writing ¢; := ¢(L + iA£), we
have the boundary values ug" = QZO, uft = 121 and, because m is a backwards time index,
We now approximate the partial derivatives which appear in £ by discrete analogues,
using finite difference approximations. We approximate the partial derivatives of the value
function at a point indexed by (i,m) in the interior of the index domain Z x M by

ou U?_’{_l - 'U/Znil uﬁ—_ll B uﬁ_ll
A PO R £ R e i ST
Ly v Gl vy
82_’11/ ~ Quﬁl — 2’(1/;” + ’u,;’il n (1 _ 9) ’U/Z_—ll _ 2’(1,;”—1 + ’U/Z'i—ll
9¢? (A6)? (A)?
ou ut —
Y A (18)

for 0 € [0,1]. The cases § =0, § = 3, 6 = 1 correspond to ezplicit, Crank-Nicolson and
implicit discretisation schemes respectively, all of which are second order accurate in A¢
and first order accurate in Af, except for 6 = %, which gives second order accuracy in At.

Substitution of these discrete forms for their counterparts in (LOCP) gives the discrete
order complementarity problem (DOCP):

m T 0 _ .7 m o__ m _— ]
U; Z ¢i7 u; = ¢i7 Uy = 07 Uy = ¢0

m m m m—1 m—1 m—1
au®y +bul* + culyy +dut +ew] + fui; >0

(aul™| + bul + cult ) + dul7 + eu ' + full7') A (u — ;) =0
i € Z\{0,1}, m € M\ {0},

(19)

11



where

ai=—0 |58 - T pim 14 AL+ 0%

o? r—a?/2)A o? r—o?/2)A
c:=—0 [m?g +1 2A/§2) t] d:=—(1-16) QA?g -4 2A/§) t (20)
a? o o2 r—o2/2)A
6::(1_9>A§A2t_1 f==-01-9) 2A?§+( 2A/§) ok

We discuss well-posedness and convergence in the sequel — first of all we express the
complementarity condition of (19) in matrix form by collapsing the space and time indices
into vectors. Put

w\ (% ~(e+d)o
u™ = : Y= : = : . (21)
(L (7 0
Then, substituting u* = 1, and u7* = 0 into (19), the complementarity condition becomes
(Bu™ ' 4+ Au™ — ) A (™ — ) =0 me M\ {0}, (22)

where, defining notation for a tridiagonal matrix as

b1 C1
a9 b2 Co
Tdk(ak,bk,ck) = ) (23>
ax—2 bx_2 Ckx_2
ag—1 br_1

A and B are the (I — 1)-square tridiagonal matrices

A :="Td;(a,b,c), B:=Td;(d,e, f). (24)
Now we can collapse the time index m by putting
ul W ¢ — By
w=| : v=[:] @:= ¢ (25)
uM b ¢

and may in turn express (22) as
(Cu—®)A (u— ) =0, (26)
where C is the M (I — 1)-square ‘staircase’ matrix given by

A
B A
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So, the discretisation scheme we have described leads us to approximate u(£,t) by a
step function whose value on grid points (u]")(m)crxm, in the vector form given by (21)
and (25), is the solution u € RMU~V of the finite dimensional order complementarity
problem

(DOCP) Cu

(Cu—®)A (u—T) =0,

with the boundary values ul) = 0, ul) = Yo and v’ = ¢y — we give these separately
because the boundary conditions have been substituted in to (DOCP) and do not appear
in its solution as written.

However, before we can write down a well posed equivalent linear programme, we have
to verify that the conditions of Theorem 3, namely the type Z property and coercivity of
the operator, are satisfied in the matrix sense. Considering (22), since u™! is known at
step m, the discretised operator L is represented in finite dimensions by the matrix A, so
we require that A be type Z and coercive. It is simple to show that a matrix is type Z if
an only if it has non-negative off-diagonal coeflicients, the classical definition of a Z matriz
Borwein & Dempster (1989). Clearly, A is type Z if and only if a < 0 and ¢ < 0, which is
the case if and only if

Ir —o?/2| < 0*/AE. (28)

This condition holds for all parameter values simply by taking I large enough, and indeed
for realistic parameter values the critical value of I is very small. If condition (28) holds,
it is a simple matter to show that A is then coercive — see Jaillet et al. (1990), or Hutton
(1995).

Assuming (28) holds then, we may now use an appropriate version of Theorem 3 and
write down the equivalent discretised version of (LP) as, for any fixed ¢ > 0 in RU~DM

Y

min  cu
(OLP) s.t. u>
Cu>®
with the boundary values u{’ = 0, u{? = ¢ and w0 = 4.

(OLP) is an ordinary linear programme which is easily solved numerically. Jaillet et al.
(1990) show that as M, I — oo, and in case 6 < 1, such that the mesh ratio p := (AA—J)Q — 0,
the solution of the equivalent discretised localised variational inequality converges to the
solution of the localised variational inequality, which as already mentioned, itself converges
uniformly, as L,U — oo, to the American put value function on the whole domain. By
virtue of Theorem 3, these same convergence properties are naturally inherited by (DOCP)
and (OLP).

It seems that unconditional convergence and stability for the case % < f# < 1isnot yet
proven but is well known for the case of equations; for 0 < 6 < %, we have convergence of
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the scheme if and only if

1
0<p<

SpPs m- (29)

4.2 Solution of the discrete problem

In the discrete problem given in §4.1, the equivalent (DOCP) and (OLP) are presented
as global in time. We can, however, decompose completely the global problem suggested
by (DOCP) and (OLP) by stepping through time — we can solve (DOCP) by solving the
sequence of complementarity problems (22) for m = 1... M. Noting that each comple-
mentarity problem is well-posed i.e. a unique solution exists, since A is a square coercive
Z-matrix and 4™~ ! is known at time step m.

Each order complementarity problem in (22) has an equivalent linear programme, so
that we get the following decomposition of (OLP):

min cu™
s.t.u™ >y
Au™>¢p—Bu™'  m=1,..., M. (30)

Note that this statement illustrates the fact that one can get an LP equivalence from the
special case of the discrete complementarity problem - linear programme equivalence due
to Mangasarian (1979). Solving either (DOCP) or (OLP) in this way is computationally
far quicker and more memory-efficient than solving the global problem. We now consider
suitable algorithms for solving the sub-problems.

The standard approach to solving the finite difference formulation for the American
put is via the complementarity problem (DOCP), and there are two main approaches —
one iterative, the other direct — to solving this problem. By far the most popular is the
iterative method of projected successive over-relazation (PSOR) due to Cryer (1971), and
it is against this method that we test our proposed linear programming method. Pivoting
methods (which are direct) may be used for the complementarity problem, however these
tend to be more general and less well-developed than the simplex algorithm. (See Jaillet
et al. (1990) for further details on pivoting methods in the current setting.)

4.2.1 Solution of (OLP)

There are again two main algorithms for solving linear programmes such as (OLP), namely
the (direct) simplex method, due to Dantzig (1963), and the (iterative) interior point
method, first applied to linear programmes by Koopmans (1951) and recently reintroduced
by Karmarkar (1984). Our preliminary results from the interior point method were poor
— see Hutton (1995) for more details — so we concentrate here on the simplex method
and outline the salient features that we propose to exploit in §5.
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4.2.2 Simplex method
The dual of the mth sub-problem (30) of (OLP) is, for any ¢ > 0,

max (¢/|(¢ — Bu™!))y™
st. 0< (I|AYy™ < e (31)

In the primal sub-problem, given by (30), only the right-hand side changes from the pre-
ceding sub-problem, which means that only the objective function of the dual sub-problem
changes, as we see from (31), and so the optimal dual solution to the preceding sub-problem
is still a basic feasible solution to the current dual sub-problem. This means at least that
phase 1 — the feasibility search — is unnecessary. Since we assume At is small, the opti-
mal solution of one sub-problem has only a few basic variables changed from that of the
preceding problem; the preceding dual solution should not be too many pivots away from
the current problem’s dual solution. Not surprisingly, therefore, we see in §5 that for this
problem once we ‘hot-start’ the solver from the previous time step’s optimal basis, the dual
simplex method is superior to the primal.

The simplex optimal basis has an immediate interpretation in terms of the problem:
u; is in the optimal basis if and only if ™ > iy, i.e. the point indexed by (¢,7) is in the
discrete approximation of the continuation region C. Similarly, u; is non-basic if and only
if 4™ = 1); and hence the point indexed by (¢,m) is in the discrete approximation of the
stopping region S.

Finally, it is vital in any approach to PDE-type problems that the typically very large
matrices in question, i.e. A and B, are stored in a way that exploits their sparsity. The
OSL routines we use in §5 store only the non-zero elements and enough information to
locate them, in so-called storage-by-columns.

4.2.3 The explicit method

The various algorithms for solving the discrete problem described above are in practice
only applied to the class of implicit methods. (We distinguish between the implicit method,
which has 6 = 1, and general implicit methods, which have 6 > 0.) For the explicit method
(6 = 0) we can write down the each time step’s solution in a simple way. The constraint
matrix A defined by (24) reduces to the (I — 1)-square diagonal matrix diag(1 + rAt), so
that in fact the general mth sub-problem of (OLP) given by (30) reduces to

min cu™
st u™ >4
(1+rAtyu™ > ¢ — Bu™ " (32)

We can solve this by inspection — the solution u™ is explicitly determined from the previous
time step’s solution v™! by

um =PV (ﬁ (¢ — Bum—l)) . (33)
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This is clearly a very rapid calculation for each iteration, the only significant calculation
being a single matrix multiplication. However, the implications of (29) for the explicit
method are profound, because we must take a number of time steps of the order of the
square of the number of space steps, which can become computationally very demanding.

The dual of the explicit method mth sub-problem, given in general in standard form
by (31), is also very simple, and is given by, for any ¢ > 0,

max (1;/, (¢ _ Bum—1>/>ym
st.0<y™ <ec. (34)

Note that we have exploited the arbitrary value of ¢ and the fact that A is diagonal to
change, without loss of generality, the constraint (I|A")y™ < ¢ to y™ < c¢. Again this has
a very simple solution, namely

y" =sgn (¥, (6 - Bu™Y) c, (35)

where sgn(x) is the diagonal matrix with element ¢ equal to 1 if z; > 0, equal to 0 if z; < 0
and arbitrary if z; = 0. Note that the dual solution is not unique, since some elements of
QZ are zero and hence the corresponding variables may be set arbitrarily.

The dual solution is of the same order of computational complexity as the primal, but
requires the previous time step’s primal solution. We use the simpler primal method in
our empirical tests in §5.

4.3 American lookback put

As a further test of the proposed linear programming method, we solve a variant of the
vanilla put, namely the continuously-sampled lookback put, where the path dependent
strike price is given by the maximum of the stock price process to date. In this case, the two
state variables, the current stock price z and the current maximum y, may be encapsulated
by a similarity transformation into the single variable z := log(y/z). It is straightforward
to show that the normalised value function V* := %V solves the abstract linear programme
(LP), but with a modified partial differential operator £ := 502%— (r + 10?) £ and payoff
function ¢(z) := (e* —1). (To the authors’ knowledge, this PDE was first derived in Babbs
(1992).) Discretisation of (LP) is similar, except that we have spatial boundary condition
lim, 0o V*(2,.) = ¢ and the Neumann condition %(0, .) = 0, which we approximate by
a second order accurate estimate u(_')1 = u('), after introducing an artificial node at ¢+ = —1.
We give results for numerical solution of this problem along with those for the vanilla put

in the next section.

5 Numerical Results

In this section, we give some results from empirical tests of the simplex and PSOR algo-
rithms for solution of (OLP) or (DOCP) respectively. Accuracy of finite difference schemes
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is well-established (see Carr & Faguet (1994) in general or Dempster & Hutton (1997b) for
the LP method investigated here), so here we only investigate timings and plot solution
surfaces.

5.1 Computational Details

All results in the sequel were computed in double precision on an IBM RS/6000 590 serial
computer with 128 megabytes (MB) of RAM, running under AIX 3.2.5. The simplex
algorithm used was the routine EKKSSLV of IBM’s Optimisation Subroutine Library (OSL)
Release 2, described in IBM Corporation (1992), which consists of compiled FORTRAN
subroutines. All routines were written in FORTRAN and compiled and optimised by IBM
x1f. The code for PSOR applied to the American vanilla put was kindly supplied by Jeff
Dewynne of Southampton University.

For simplex solution of general implicit methods (f > 0), each time step was hot-started
from the previous time step. The dual simplex was used (with solution accuracy set to
1 x 1078), since it was found to be roughly twice as fast as the primal method — this
is as one expects from the discussion of dual simplex in §4.2.1. The projected successive
over-relaxation (PSOR) algorithm is used with relaxation parameter w := 1.5, convergence
tolerance € := 1 x 10~® and starting vector given by the previous time step’s solution
vector. The optimal value of w is not known analytically, so w = 1.5 was empirically found
optimal for a range of problems.

For the explicit method a stable method must be used, for which (29) gives the restric-
tion that M > My, where

M. o’TTI?

= (36)

In the case of the lookback put we do not know M,,;, analytically, but it is very simple to
determine the critical mesh ratio — and hence M,,;, — experimentally, since instability is
very apparent in any numerical solution.

The American lookback put

We are rather limited in our ability to properly evaluate the accuracy of finite difference
schemes applied to the American lookback put problem, since we have only one value
against which to compare. Babbs (1992) computes, by a modified binomial method after
500 time steps, the solution at ¢ = 0 as 10.17 with maturity T' = .5 , risk-free rate r = .1,
volatility ¢ = .2, dividend rate ¢ = 0 and current stock price 100. In Table 4 we give
results at this same point computed by our LP method for the Crank-Nicolson and explicit
scheme with spatial domain z € [0, 1]. The critical mesh ratio for the explicit method was
found by trial and error to be about 25.
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5.2 Timings of Numerical Algorithms

Table 1 gives times for the vanilla put for the three main algorithms under consideration,
and corresponding plots of each method’s time as a function of space steps I are given
in Figure 3. All times are CPU times in seconds, and are for Crank-Nicolson or explicit
methods. We exclude the implicit method (f = 1), since times are virtually identical
to the Crank-Nicolson method, except slightly less time is spent computing the matrix
multiplication Bu]" since B is diagonal. Unless otherwise stated, all timed problems are
solved on the truncated log-stock axis [—1,2] with maturity date T" = 1, exercise price
K =1, riskless rate » = .1 and volatility o = .2.

The number of time steps for the explicit was taken as the maximum of the number
taken for the implicit methods (1000) and the minimum number for stability, so as to
compare like with like, i.e. stable algorithms with at least 1000 time steps. The simplex
solution gives near-linear solution time as a function of space steps I. PSOR is faster for
smaller I, and explicit is faster still. PSOR and explicit methods exhibit rather similar
behaviour as I increases, both increasing like I2, so that for larger I, simplex is superior.
This is a well known theoretical property of SOR methods.

Columns 3 and 5 of Table 1 give indicative first and last time step iteration counts
for PSOR and simplex. From observation the simplex iteration count increases with the
time step, and is near linear as a function of I, which in keeping with empirical evidence,
according to Luenberger (1984), that the simplex method converges in a number of iter-
ations proportional to the number of rows of the constraint matrix. We show the same
information for PSOR — in this case, the iterations decrease as we step through time,
declining rapidly for the first few steps due to the decreasing distance between successive
time step solution vectors.

Similarly, Table 2 shows results and graphs of solution time for PSOR and simplex as
the number of time steps M increases, for two cases I = 600 and I = 2400. Dependence
of explicit method time on M is clear enough so we do not include it here. Again, simplex
shows linear dependence on the number of time steps, so that each time step takes about
the same amount of time. PSOR has the interesting property of being very flat as a function
of M, particularly for I = 2400, for which case the solution time is virtually constant in
M. This is probably because the previous time step’s solution, used as the starting point
for the iteration, is closer to the current time step’s solution for smaller A¢t. As in Table 1,
we see PSOR is faster for smaller I, or equivalently, simplex is faster for smaller M.

Finally, we see in Table 3 the variation of PSOR and simplex with the financial param-
eters r, the risk-free rate, and o, the volatility. Again we exclude explicit method times,
since it is clear that they are constant with respect to r and are proportional to o2. In
Table 3, an asterisk (*) represents failure to converge after several hours. Again, we see
that the faster method is determined by the values of these parameters. PSOR is faster
than simplex for low r and o, slower for high r and o. However, the most immediate
feature of these results is that simplex time is virtually constant with respect to r and o,
whilst PSOR solution time explodes for high volatility. Note that stock volatilities greater
than 80% are often observed in the financial markets.
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We do not attempt to give such detailed solution timings for the American lookback
put, since, as we can see from Table 4, the algorithms behave in a very similar manner
on this problem. That table shows the same near-linear increase in solution time with
the simplex method, and PSOR again does better for a smaller number of space steps I,
but, as expected, as we increase I solution times increase as I?. However, comparing with
Table 1, note that both explicit (chosen with M = max(1000, M,;,) again) and PSOR are
slower on this problem than on the vanilla put, but simplex is faster.

5.3 American Option Solution Surfaces Graphically

Finally we give plots of the solution surfaces of the vanilla and lookback options solved
for in this Section. Figure 6 shows the American vanilla put value function plotted with
respect to the true stock price, and we may recognise in it all the theoretical features of
Figure 1. Figure 7 shows the space-time domain, shaded according to whether the value
function is equal to the obstacle or greater than it. In this figure, region A is exactly the
stopping region S, BUC is the continuation region C truncated at z = eV and C represents
where the solution is machine zero. The convex boundary between A and B is the optimal
stopping boundary S*.

Figure 8 shows the lookback put surface for a current stock price of 1 and spatial
domain z € [0,1], with the Neumann condition at z = 0 is clearly visible. Figure 9 shows
the space-time domain with shaded continuation and stopping regions.

6 Conclusions

We conclude that the new linear programming algorithm presented is a very effective
solution technique for finite difference approximations to American option free boundary
problems like those considered here. It is efficient, especially for fine discretisations, and
simple to implement when combined with modern commercially available simplex solvers.
It is a direct method, and as such has the inherent advantages that solution times are
predictable and robust with respect to changes in the parameters (whereas PSOR fails to
converge for commonly observed levels of volatility), with the additional empirical feature
of the simplex method of being near-linear in the spatial discretisation. We cannot claim
on the basis of the results given in this paper that simplex solution is always superior,
indeed PSOR is certainly faster for coarser space or finer time discretisations. As they
stand, the implementations here are probably equally efficient. It may be that more recent
simplex code would perform better (e.g. CPLEX or XPRESS), but more importantly the
PSOR algorithm and code used here was optimised for this problem, whilst the simplex
solver utilized was a general purpose algorithm. It is possible to write a simplex solver
for tridiagonal constraint matrices, exploiting the rapid LU decomposition algorithms for
such matrices, which produces dramatic speed-ups — this has been accomplished and will
be reported elsewhere, see Dempster, Hutton & Richards (1998).

We have demonstrated that the LP solution works at least as well for the example
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of the continuously sampled similarity-transformed American lookback put. The simplex
solution times are very similar to the vanilla put, even slightly better; whereas alternative
methods appear to fare worse.

A further feature of the simplex method is that, once an optimal basic solution has
been found, this solution may be rapidly recomputed after small changes in the variable
bounds, the right hand side or the objective function. This parametric simplez method (for
example the OSL routine EKKSPAR described in IBM Corporation (1992)) could be exploited
for many path-dependent options, such as continuous and discretely sampled lookback and
Asian options. For such options, the path-dependent variable does not appear in the
PDE, and therefore the constraint matrix, but is simply a parameter of the payoff function
and boundary conditions, i.e. the variable bounds and right-hand side — see Dempster &
Hutton (1997a) and Dempster et al. (1998) for more details.

More effort might also be directed towards an efficient interior point solution of this
problem, a method which is very popular in the optimisation community — largely be-
cause of its effectiveness in solving very large problems, and the possibility of efficient
parallelisation.

Probably the most challenging extension of the linear programming method is to higher
spatial dimensions, for example, to solve for the value function of American-style cross-
currency interest rate derivatives, in which case we have a banded (nested tridiagonal)
constraint matrix. Thought should be invested into exploiting such a structure. (See Hut-
ton (1995) or Dempster & Hutton (1997b) for an application of finite difference methods to
complex European-style cross-currency derivatives, driven by three stochastic variables.)
However, the conclusions about the superiority of explicit schemes to standard implicit
ones for a three state variable complex European option case in Hutton (1995) will apply
equally to simplex solution of implicit schemes for American options in higher dimensions.
One way to exploit the LP method in higher dimensions is to solve one-dimensional implicit
steps as part of an ADI method. It may also be that a multi-grid method may be needed
to obtain reasonable solution times, see Clarke (1998), and it would be very interesting to
see how LP solution could fit into such a scheme.
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Volatility o = .2

time steps M = 1000 Explicit
space PSOR Simplex M = max{1000, Mmin }
steps I | time (s) | iterations | time (s) | iterations M time (s)
75 .83 17, 13 2.04 0,3 1000 .05
150 1.56 17, 12 3.81 0,6 1000 1
300 2.69 17, 11 7.53 0,13 1200 2
600 3.50 16, 7 15.2 0, 27 4800 .61
1200 5.87 15, 6 31.3 1, 55 19200 4.9
2400 33.3 17, 16 66.2 7,114 76800 37.0
4800 214 62, 47 144 17,232 | 307200 317.0
9600 1270 | 214, 134 323 36, 468 | 1228800 5770

Volatility o = 4

time steps M = 1000 Explicit
space PSOR Simplex M = max{1000, Mmin }
steps I | time (s) | iterations | time (s) | iterations M time (s)
75 9 18,14 2.11 0,9 1000 .05
150 1.55 18, 13 3.98 0, 18 1000 1
300 1.99 18, 8 7.85 0, 38 1600 .32
600 3.29 18, 6 16.4 2,78 6400 2.46
1200 19.1 20, 20 34.5 8, 159 25600 19.9
2400 122 72, 60 76.6 21, 323 | 102400 149
4800 807 | 250, 188 178 45, 650 | 409600 1280
9600 5080 | 831, 559 430 | 94, 1304 | 1638400 10500

time | Space steps I = 2400
steps M | PSOR Simplex
10 28.4 2.86
20 29.6 3.65
40 29.1 5.61
80 29.9 8.57
160 32.0 14.4
320 31.6 24.6
640 33.0 46.0
1280 35.3 87.9
2560 38.7 171

Table 1: Comparative solution times for PSOR, simplex and explicit finite difference algo-
rithms for varying space steps

Table 2: PSOR and Simplex times for varying time steps
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Risk- Risk-
free Volatility o free Volatility o

rater | .05 1 2 4 rater | .05 1 2 4 .8
.05 |3.82 981|329 | 127 .05 |24.7]26.6 | 31.0 | 41.7 | 46.1

3.26 | 9.15 | 32.6 | 122 24.8 (270 |31.3 382|514

213 | 7.04 | 284 | 114 24.8 | 25.3 |1 25.9 | 32.8 | 44.9

1.64 | 3.80 | 21.1 | 101 23.8 | 24.7 | 25.6 | 29.2 | 38.1

1.12 1 2.96 | 11.2 | 71.9 23.4 1243 | 25.6 | 26.8 | 33.1

% % % % % 0o

00 o
00 o

Table 3: PSOR and Simplex times for varying riskless rate r and volatility ¢ (* = failure
to converge in 2000s)

space PSOR | Simplex | Explicit || Crank-Nicolson Explicit
steps I | time (s) | time (s) | time (s) Prp(0,.5) | Pegp(0,.5)
75 .76 1.60 .08 .101661 101671
150 1.36 2.85 .16 .101706 101717
300 2.11 5.52 .66 101718 .101730
600 3.63 114 5.27 101721 101725
1200 17.0 24.4 38.2 101722 .101723
2400 102 54.9 315 101722 101723
4800 632 131 2580 101722 .101723
9600 3330 324 21100 101722 .101723
Binomial value 1017 1017

Table 4: PSOR, simplex and explicit results for the American lookback put with varying
space steps
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Figure 2: The least element problem as a linear programme
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Figure 3: Comparative solution times versus number of space steps for volatilities 0 = .2
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