
A SPACE-TIME MULTIGRID METHOD FOR PARABOLIC PDES �G. HORTONy AND S. VANDEWALLEzAbstract. We consider the solution of parabolic partial di�erential equations. In standard time-stepping techniques multigrid can be used as an iterative solver for the elliptic equations arising ateach discrete time-step. By contrast, the method presented in this paper treats the whole of the space-time problem simultaneously. Thus the multigrid operations of smoothing and coarse grid correctionare de�ned on all of the space-time variables of a given grid-level. The method is characterized bya coarsening strategy with prolongation and restriction operators which depend at each grid levelon the degree of anisotropy of the discretization stencil. Numerical results for the one- and two-dimensional heat equation are presented and are shown to agree closely with predictions from Fouriermode analysis.Key words. parabolic partial di�erential equations, massively parallel computation, multigrid,semi-coarseningAMS subject classi�cations. 65M06, 65M55, 65Y051. Introduction. We consider the problem of numerically computing an approx-imation to u(x; t), the solution of the d-dimensional parabolic partial di�erential equa-tion (PDE) ut ��u = f(x; t) x 2 
 = (0; 1)d; 0 < t � T ;(1)subject to the usual initial and boundary conditionsu(x; 0) = g(x) ; x 2 
 ;u(x; t) = h(x; t) ; x 2 @
 ; 0 < t � T :The standard solution procedure is to fully discretize equation (1), obtaining adiscrete elliptic problem at each time-step when an implicit scheme is used for theapproximation of the time derivative. These elliptic problems are then solved sequen-tially using an iterative method such as successive overrelaxation, conjugate gradientsor multigrid. The potential for parallelism in this type of computation is limited tothe parallelism of the elliptic solver, since the time dimension is treated strictly se-quentially. Ironically, it is often the time dimension which contains the largest amountof computational work: the number of discrete time-steps can be many times largerthan the side-length of the spatial grid. Thus it seems natural to ask whether thissituation can be remedied and a parallelization strategy for the time-dependent partof the problem be found.Hackbusch proposed in [7] a scheme in which the elliptic multigrid method canbe executed simultaneously on a set of successive time-steps. This parabolic multi-grid method was investigated in a series of experiments by Bastian, Burmeister and� The following text presents research results of the Belgian Incentive Program \InformationTechnology"-Computer Science of the future, initiated by the Belgian State { Prime Minister's Service{ Science Policy O�ce. The scienti�c responsibility is assumed by its authors.y Lehrstuhl f�ur Rechnerstrukturen (IMMD 3), Universit�at Erlangen-N�urnberg, Martensstr. 3, D-91058 Erlangen, Federal Republic of Germany. graham@immd3.informatik.uni-erlangen.dez Senior Research Assistant of the Belgian National Fund for Scienti�c Research (N.F.W.O), De-partment of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven(Heverlee), Belgium. stefan@cs.kuleuven.ac.be. 1



2 G. HORTON AND S. VANDEWALLEHorton, [1], [6], [9]. Unfortunately, the method only performs satisfactorily under cer-tain conditions, see [14]. Womble considered in [18] the parallel time-stepping method,a scheme whereby standard iterations are performed simultaneously on equations atsuccessive time-steps. Here the possibility of combining parallelism in space and timewas also investigated. The success of the method is due to the possibility of over-lapping iterations of the iterative elliptic solver on di�erent time-levels. With rapidmultigrid solvers, however, requiring just a very small number of iterations, the po-tential for time-parallelism is rather restricted. Van de Velde and Vandewalle haverecently shown in [16] that the multigrid waveform relaxation method [12], for whichthe possibility of space-parallelism has already been demonstrated by Vandewalle [15],also permits parallel execution with respect to the time axis. There it was shown thatthe addition of time-parallelism can considerably improve the utilisation of messagepassing multicomputers. A massively parallel parabolic PDE solver based on multigridwaveform relaxation was presented by Horton, Vandewalle and Worley in [10]. Thealgorithm uses a line relaxation smoother, with lines extending in the time direction.This smoother was shown to lead to a rapidly convergent multigrid iteration, yet itlimited the obtainable parallel complexity by introducing a logarithmic factor { thelogarithm of the number of time-levels { into the parallel complexity formula.In the current paper a multigrid algorithm that employs a perfectly parallel point-wise smoother instead of a line-wise smoother is developed. In the following section weintroduce some notation and show how a standard multigrid approach with point-wisesmoothing and coarsening in space and time is inappropriate for problem (1). In x3we present the space-time multigrid method in terms of its individual components,considering several variants. x4 gives results obtained by Fourier mode analysis ofvarious multigrid schemes applied to the model problem. These are compared toresults obtained by numerical experiments. In x5 numerical results are presented fordi�erent �rst and second order time-discretization schemes. The parallel complexityof the method is analysed in x6. In the �nal section some conclusions are drawn.2. Motivation. We consider the one-dimensional heat equation, discretized inspace using central di�erences on a regular mesh with mesh spacing �x, and discretizedin time with the backward Euler method, on a set of time-levels with constant time-increment �t. This leads to a large linear system of equations in the unknowns ui;jwith i = 1; : : : ; 1=�x�1 and j = 1; : : : ; T=�t, that approximate the PDE solutionvalues at the grid points (xi; tj) with xi = i ��x and tj = j ��t. The equations are ofthe form� 1(�x)2ui�1;j + ( 2(�x)2 + 1�t )ui;j � 1(�x)2ui+1;j � 1�tui;j�1 = f(xi; tj) ;(2)or, with the parameter � de�ned by �t=�x2,� � ui�1;j + (2�+ 1) ui;j � � ui+1;j � ui;j�1 = �t f(xi; tj) :(3)The parameter � can be considered as a measure of the degree of anisotropy in thediscrete operator. Note that � will usually vary from grid-level to grid-level within amultigrid scheme. We shall therefore denote the value of � on grid-level l, with meshspacings �xl and �tl, by �l.Figure 1 shows the convergence rate of a \standard" multigrid method appliedto this model problem, with the time-axis considered as just another spatial axis.
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Fig. 1. Convergence of Standard Multigrid applied to the Space-Time ProblemThis multigrid method on the two-dimensional space-time grid is characterised by thefollowing components: red/black smoothing with one pre-smoothing and one post-smoothing step, standard coarsening (i.e., �xl�1 = 2 � �xl and �tl�1 = 2 � �tl),full-weighting restriction, and bilinear prolongation. The coarse grid operator is thenatural one similar to (3). Multigrid V-cycles are used. Shown is the averaged con-vergence factor ~�, which is computed from the k � k2 norm of the residual vector. Amesh with a total of six grid levels is used. The convergence is measured over valuesof �6 from 2�8 to 28 on a �nest grid of size 65� 65 points.It can be clearly seen that the method is not robust with respect to �. For both�6 < 2�4 and �6 > 22 we have either divergence or extremely slow convergence. Evenin the range of values where the method performs best, the rate of convergence is notparticularly fast. Thus we conclude that a naive approach to applying multigrid tothe space-time problem does not succeed.The unsatisfactory behaviour of the naive multigrid approach can be understoodintuitively from analysing governing equation (3). For large and for small values of �the fully discrete partial di�erential equation is a strongly anisotropic problem. Point-wise smoothing combined with standard coarsening is a notoriously slow procedure forsuch problems. Certain high frequency error components are not adequately smoothedout, since pointwise relaxation smoothes only in the direction of strongest coupling.The standard approach is then to resort to a di�erent smoother, for example a line-wiseor incomplete factorization method, or to employ a suitable semi-coarsening technique,with coarsening only in the dimensions where the pointwise smoother is successful. Asthe current paper is mainly motivated by parallel computing issues, we will here followthe second approach, which, most importantly, enables the use of perfectly parallelpointwise smoothers.3. The Space-Time Multigrid Method. In this section we describe the var-ious components of the new space-time multigrid method. For ease of presentationwe restrict ourselves to the one-dimensional heat equation, i.e., the two-dimensionalspace-time problem. The operators for the three-dimensional space-time problem arede�ned analogously and are given in the Appendix. The method chooses a coarseningstrategy, together with appropriate prolongation and restriction operators, which isbased on the degree of anisotropy, �l, on the current grid-level. The overall multigrid



4 G. HORTON AND S. VANDEWALLEcycle will therefore use di�erent strategies on di�erent levels. Motivation for the choiceis given by theoretical results described in x4.3.1. Discretization. We consider central di�erences for the discretization of thespace derivatives in equation (1), and both �rst and second order methods for thetime derivative. The �rst order method is the backward Euler scheme, (3), which isequivalent to the �rst order backward di�erentiation formula (BDF1). It leads to afour-point molecule, which, in stencil notation is given by264 0 0 0��l 2�l + 1 ��l0 �1 0 375 :(4)The stencil notation of constant coe�cient operators is, for example, explained in [13].Note that the rows of the stencil correspond to the space dimension, and the columnsto the time dimension.Two well-known second order methods for the approximation of the time deriva-tive will be analysed: the two-level Crank-Nicolson or trapezoidal method, which isgiven by the stencil 264 0 0 0��l=2 �l + 1 ��l=2��l=2 �l � 1 ��l=2 375 ;(5)and the three-level second order backward di�erentiation method (BDF2), charac-terised by the stencil 2666664 0 0 0 0 00 0 0 0 00 ��l 2�l + 3=2 ��l 00 0 �2 0 00 0 1=2 0 0 3777775 :(6)Note that the latter discretization cannot be used on the �rst time-level of unknowns,since it requires values of two preceding time-steps. There we will use the Crank-Nicolson formula instead, a purely technical choice which does not seem to impair ournumerical results.The same discretization technique is used to de�ne the discrete operators on allgrid levels in the multigrid hierarchy.3.2. Smoothing. The smoother is a coloured pointwise Gauss-Seidel relaxation,whereby the de�nition of points of a certain colour is with respect to all dimensions ofthe problem. This smoother has the advantage of being very e�ciently parallelizable.For this particular problem, other smoothers such as line-relaxation and block-ILUare known to be e�cient, but these do not have the above-mentioned property.A two-colour scheme is used for the BDF1 method. A four-colour scheme anda three-colour scheme would be adequate for the Crank-Nicolson discretization andfor the BDF2 method respectively. Yet, for simplicity of implementation and analysiswe choose to use a two-colour scheme, whereby updating of grid points is from hight-values to low t-values. In other words, when a point of a certain colour dependsexplicitly on other points of the same colour, the old values at these points are usedfor smoothing. This scheme has mixed Gauss-Seidel/Jacobi characteristics, and canbe easily implemented in parallel.



A SPACE-TIME MULTIGRID METHOD 5Table 1Computational complexity ( ~W -values) of a space-time multigrid V-cycle, F-cycle, and W-cycle,and of the full multigrid V-cycle algorithm, as a function of the spatial dimension d and the semi-coarsening strategy. x-coarsening t-coarseningd 1 2 3 1 2 3V 2 4/3 8/7 2 2 2F 4 16/9 64/49 4 4 4W { 2 4/3 { { {FMG 4 16/9 64/49 4 4 43.3. Coarsening. We choose an adaptive coarsening strategy based on the cur-rent value of �l. For each method we select a parameter �crit which is used as aswitch for choosing the coarsening strategy at any particular grid level. We adopt thefollowing strategy: \ If �l < �crit then use semi-coarsening in the time dimension,else use semi-coarsening in the space dimension(s). " The value of �crit is motivatedby the results obtained by the two-grid Fourier mode analysis presented in x4. It isthe value of �l at which the convergence rates of semi-coarsening in the space and thetime dimension are equal. When x-coarsening is performed we have �l�1 = 0:25�l,whereas t-coarsening gives �l�1 = 2�l. For comparison purposes, we shall also analysethe use of standard coarsening in space and time, in which case �l�1 = 0:5�l.Note that successive semi-coarsening steps will ultimately lead to a coarse gridwhich has one or more sides of length one. In this case we continue to coarsen in theremaining directions until a grid consisting of only one variable is reached.3.4. Prolongation. The prolongation is coupled to the choice of coarsening ateach grid-level. The stencils for the time-coarsening, space-coarsening and standardcoarsening are given respectively by375 0 1 00 1 00 0 0 264 ; 12 375 0 0 01 2 10 0 0 264 ; 12 375 1 2 11 2 10 0 0 264 :(7)Note that the prolongation operator for the space-coarsening case is identical to theprolongation operator used in the multigrid waveform relaxation method [12], [15],and the one used in the parabolic multigrid method [7]. It is the standard operatorused for the elliptic equation. In the case of time semi-coarsening, prolongation isasymmetric, transferring no information backwards in time.3.5. Restriction. The choice of the restriction operator is likewise coupled to thecoarsening strategy. It is chosen, as usual, as the adjoint of the prolongation operator.The stencils for the time-coarsening, space-coarsening and standard coarsening casesare given respectively by12 264 0 0 00 1 00 1 0 375 ; 14 264 0 0 01 2 10 0 0 375 ; 18 264 0 0 01 2 11 2 1 375 :(8)The above observations on the prolongation operators apply equally to the restriction.



6 G. HORTON AND S. VANDEWALLE3.6. Computational complexity and storage requirements. The compu-tational work of one multigrid cycle of the space-time multigrid method can be es-timated as follows. The complexity of a multigrid cycle that uses both space- andtime-coarsening is bounded by the complexity of the corresponding cycles that useonly space-coarsening or only time-coarsening. The complexities of these two extremalcycles can be estimated easily. In both cases we assume a coarsening by a factor oftwo in all relevant directions. In the �rst case the ratio of the number of grid pointsfrom one grid to the next coarser grid is given by 2d, where d is the spatial dimensionof the problem. In the second case the ratio is 2. We denote by ~W the ratio of thework in one cycle on a (large) set of grids and the work on the �nest grid. The latteris, of course, a linear function of the total number of grid points. Approximate valuesof ~W can be derived from Table 8.3.1 and Table 8.3.2 in [17], and are presented inTable 1. These values are obtained when the work on the coarsest grid, i.e., the gridobtained when further space- or time-coarsening is no longer possible, is neglected.Note that a dash (\{") indicates that the complexity of the particular cycle is not alinear function of the total number of grid points. In the same table, we have alsopresented the complexity of a nested iteration of full multigrid (FMG) algorithm thatapplies one multigrid V-cycle per grid level. The complexity of this algorithm is linearin the number of grid points, and similar to that of an F-cycle.The storage requirements of the algorithm can be estimated in a similar way, byconsidering the storage requirements of the two extremal cases. With space-coarseningthe total number of storage locations is about 2d=(2d�1) times the number of storagelocation used to store the �ne grid variables. With time-coarsening { which is theworst case situation { the ratio is about 2.4. Analysis of the Two-grid Method.4.1. Two-grid iteration operator. We consider a two-grid method for solvingthe one-dimensional model problem (1), using a �ne grid 
h, de�ned by
h = fx 2 IR2 : x = jh ; j = (j1; j2) ; h = (h1; h2) ;(9) j1 = 0; 1; : : : ; n1 ; j2 = 0; 1; : : : ; n2 ; h1 = 1=n1 ; h2 = T=n2g ;where n1 and n2 are assumed to be even, and a coarse grid 
H , given by
H = fx 2 IR2 : x = JH ; J = (J1; J2) ; H = (H1; H2) ;(10) J1 = 0; 1; : : : ; N1 ; J2 = 0; 1; : : : ; N2 ; H1 = 1=N1 ; H2 = T=N2g :The coarse grid is derived from 
h by either standard coarsening (H = (2h1; 2h2)),x-coarsening (H = (2h1; h2)), or t-coarsening (H = (h1; 2h2)). Let uk;l denote anapproximation to the PDE solution u(kh1; lh2). The di�erence between the exactdiscrete solution �uk;l and the approximation is the error ek;l = uk;l � �uk;l. By atwo-grid cycle an error-vector eold is transformed into a new error-vector enew , withenew =MHh eold; where MHh is the two-grid iteration matrix. This matrix is given byMHh = S�2h �Ih � IhHL�1H IHh FhLh� S�1h ;(11)where Sh is the smoothing operator on 
h; �1 and �2 are the numbers of pre- andpost-smoothing iterations; Ih, IhH , IHh , are the identity, prolongation, and restrictionoperators. LH and Lh are discretized di�erential operators on the coarse and on the



A SPACE-TIME MULTIGRID METHOD 7�ne grid respectively. They have been normalized by multiplication with h2 or H2, sothat they are a function of �h (=h2=(h1)2) or �H (=H2=(H1)2) only, and not of theparticular values of the discretization parameters h and H . Fh is a constant, intro-duced to correct for the di�erent normalizations of the �ne and coarse grid equations.It has the value 1 in the case of x-coarsening, and the value 2 otherwise.4.2. Fourier mode analysis: de�nitions and notation. The analysis of thetwo-grid algorithm applied to certain model problems, and, in particular, the analysisof the corresponding iteration matrixMHh , is often performed in the frequency domain.A comprehensive model problem analysis for a fairly large class of problems can befound in [13]. It is based the use of sinusoidal eigenmodes and the knowledge thatMHh leaves certain linear spaces of sinusoidal modes invariant. Similar analyses canbe found, for example, in [5], [8], and [11]. This type of analysis is, however, notapplicable in the present case since the sine functions are not eigenfunctions of ourdiscrete operators. In such cases one usually resorts to an analysis based on exponentialFourier modes. This kind of Fourier analysis was introduced by Brandt in his seminalpaper [2], and made into a rigorous analysis in [4]. A large number of Fourier resultsare also presented in [13, Ch. 9-10]. An exponential Fourier mode analysis is alsopursued in Wesseling's book, [17], where the smoothing properties of many commonsmoothing algorithms are investigated. In the remainder of this section we shall followthe approach of the last reference. This analysis can be regarded as an analysis forspecial model problems, namely those with periodic boundary conditions on (�nite)rectangular domains.The exponential Fourier mode  h(�) with frequency � on 
h is given by h(�) = exp(i j � �) ;(12)where \�" denotes the usual IR2 inner-product; i is the imaginary unit (p�1), andj = (j1; j2) ; j� = 0; 1; : : : ; n� � 1 (� = 1; 2) ;(13)� 2 �h = f(�1; �2) : �� = 2�k�=n�; k� = �n�=2 + 1; �n�=2 + 2; : : : ; n�=2g :(14)Note that the �ne grid Fourier mode  h(�) when injected into the coarse grid, aliaseswith coarse grid mode  H(��), with �� equal to (2�1; 2�2) in the case of standard-coarsening, with �� equal to (2�1; �2) in the case of x-coarsening, and with �� equal to(�1; 2�2) in the case of t-coarsening. (In all three cases equality for each �-componentis up to an integer multiple of 2�.)For any �1 2 �~s � �h \ [��=2; �=2)2, we de�ne �2, �3 and �4 by�2=�1� sign(�11)�sign(�12)� ! ; �3=�1� 0sign(�12)� ! ; �4=�1� sign(�11)�0 ! ;(15)where sign(t) is �1 if t � 0 and +1 otherwise. For any � 2 �~s, we de�ne thevector 	h(�) = � h(�1);  h(�2);  h(�3);  h(�4)�T . Any periodic �ne grid function eh{ the error, for example { can be written as eh =P eTh;�	h(�), where the summationis over all � 2 �~s and where eTh;� is a vector of dimension four. The linear spacespanned by 	h(�) is invariant under the two-grid operator. If the initial error iseTh;�	h(�) then after application of the two-grid cycle it is given by M̂Hh (�) eTh;�	h(�),with M̂Hh (�) a 4�4 matrix. The latter is called the symbol of the two-grid operator. Let



8 G. HORTON AND S. VANDEWALLEŜh(�), ÎHh (�), ÎhH(�), L̂h(�), and L̂H(�) denote the symbols of the smoothing operator,restriction operator, prolongation operator, �ne grid PDE operator, and coarse gridPDE operator. M̂Hh (�) is then easily found to beM̂Hh (�) = Ŝ�2h (�) � Ih � ÎhH(�) L̂�1H (��) ÎHh (�)Fh L̂h(�) � Ŝ�1h (�) :(16)The quality of a particular smoothing method is often judged by its so-calledFourier smoothing factor (see, e.g., [17, p. 149]),� = maxf�(Q(�)Ŝh(�)) : � 2 �~sg ;(17)where � is the spectral radius. Matrix Q(�) is a diagonal matrix, and expressesthe projection of 	h(�) onto the corresponding space of high frequencies. For stan-dard coarsening, for x-coarsening and for t-coarsening respectively, Q(�) is given bydiag (�(�1) � �(�2); 1; 1; 1) ; diag (�(�1); 1; �(�1); 1) ; and diag (�(�2); 1; 1; �(�2)) . Func-tion �(��) is zero except when �� = ��=2, in which case it is one. An indicativemeasure of convergence of the entire two-grid cycle, taking both smoothing and coarsegrid correction into account, is given by:� = maxf�(M̂Hh (�)) : � 2 �~sg :(18)The value of � is an approximation to the spectral radius of the iteration matrix MHh ,and usually shows very good agreement with actual convergence factors obtained on
h. Its computation is straightforward, by numerically computing �(M̂Hh (�)) and byoptimizing this over the discrete set �~s. (Note that usually � = 0 is excluded fromthe above range, since, as mentioned in [4, p. 13], L̂H(0) is most often zero. Thiscauses no problems however, since ÎHh (0)L̂h(0) is rank de�cient too, in such a waythat lim�!0 �(M̂Hh (�)) is �nite.)Our de�nitions of � and � are di�erent from the ones found in [13], [3] and [4].There, the following smoothing factor and spectral radius are de�ned�� = supf�(Q(�)Ŝh(�)) : � 2 ��sg and �� = supf�(M̂Hh (�)) : � 2 ��sg ;(19)with ��s = (��=2; �=2)2 . One naturally arrives at these formulae by neglecting theboundaries and the boundary conditions of the PDE problem, and by considering theoperators as operators on in�nite grids. The computation of �� and �� is more di�cultnumerically than the computation of � and �, since they involve �nding a maximumover an in�nite set. Obviously, for the same h and H it follows that � � �� and � � ��.However, for small enough values of the mesh-width we may expect both to becomeequal.4.3. Fourier mode symbols. For the reader's convenience, we shall recall theprecise formulae for the operator symbols. Let the stencils of Lh, LH , IhH , and IHh begiven respectively by264 � � �� sk �� � � 375 ; 264 � � �� Sk �� � � 375 ; 264 � � �� rk �� � � 375 ; 375 � � �� pk �� � : 264 ;(20)where k ranges over an index set I � IZ2. It is easily veri�ed that the Fourier modes h(�) and  H(�) are eigenfunctions of Lh and LH , [13, p. 121-122], with eigenvalues~Lh(�) =Xk2I sk exp(i k � �) and ~LH(�) =Xk2I Sk exp(i k � �) :(21)



A SPACE-TIME MULTIGRID METHOD 9The Fourier symbol of the �ne grid PDE operator is given byL̂h(�) = diag �~Lh(�1); ~Lh(�2); ~Lh(�3); ~Lh(�4)� ;(22)and the Fourier symbol of the coarse grid PDE operator byL̂H(�) = �~LH(��1)� ; diag �~LH(��1); ~LH(��3)� ; diag �~LH(��1); ~LH(��4)� ;(23)where the latter is for standard-, x-, and t-coarsening respectively. Note that (23) isconstructed by taking the coarse grid aliasing of Fourier modes into account.A general formula for the red/black smoother's symbol can easily be derived fol-lowing the analysis in [17, p. 150{151]. Red-black smoothing applied to Fourier mode h(�) results in a function the value of which is given by �(�) h(�) at the red pointsand by �(�) h(�) at the black points. �(�) and �(�) are given by�(�) = � Xk2I0 sk exp(i k � �)=s(0;0)(24) �(�) = �( Xjkj=odd sk �(�) exp(i k � �) + X06=jkj=even sk exp(i k � �) )=s(0;0) ;(25)with I0 = I n f(0; 0)g and jkj = jk1j+ jk2j. By some elementary algebra, one obtainsŜh(�) = 12 0BBB@ �(�1)+�(�1) �(�2)��(�2) 0 0�(�1)��(�1) �(�2)+�(�2) 0 00 0 �(�3)+�(�3) �(�4)��(�4)0 0 �(�3)��(�3) �(�4)+�(�4) 1CCCA :(26)The restriction and prolongation operators connect �ne and coarse grid Fouriermodes. The following formulae are taken from [13, p. 122],IHh  h(�) = ~IHh (�) H(��) ; IhH H(�) =X� ~IhH(��) h(��) :(27)The summation in the last formula is over the set of �ne-grid modes that coincidewith  H(�) on the coarse grid. With the stencils of restriction and prolongation givenin (20), one �nds ([13, p. 122]),~IHh (�) =Xk2I rk exp(i k � �) ; ~IhH(�) = h1h2H1H2 Xk2I p�k exp(i k � �) :(28)The Fourier symbols of the prolongation operators for standard-, for x- and for t-coarsening are then given byÎhH(�) = 0BBB@ ~IhH(�1)~IhH(�2)~IhH(�3)~IhH(�4) 1CCCA ; 0BBB@ ~IhH(�1) 00 ~IhH(�2)0 ~IhH(�3)~IhH(�4) 0 1CCCA ; 0BBB@ ~IhH(�1) 00 ~IhH(�2)~IhH(�3) 00 ~IhH(�4) 1CCCA :(29)For the operators considered in this paper, it can be veri�ed that the restriction symbolis just the transpose of the prolongation symbol,ÎHh (�) = �ÎhH(�)�T :(30)



10 G. HORTON AND S. VANDEWALLE4.4. Fourier mode analysis results. Exponential Fourier mode analysis wasperformed for the two-grid methods with BDF1, BDF2, and Crank-Nicolson discretiza-tion. The discretization scheme dependent values of ~Lh(�), �(�), and �(�) are givenbelow. The formula for ~LH(�) is easily found from the one for ~Lh(�) by replacing �hby �H . For the BDF1-method:~Lh(�) = 1 + 2�h(1� cos(�1))� exp(�i�2);(31) �(�) = (2�h cos(�1) + exp(�i�2))=(1+ 2�h);(32) �(�) = �2(�);(33)for the BDF2-method:~Lh(�) = 3=2 + 2�h(1� cos(�1)) + 1=2 exp(�i�2)(exp(�i�2)� 4);(34)�(�) = (2�h cos(�1) + 1=2 exp(�i�2)(4� exp(�i�2))=(3=2+ 2�h);(35)�(�) = (2�h cos(�1)�(�) + 1=2 exp(�i�2)(4�(�)� exp(�i�2)))=(3=2+ 2�h);(36)and, �nally, for the Crank-Nicolson scheme:~Lh(�) = (1 + �h(1� cos(�1)))(1+ exp(�i�2))� 2 exp(�i�2);(37)�(�) = (�h cos(�1)(1 + exp(�i�2)) + (1� �h) exp(�i�2))=(1 + �h);(38)�(�) = (�h cos(�1)(�(�) + exp(�i�2)) + (1� �h)�(�) exp(�i�2))=(1 + �h) :(39)
0.00.20.40.60.81.0�8:0 �4:0 0.0 4.0 8.0log2 �h�8:0 �4:0 0.0 4.0 8.0log2 �h�8:0 �4:0 0.0 4.0 8.0log2 �h

Fig. 2. Smoothing factor, �, for backward Euler method (BDF1), second order backward dif-ferentiation method (BDF2) and Crank-Nicolson method (CN); solid line: x-coarsening, dashed line:t-coarsening, dotted line: standard coarsening.Smoothing factors � are presented as a function of �h for each of the three methodsin Figure 2. They were computed with n1 = n2 = 128, over the range 2�8 � �h �28, sampled at intervals of log2 �h = 0:25. In the three pictures we show resultsobtained with standard-coarsening (dotted line), with x-coarsening (solid line) andwith t-coarsening (dashed line). Figure 3 shows the computed values of the two-gridconvergence factor �, also determined for n1 = n2 = 128.
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Fig. 3. Two-grid Fourier mode convergence factor, �, for backward Euler method (BDF1), secondorder backward di�erentiation method (BDF2) and Crank-Nicolson method (CN), with 2 smoothingsteps (left) and 3 smoothing steps (right); solid line: x-coarsening, dashed line: t-coarsening, dottedline: standard coarsening.
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Fig. 4. Experimentally computed two-grid convergence factor, �, for BDF1 method method with 2smoothing steps; solid line: x-coarsening, dashed line: t-coarsening, dotted line: standard coarsening.Figure 4 shows experimentally computed two-grid convergence factors, obtainedwith an implementation of the two-grid algorithm. The results prove to be in veryclose agreement with the results obtained from the Fourier mode analysis (Figure 3,top left).4.5. Discussion. In the case of semi-coarsening in space the magnitude of thetwo-grid convergence factor is mainly determined by the smoothing characteristics ofthe red/black relaxation scheme. The latter follows from the qualitative similarityof the corresponding solid lines in Figures 2 and 3. The red/black relaxation methodperforms very badly for small values of �h. It performs satisfactorily for large �h, withthe BDF1 and the BDF2 methods. With these two discretization methods the fullydiscrete problem corresponds to a large set of essentially decoupled Poisson problems,one at each time-level. The multigrid method with red/black relaxation and standardspatial coarsening is known to be a very good solver for such problems. For one-dimensional problems in particular, it is known to be an exact direct solver. Thelatter argument obviously does not hold for the Crank-Nicolson discretization, forwhich red/black relaxation fails as a smoother, even for large �h. (High frequencyFourier error components with �2 ' � are hardly smoothed.)When combined with semi-coarsening in time, red/black relaxation loses all of itssmoothing qualities, see Figure 2. The fast convergence of the two-grid scheme forsmall �h can therefore not be explained by standard multigrid arguments. Instead, itis due to the fact that in this case the PDE degenerates into a set of almost decoupledlinear ODEs. Time-discretization with BDF1 and Crank-Nicolson leads, in the limitingcase of �h = 0, to a large set of bidiagonal systems, whose equations are of the followingform: (ui;j�ui;j�1)=h2 = fi;j . It can be shown that these equations are solved exactlyby the two-grid method and also by the multigrid method, with our choice of restrictionand prolongation operators, and with the use of red/black relaxation. The method isthen essentially equivalent to a cyclic reduction method. The latter argument doesnot hold for the BDF2-discretization, however. For this method � is very small butdi�erent from zero even when �h = 0. Finally, we should point out the rapid growth of� with increasing �h in the Crank-Nicolson case, which is due to Fourier components� = (�1; �2) with �2 � �=2. Such components are disproportionally magni�ed by thecoarse grid correction, since ~Lh(�) = O(�h) while ~LH(��) = O(1).The method with standard coarsening in space and in time is nowhere optimal.It performs very badly, except for a small region of �h around 1.



A SPACE-TIME MULTIGRID METHOD 130.00.20.40.60.81.0~� �8:0 �4:0 0.0 4.0 8.0log2 �~��8:0 �4:0 0.0 4.0 8.0log2 �ig. 5. Experimental results for BDF1 method with 3 smoothing steps for V-cycle (left) andF-cycle (right), one space dimension; solid line: 256� 256, long dashed line: 128� 128, short dashedline: 64� 64, dotted line: 32� 32.0.00.20.40.60.81.0~� �8:0 �4:0 0.0 4.0 8.0log2 �~��8:0 �4:0 0.0 4.0 8.0log2 �ig. 6. Experimental results for BDF2 method with 3 smoothing steps for V-cycle (left) andF-cycle (right), one space dimension; solid line: 256� 256, long dashed line: 128� 128, short dashedline: 64� 64, dotted line: 32� 32.5. Numerical Experiments. We have implemented the multigrid method de-scribed in section 3 and applied it to both the one- and two- (space)-dimensionalmodel problems. In our experiments, the number of smoothing steps used was givenby �1 = 2 and �2 = 1. We tested V, F and W multigrid cycle types. In order to testfor grid-independent convergence rates, we performed the tests on grids of varyingsize. The value of �crit was chosen on the basis of the results of the Fourier analysisas the value at which curves for t-coarsening and x-coarsening coincide. We use as aperformance measure the mean convergence rate ~�~� = nskd(n)k2kd(0)k2(40)where n is the number of the �nal iteration, in which convergence is achieved. Theconvergence criterion used in all cases was kdk2=N � 10�9, where N is the totalnumber of variables on the �nest grid.Figure 5 shows the results obtained for equation (1) with one space dimensionusing BDF1 for the discretization of the time derivative. The range of �, where �denotes the \discrete anisotropy" on the �nest grid, is given by �8 � log2 � � 8,sampled in increments of 0.25. The rate of convergence of the BDF1 scheme usingthe V-cycle is evidently quite good for all values of �, peaking at about 0:2. However,



14 G. HORTON AND S. VANDEWALLE0.00.20.40.60.81.0~� �8:0 �4:0 0.0 4.0 8.0log2 �. . . . . . . . . . . . . . . . . . . . . . . . . . ............ ........... ........... ........... ........... ........... ........... ...................... ........... ........... ........... ........... ........... ........... ........... ........... 0.00.20.40.60.81.0 ~��8:0 �4:0 0.0 4.0 8.0log2 �. . . . . . . . . . . . . . . . . . . . . . . . . . ............ ........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ...........Fig. 7. Experimental results for BDF1 method with 3 smoothing steps for V-cycle (left) andF-cycle (right), two space dimensions; dashed line: 64� 64� 64, dotted line: 32� 32� 32.0.00.20.40.60.81.0~� �8:0 �4:0 0.0 4.0 8.0log2 �. . . . . . . . . . . . . . . . . . . . . . . . . . . ............ ........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ...................... ........... ........... ........... ........... ........... ... 0.00.20.40.60.81.0 ~��8:0 �4:0 0.0 4.0 8.0log2 �. . . . . . . . . . . .. . . . . . . . . . . . . . . ............ ........... ........... ........... ........... ........... ...................... ........... ........... ........... ........... ........... ........... ........... ........... ........... ......Fig. 8. Experimental results for BDF2 method with 3 smoothing steps for V-cycle (left) andF-cycle (right), two space dimensions; dashed line: 64� 64� 64, dotted line: 32� 32� 32.the grid sizes tested do not seem to yield a grid-independent value of ~�. The F-cycleresult is somewhat better than that of the V-cycle, indicating that the coarse gridcorrection is superior. Here a grid-independent convergence rate is already achievedon the coarsest grid tested: the results for grids with sidelengths greater than 64 areindistinguishable. Experiments with W-cycles showed no further improvement overthe F-cycle. For extreme values of � we observed the method to approach an exactsolver, as expected.The situation is similar for the BDF2-method (Figure 6), where however the V-cycle convergence rate is less good, attaining values of as much as 0.4 on the largest gridtested. Here the curves show pronounced \wiggles", which are due to the variation inthe sequence of semi-coarsening directions for di�erent values of � on the �nest grid.This demonstrates a certain degree of sensitivity of the overall convergence speedon a particular choice of semi-coarsening direction within the multigrid cycle. Hereagain, F-cycles are necessary to achieve grid-independent convergence rates, whichyield ~� � 0:2 in the worst case. Various modi�cations to the V-cycle, includingincreasing the number of smoothing steps on coarser grids, although improving theconvergence rate, did not result in grid-independent convergence.Figures 7 and 8 show analogous results obtained for the three-dimensional (x, yand t) model problem. As in the previous case, F-cycles achieve grid-independentconvergence speeds of better than 0:2, whereas the V-cycle returns less good results.The most signi�cant di�erence to the previous result is the asymmetry of the curves:



A SPACE-TIME MULTIGRID METHOD 15Table 2Averaged convergence factor of space-time multigrid V(2,1)-cycle on rectangular grids extendingin the time-direction (one-dimensional model problem, BDF1-discretization.grid-size 32� 32 32� 64 32� 128 32� 256 32� 512 32� 1024� = 1=64 0.02 0.03 0.05 0.06 0.07 0.09� = 1=4 0.05 0.08 0.11 0.15 0.14 0.14� = 1=2 0.08 0.13 0.14 0.13 0.13 0.13� = 1 0.10 0.11 0.12 0.13 0.13 0.12� = 2 0.09 0.10 0.10 0.10 0.09 0.08� = 4 0.08 0.09 0.09 0.09 0.08 0.08� = 64 0.02 0.02 0.02 0.02 0.02 0.02the convergence rates for � >> 1 are no longer close to zero but approach an asymp-totic value of about 0:06. In this case, the equation degenerates into a set of almostdecoupled two-dimensional elliptic Poisson equations. The multigrid method treatsthe system accordingly and achieves the typical convergence rate for this well-studiedproblem.For practical problems, one is often interested in computing a very large numberof time-steps. The PDE solution is then to be found on a rectangular space-timegrid with many more grid lines in the time-direction than in the spatial directions.The results of such an experiment are presented in Table 2, for the two-dimensionalmodel problem with BDF1 discretization. The results show that there is essentiallyno change in convergence caused when the integration interval is extended. Thus weconclude that the method performs equally well, regardless of the length of the timeintegration.6. Parallel Complexity. Parallel complexity is a theoretical measure of an al-gorithm based on the assumption that an unlimited number of processors is availablefor its execution and disregarding communication requirements. It describes, underthe above assumptions, the asymptotic dependency of the computation time of thealgorithm as a function of the size of the input.The multigrid method presented in this paper is designed to be fully parallelizable.This is achieved by its requiring only pointwise smoothing rather than more sophisti-cated techniques such as incomplete decomposition methods. We may therefore assertthe parallel complexity of the multigrid V-cycle to be of the order ofO(logNs + logNt) ;(41)where Ns denotes the spatial sidelength of the space-time grid and Nt the sidelengthin the time direction. This is easily seen by observing the parallel complexity of eachmultigrid operation at any grid level to be of the order O(1) and the number of gridlevels processed during the cycle to be O(logNs + logNt).Standard multigrid arguments show the multigrid nested iteration (FMG, FullMultigrid Method) to achieve discretization accuracy with a constant number of V-cycles per grid level, given that the convergence rate is independent of the grid size.Summing the total number of grids visited by the FMG-V iteration gives an overallparallel complexity of O �(logNs + logNt)2� :(42)



16 G. HORTON AND S. VANDEWALLESimilarly, we obtain as the parallel complexity of the space-time FMG-F cycleO �(logNs + logNt)3� :(43)Note that the same parallel complexities are found when simply performing V-cyclesor F-cycles to convergence.This result compares favourably with that of the standard time-stepping tech-nique, where problems at each time-step are solved with a parallel elliptic FMGor multigrid cycling scheme but the time-steps are processed sequentially. For thismethod parallel complexities of O(Nt � log2Ns) for V-cycles and O(Nt � log3Ns) forF-cycles are obtained. Finally, we wish to recall the complexity of the multigridwaveform relaxation method. In [10], it is shown that the complexity of the FMG-Vwaveform algorithm is given by O �log2Ns � logNt� ;(44)which is a polylogarithmic function of similar order as (43).7. Conclusions. In this paper a multigrid method for the solution of parabolicPDEs has been presented. The novelty of the scheme stems from its treatment ofthe entire space-time problem, as opposed to the standard time-stepping approach.The method is characterized by a parameter-dependent choice of coarsening strategy,together with appropriate prolongation and restriction operators.Results from Fourier two-grid analysis show that good rates of convergence canbe expected for the scheme and that a naive approach to the problem fails. Numericalresults are presented for the one- and two-dimensional heat equations for both �rst andsecond order discretizations of the time derivative. These proved to converge quickly,although at present the F-cycle seems to be necessary to achieve grid-independentrates.The algorithm is fully parallelizable in all problem dimensions, i.e. in both spaceand time, in contrast to standard time-marching methods. It is shown that this leadsto an improved parallel complexity for parabolic problems. In addition, MIMD imple-mentations of the method will bene�t from the increased parallelism and the improvedsurface-to-volume ratio as has already been shown, albeit in a slightly di�erent context,in [16].Further work will include the implementation of the space-time multigrid methodon a massively parallel computer in order to determine whether the theoretically de-rived parallel complexities can be achieved in practice. In addition, an FAS-like versionof the method will be developed, in order to be able to solve non-linear problems.8. Acknowledgements. This work was carried out while the �rst author wasa guest of the Computer Science Department of the Katholieke Universiteit Leuven,Belgium and of ICASE, NASA Langley Research Center, Hampton, VA. The authorsgratefully acknowledge interesting discussions with Professor Achi Brandt.REFERENCES[1] P. Bastian, J. Burmeister, and G. Horton, Implementation of a parallel multigrid methodfor parabolic partial di�erential equations, in Parallel Algorithms for PDEs (Proceedings ofthe 6th GAMM Seminar Kiel, January 19-21, 1990), W. Hackbusch, ed., Wiesbaden, 1990,Vieweg Verlag, pp. 18{27.
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18 G. HORTON AND S. VANDEWALLEAppendix. We give the prolongation and restriction operators for the three-di-mensional space-time problem. To this end, we adopt the notation that a sequenceof stencils is given, whereby successive stencils are applied to successive time-steps.Each stencil has the standard interpretation on the space grid at one time-step.Prolongation:Case 1: (Semi coarsening in t direction)375 0 0 00 0 00 0 0 264 375 0 0 00 1 00 0 0 264 375 0 0 00 1 00 0 0 264Case 2: (Semi coarsening in x and y directions)375 0 0 00 0 00 0 0 264 14 375 1 2 12 4 21 2 1 264 375 0 0 00 0 00 0 0 264Case 3: (Standard coarsening in x, y and t)375 0 0 00 0 00 0 0 264 14 375 1 2 12 4 21 2 1 264 14 375 1 2 12 4 21 2 1 264Restriction:Case 1: (Semi coarsening in t direction)12 264 0 0 00 1 00 0 0 375 12 264 0 0 00 1 00 0 0 375 264 0 0 00 0 00 0 0 375Case 2: (Semi coarsening in x and y directions)264 0 0 00 0 00 0 0 375 116 264 1 2 12 4 21 2 1 375 264 0 0 00 0 00 0 0 375Case 3: (Standard coarsening in x, y and t)132 264 1 2 12 4 21 2 1 375 132 264 1 2 12 4 21 2 1 375 264 0 0 00 0 00 0 0 375


