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“Men wanted for hazardous journey, small wages, bitter cold, long months of
complete darkness, constant dangers, safe return doubtful. Honour and recogni-
tion in case of success.” Advertisement placed by Earnest Shackleton in 1914.
He received 5000 replies. An example of extreme risk-seeking behaviour. Hedg-
ing with options is used to mitigate risk, and would not appeal to members of
Shackleton’s expedition.

1 The First Option Trade

Many people think that options and futures are recent inventions. However, options have a
long history, going back to ancient Greece.

As recorded by Aristotle in Politics, the fifth century BC philosopher Thales of Miletus
took part in a sophisticated trading strategy. The main point of this trade was to confirm
that philosophers could become rich if they so chose. This is perhaps the first rejoinder to
the famous question “If you are so smart, why aren’t you rich?” which has dogged academics
throughout the ages.

Thales observed that the weather was very favourable to a good olive crop, which would
result in a bumper harvest of olives. If there was an established Athens Board of Olives
Exchange, Thales could have simply sold olive futures short (a surplus of olives would cause
the price of olives to go down). Since the exchange did not exist, Thales put a deposit on
all the olive presses surrounding Miletus. When the olive crop was harvested, demand for
olive presses reached enormous proportions (olives were not a storable commodity). Thales
then sublet the presses for a profit. Note that by placing a deposit on the presses, Thales
was actually manufacturing an option on the olive crop, i.e. the most he could lose was his
deposit. If had sold short olive futures, he would have been liable to an unlimited loss, in the
event that the olive crop turned out bad, and the price of olives went up. In other words, he
had an option on a future of a non-storable commodity.

2 The Black-Scholes Equation

This is the basic PDE used in option pricing. We will derive this PDE for a simple case
below. Things get much more complicated for real contracts.

2.1 Background

Over the past few years derivative securities (options, futures, and forward contracts) have
become essential tools for corporations and investors alike. Derivatives facilitate the transfer
of financial risks. As such, they may be used to hedge risk exposures or to assume risks in
the anticipation of profits. To take a simple yet instructive example, a gold mining firm is
exposed to fluctuations in the price of gold. The firm could use a forward contract to fix the
price of its future sales. This would protect the firm against a fall in the price of gold, but it
would also sacrifice the upside potential from a gold price increase. This could be preserved
by using options instead of a forward contract.
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Individual investors can also use derivatives as part of their investment strategies. This
can be done through direct trading on financial exchanges. In addition, it is quite common
for financial products to include some form of embedded derivative. Any insurance contract
can be viewed as a put option. Consequently, any investment which provides some kind of
protection actually includes an option feature. Standard examples include deposit insurance
guarantees on savings accounts as well as the provision of being able to redeem a savings bond
at par at any time. These types of embedded options are becoming increasingly common
and increasingly complex. A prominent current example are investment guarantees being
offered by insurance companies (“segregated funds”) and mutual funds. In such contracts,
the initial investment is guaranteed, and gains can be locked-in (reset) a fixed number of
times per year at the option of the contract holder. This is actually a very complex put
option, known as a shout option. How much should an investor be willing to pay for this
insurance? Determining the fair market value of these sorts of contracts is a problem in
option pricing.

2.2 Definitions

Let’s consider some simple European put/call options. At some time T in the future (the
expiry or exercise date) the holder has the right, but not the obligation, to

• Buy an asset at a prescribed price K (the exercise or strike price). This is a call option.

• Sell the asset at a prescribed price K (the exercise or strike price). This is a put option.

At expiry time T , we know with certainty what the value of the option is, in terms of the
price of the underlying asset S,

Payoff = max(S −K, 0) for a call

Payoff = max(K − S, 0) for a put (2.1)

Note that the payoff from an option is always non-negative, since the holder has a right but
not an obligation. This contrasts with a forward contract, where the holder must buy or sell
at a prescribed price.

2.3 A Simple Example: The Two State Tree

This example is taken from Options, futures, and other derivatives, by John Hull. Suppose
the value of a stock is currently $20. It is known that at the end of three months, the stock
price will be either $22 or $18. We assume that the stock pays no dividends, and we would
like to value a European call option to buy the stock in three months for $21. This option
can have only two possible values in three months: if the stock price is $22, the option is
worth $1, if the stock price is $18, the option is worth zero. This is illustrated in Figure 1.

In order to price this option, we can set up an imaginary portfolio consisting of the option
and the stock, in such a way that there is no uncertainty about the value of the portfolio at
the end of three months. Since the portfolio has no risk, the return earned by this portfolio
must be the risk-free rate.
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Figure 1: A simple case where the stock value can either be $22 or $18, with a European
call option, K = $21.

Stock Price = $20

Stock Price = $22
Option Price = $1

Stock Price  = $18
Option  Price = $0

Consider a portfolio consisting of a long (positive) position of δ shares of stock, and short
(negative) one call option. We will compute δ so that the portfolio is riskless. If the stock
moves up to $22 or goes down to $18, then the value of the portfolio is

Value if stock goes up = $22δ − 1

Value if stock goes down = $18δ − 0 (2.2)

So, if we choose δ = .25, then the value of the portfolio is

Value if stock goes up = $22δ − 1 = $4.50

Value if stock goes down = $18δ − 0 = $4.50 (2.3)

So, regardless of whether the stock moves up or down, the value of the portfolio is $4.50.
A risk-free portfolio must earn the risk free rate. Suppose the current risk-free rate is 12%,
then the value of the portfolio today must be the present value of $4.50, or

4.50× e−.12×.25 = 4.367

The value of the stock today is $20. Let the value of the option be V . The value of the
portfolio is

20× .25− V = 4.367

→ V = .633

2.4 A hedging strategy

So, if we sell the above option (we hold a short position in the option), then we can hedge
this position in the following way. Today, we sell the option for $.633, borrow $4.367 from
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the bank at the risk free rate (this means that we have to pay the bank back $4.50 in three
months), which gives us $5.00 in cash. Then, we buy .25 shares at $20.00 (the current price
of the stock). In three months time, one of two things happens

• The stock goes up to $22, our stock holding is now worth $5.50, we pay the option
holder $1.00, which leaves us with $4.50, just enough to pay off the bank loan.

• The stock goes down to $18.00. The call option is worthless. The value of the stock
holding is now $4.50, which is just enough to pay off the bank loan.

Consequently, in this simple situation, we see that the theoretical price of the option is the
cost for the seller to set up portfolio, which will precisely pay off the option holder and any
bank loans required to set up the hedge, at the expiry of the option. In other words, this
is price which a hedger requires to ensure that there is always just enough money at the
end to net out at zero gain or loss. If the market price of the option was higher than this
value, the seller could sell at the higher price and lock in an instantaneous risk-free gain.
Alternatively, if the market price of the option was lower than the theoretical, or fair market
value, it would be possible to lock in a risk-free gain by selling the portfolio short. Any
such arbitrage opportunities are rapidly exploited in the market, so that for most investors,
we can assume that such opportunities are not possible (the no arbitrage condition), and
therefore that the market price of the option should be the theoretical price.

Note that this hedge works regardless of whether or not the stock goes up or down.
Once we set up this hedge, we don’t have a care in the world. The value of the option is
also independent of the probability that the stock goes up to $22 or down to $18. This is
somewhat counterintuitive.

2.5 Brownian Motion

Before we consider a model for stock price movements, let’s consider the idea of Brownian
motion with drift. Suppose X is a random variable, and in time t→ t + dt, X → X + dX,
where

dX = αdt + σdZ (2.4)

where αdt is the drift term, σ is the volatility, and dZ is a random term. The dZ term has
the form

dZ = φ
√
dt (2.5)

where φ is a random variable drawn from a normal distribution with mean zero and variance
one (φ is N(0, 1)).

If E is the expectation operator, then

E(φ) = 0 E(φ2) = 1 . (2.6)

Now in a time interval dt, we have

E(dX) = E(αdt) + E(σdZ)

= αdt , (2.7)
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Figure 2: Probabilities of reaching the discrete lattice points for the first three moves.

and the variance of dX, denoted by V ar(dX) is

V ar(dX) = E([dX − E(dX)]2)

= E([σdZ]2)

= σ2dt . (2.8)

Let’s look at a discrete model to understand this process more completely. Suppose that
we have a discrete lattice of points. Let X = X0 at t = 0. Suppose that at t = ∆t,

X0 → X0 + ∆h ; with probability p

X0 → X0 −∆h ; with probability q (2.9)

where p+ q = 1. Assume that

• X follows a Markov process, i.e. the probability distribution in the future depends
only on where it is now.

• The probability of an up or down move is independent of what happened in the past.

• X can move only up or down ∆h.

At any lattice point X0 + i∆h, the probability of an up move is p, and the probability of a
down move is q. The probabilities of reaching any particular lattice point for the first three
moves are shown in Figure 2. Each move takes place in the time interval t→ t+ ∆t.
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Let ∆X be the change in X over the interval t→ t+ ∆t. Then

E(∆X) = (p− q)∆h
E([∆X]2) = p(∆h)2 + q(−∆h)2

= (∆h)2, (2.10)

so that the variance of ∆X is

V ar(∆X) = E([∆X]2)− [E(∆X)]2

= (∆h)2 − (p− q)2(∆h)2

= 4pq(∆h)2 . (2.11)

Now, suppose we consider the distribution of X after n moves, so that t = n∆t. The
probability of j up moves, and (n− j) down moves (P (n, j)) is

P (n, j) =
n!

j!(n− j)!
pjqn−j (2.12)

which is just a binomial distribution. Now, if Xn is the value of X after n steps on the
lattice, then

E(Xn −X0) = nE(∆X)

V ar(Xn −X0) = nV ar(∆X) , (2.13)

which follows from the properties of a binomial distribution, (each up or down move is
independent of previous moves). Consequently, from equations (2.10, 2.11, 2.13) we obtain

E(Xn −X0) = n(p− q)∆h

=
t

∆t
(p− q)∆h

V ar(Xn −X0) = n4pq(∆h)2

=
t

∆t
4pq(∆h)2 (2.14)

Now, we would like to take the limit at ∆t→ 0 in such a way that the mean and variance
of X, after a finite time t is independent of ∆t, and we would like to recover

dX = αdt + σdZ

E(dX) = αdt

V ar(dX) = σ2dt (2.15)

as ∆t→ 0. Now, since 0 ≤ p, q ≤ 1, we need to choose ∆h = Const
√

∆t. Otherwise, from
equation (2.14) we get that V ar(Xn −X0) is either 0 or infinite after a finite time. (Stock
variances do not have either of these properties, so this is obviously not a very interesting
case).
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Let’s choose ∆h = σ
√

∆t, which gives (from equation (2.14))

E(Xn −X0) = (p− q) σt√
∆t

V ar(Xn −X0) = t4pqσ2 (2.16)

Now, for E(Xn −X0) to be independent of ∆t as ∆t→ 0, we must have

(p− q) = Const.
√

∆t (2.17)

If we choose

p− q =
α

σ

√
∆t (2.18)

we get

p =
1

2
[1 +

α

σ

√
∆t]

q =
1

2
[1− α

σ

√
∆t] (2.19)

Now, putting together equations (2.16-2.19) gives

E(Xn −X0) = αt

V ar(Xn −X0) = tσ2(1− α2

σ2
∆t)

= tσ2 ; ∆t→ 0 (2.20)

so that, in the limit as ∆t→ 0, we can interpret the random walk for X on the lattice (with
these parameters) as the solution to the stochastic differential equation (SDE)

dX = α dt+ σ dZ

dZ = φ
√
dt. (2.21)

For future reference, if α = 0, σ = 1, so that dX = Xi − Xi−1 = dZ, note that (from
equation (2.19))

E(Xn −X0) = 0

V ar(Xn −X0) = t (2.22)

so that we can write ∫ t

0

dX =

∫ t

0

dZ

= (Xn −X0) (2.23)

where

(Xn −X0) = N(0, t)

=

∫ t

0

dZ . (2.24)
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In other words, after a finite time t,
∫ t

0
dZ is normally distributed with mean zero and

variance t (the limit of a binomial distribution is a normal distribution).
In the case α = 0, σ = 1, we have that Xi − Xi−1 =

√
∆t with probability p and

Xi−Xi−1 = −
√

∆t with probability q. Note that (Xi−Xi−1)2 = ∆t, with certainty, so that
we can write

(Xi −Xi−1)2 = (dZ)2 = ∆t . (2.25)

To summarize
• We can interpret the SDE

dX = α dt+ σ dZ

dZ = φ
√
dt. (2.26)

as the limit of a discrete random walk on a lattice as the timestep tends to zero.

• V ar(dZ) = dt, otherwise, after any finite time, the V ar(Xn − X0) is either zero or
infinite.

• We can integrate the term dZ to obtain∫ t

0

dZ = Z(t)− Z(0)

= N(0, t) . (2.27)

Going back to our lattice example, note that the total distance traveled over any finite
interval of time becomes infinite,

E(|∆X|) = ∆h (2.28)

so that the the total distance traveled in n steps is

n∆h =
t

∆t
∆h

=
tσ√
∆t

(2.29)

which goes to infinity as ∆t→ 0. Similarly,

∆x

∆t
= ±∞ . (2.30)

Consequently, Brownian motion is very jagged at every timescale. These paths are not
differentiable, i.e. dx

dt
does not exist, so we cannot speak of

E(
dx

dt
) (2.31)

but we can possibly define

E(dx)

dt
. (2.32)
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Figure 3: Realizations of asset price following geometric Brownian motion. Left: low volatil-
ity case; right: high volatility case. Risk-free rate of return r = .05.

2.6 Geometric Brownian motion with drift

Of course, the actual path followed by stock is more complex than the simple situation
described above. More realistically, we assume that the relative changes in stock prices (the
returns) follow Brownian motion with drift. We suppose that in an infinitesimal time dt, the
stock price S changes to S + dS, where

dS

S
= µdt+ σdZ (2.33)

where µ is the drift rate, σ is the volatility, and dZ is the increment of a Wiener process,

dZ = φ
√
dt (2.34)

where φ is N(0, 1). Equations (2.33) and (2.34) are called geometric Brownian motion with
drift. So, superimposed on the upward (relative) drift is a (relative) random walk. The
degree of randomness is is given by the volatility σ. Figure 3 gives an illustration of ten
realizations of this random process for two different values of the volatility. In this case, we
assume that the drift rate µ equals the risk free rate.

Note that

E(dS) = E(σSdZ + µSdt)

= µSdt

since E(dZ) = 0 (2.35)

and that the variance of dS is

V ar[dS] = E(dS2)− [E(dS)]2

= E(σ2S2dZ2)

= σ2S2dt (2.36)
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so that σ is a measure of the degree of randomness of the stock price movement.
Equation (2.33) is a stochastic differential equation. The normal rules of calculus don’t

apply, since for example

dZ

dt
= φ

1√
dt

→∞ as dt→ 0 .

The study of these sorts of equations uses results from stochastic calculus. However, for
our purposes, we need only one result, which is Ito’s Lemma (see Derivatives: the theory
and practice of financial engineering, by P. Wilmott). Suppose we have some function
G = G(S, t), where S follows the stochastic process equation (2.33), then, in small time
increment dt, G→ G+ dG, where

dG =

(
µS

∂G

∂S
+
σ2S2

2

∂2G

∂S2 +
∂G

∂t

)
dt+ σS

∂G

∂S
dZ (2.37)

An informal derivation of this result is given in the following section.

2.6.1 Ito’s Lemma

We give an informal derivation of Ito’s lemma (2.37). Suppose we have a variable S which
follows

dS = a(S, t)dt+ b(S, t)dZ (2.38)

where dZ is the increment of a Weiner process.
Now since

dZ2 = φ2dt (2.39)

where φ is a random variable drawn from a normal distribution with mean zero and unit
variance, we have that, if E is the expectation operator, then

E(φ) = 0 E(φ2) = 1 (2.40)

so that the expected value of dZ2 is

E(dZ2) = dt (2.41)

Now, it can be shown that
E((dZ2 − dt)2) = O(dt2) (2.42)

so that, in the limit as dt → 0, we have that φ2dt becomes non-stochastic, so that with
probability one

dZ2 → dt as dt→ 0 (2.43)

Now, suppose we have some function G = G(S, t), then

dG = GSdS +Gtdt+GSS
dS2

2
+ ... (2.44)
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Now (from (2.38) )

(dS)2 = (adt+ b dZ)2

= a2dt2 + ab dZdt+ b2dZ2 (2.45)

Since dZ = O(
√
dt) and dZ2 → dt, equation (2.45) becomes

(dS)2 = b2dZ2 +O((dt)3/2) (2.46)

or
(dS)2 → b2dt as dt→ 0 (2.47)

Now, equations(2.38,2.44,2.47) give

dG = GSdS +Gtdt+GSS
dS2

2
+ ...

= GS(a dt+ b dZ) + dt(Gt +GSS
b2

2
)

= GSb dZ + (aGS +GSS
b2

2
+Gt)dt (2.48)

So, we have the result that if

dS = a(S, t)dt+ b(S, t)dZ (2.49)

and if G = G(S, t), then

dG = GSb dZ + (a GS +GSS
b2

2
+Gt)dt (2.50)

Equation (2.37) can be deduced by setting a = µS and b = σS in equation (2.50).

2.7 The Black-Scholes Analysis

Assume
• The stock price follows geometric Brownian motion, equation (2.33).

• The risk-free rate of return is a constant r.

• There are no arbitrage opportunities, i.e. all risk-free portfolios must earn the risk-free
rate of return.

• Short selling is permitted (i.e. we can own negative quantities of an asset).
Suppose that we have an option whose value is given by V = V (S, t). Construct an

imaginary portfolio, consisting of one option, and a number of (−(αh)) of the underlying
asset. (If (αh) > 0, then we have sold the asset short, i.e. we have borrowed an asset, sold
it, and are obligated to give it back at some future date).
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The value of this portfolio P is

P = V − (αh)S (2.51)

In a small time dt, P → P + dP ,

dP = dV − (αh)dS (2.52)

Note that in equation (2.52) we not included a term (αh)SS. This is actually a rather subtle
point, since we shall see (later on) that (αh) actually depends on S. However, if we think of
a real situation, at any instant in time, we must choose (αh), and then we hold the portfolio
while the asset moves randomly. So, equation (2.52) is actually the change in the value of
the portfolio, not a differential. If we were taking a true differential then equation (2.52)
would be

dP = dV − (αh)dS − Sd(αh)

but we have to remember that (αh) does not change over a small time interval, since we pick
(αh), and then S changes randomly. We are not allowed to peek into the future, (otherwise,
we could get rich without risk, which is not permitted by the no-arbitrage condition) and
hence (αh) is not allowed to contain any information about future asset price movements.
The principle of no peeking into the future is why Ito stochastic calculus is used. Other forms
of stochastic calculus are used in Physics applications (i.e. turbulent flow).

Substituting equations (2.33) and (2.37) into equation (2.52) gives

dP = σS
(
VS − (αh)

)
dZ +

(
µSVS +

σ2S2

2
VSS + Vt − µ(αh)S

)
dt (2.53)

We can make this portfolio riskless over the time interval dt, by choosing (αh) = VS in
equation (2.53). This eliminates the dZ term in equation (2.53). (This is the analogue of
our choice of the amount of stock in the riskless portfolio for the two state tree model.) So,
letting

(αh) = VS (2.54)

then substituting equation (2.54) into equation (2.53) gives

dP =

(
Vt +

σ2S2

2
VSS

)
dt (2.55)

Since P is now risk-free in the interval t→ t+ dt, then no-arbitrage says that

dP = rPdt (2.56)

Therefore, equations (2.55) and (2.56) give

rPdt =

(
Vt +

σ2S2

2
VSS

)
dt (2.57)
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Since
P = V − (αh)S = V − VSS (2.58)

then substituting equation (2.58) into equation (2.57) gives

Vt +
σ2S2

2
VSS + rSVS − rV = 0 (2.59)

which is the Black-Scholes equation. Note the rather remarkable fact that equation (2.59) is
independent of the drift rate µ.

Equation (2.59) is solved backwards in time from the option expiry time t = T to the
present t = 0.

2.8 Hedging in Continuous Time

We can construct a hedging strategy based on the solution to the above equation. Suppose
we sell an option at price V at t = 0. Then we carry out the following

• We sell one option worth V . (This gives us V in cash initially).

• We borrow (S ∂V
∂S
− V ) from the bank.

• We buy ∂V
∂S

shares at price S.

At every instant in time, we adjust the amount of stock we own so that we always have
∂V
∂S

shares. Note that this is a dynamic hedge, since we have to continually rebalance the
portfolio. Cash will flow into and out of the bank account, in response to changes in S. If
the amount in the bank is positive, we receive the risk free rate of return. If negative, then
we borrow at the risk free rate.

So, our hedging portfolio will be

• Short one option worth V .

• Long ∂V
∂S

shares at price S.

• V − S ∂V
∂S

cash in the bank account.

At any instant in time (including the terminal time), this portfolio can be liquidated and
any obligations implied by the short position in the option can be covered, at zero gain or
loss, regardless of the value of S. Note that given the receipt of the cash for the option, this
strategy is self-financing.

2.9 The option price

So, we can see that the price of the option valued by the Black-Scholes equation is the market
price of the option at any time. If the price was higher then the Black-Scholes price, we could
construct the hedging portfolio, dynamically adjust the hedge, and end up with a positive
amount at the end. Similarly, if the price was lower than the Black-Scholes price, we could
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short the hedging portfolio, and end up with a positive gain. By the no-arbitrage condition,
this should not be possible.

Note that we are not trying to predict the price movements of the underlying asset,
which is a random process. The value of the option is based on a hedging strategy which
is dynamic, and must be continuously rebalanced. The price is the cost of setting up the
hedging portfolio. The Black-Scholes price is not the expected payoff.

The price given by the Black-Scholes price is not the value of the option to a speculator,
who buys and holds the option. A speculator is making bets about the underlying drift rate
of the stock (note that the drift rate does not appear in the Black-Scholes equation). For
a speculator, the value of the option is given by an equation similar to the Black-Scholes
equation, except that the drift rate appears. In this case, the price can be interpreted as the
expected payoff based on the guess for the drift rate. But this is art, not science!

2.10 American early exercise

Actually, most options traded are American options, which have the feature that they can
be exercised at any time. Consequently, an investor acting optimally, will always exercise
the option if the value falls below the payoff or exercise value. So, the value of an American
option is given by the solution to equation (2.59) with the additional constraint

V (S, t) ≥
{

max(S −K, 0) for a call
max(K − S, 0) for a put

(2.60)

Note that since we are working backwards in time, we know what the option is worth in
future, and therefore we can determine the optimal course of action.

In order to write equation (2.59) in more conventional form, define τ = T − t, so that
equation (2.59) becomes

Vτ =
σ2S2

2
VSS + rSVS − rV

V (S, τ = 0) =

{
max(S −K, 0) for a call
max(K − S, 0) for a put

V (0, τ) → Vτ = −rV

V (S =∞, τ) →
{
' S for a call
' 0 for a put

(2.61)

If the option is American, then we also have the additional constraints

V (S, τ) ≥
{

max(S −K, 0) for a call
max(K − S, 0) for a put

(2.62)

Define the operator

LV ≡ Vτ − (
σ2S2

2
VSS + rSVS − rV ) (2.63)
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and let V (S, 0) = V ∗. More formally, the American option pricing problem can be stated as

LV ≥ 0

V − V ∗ ≥ 0

(V − V ∗)LV = 0 (2.64)
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