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Abstract� For evaluating a hedging strategy we have to know at every instant the solu

tion of the Cauchy problem for a parabolic equation �the value of the hedging portfolio�
and its derivatives �the deltas� We suggest to �nd these magnitudes by Monte Carlo
simulation of the corresponding system of stochastic di�erential equations using weak
solution schemes It turns out that with one and the same control function a variance
reduction can be achieved simultaneously for the claim value as well as for the deltas
We consider asset models with an instantaneous saving bond and the Jamshidian LIBOR
rate model

�� Introduction

Let us consider a model for the �nancial market consisting of a cash bond 
riskless asset�
with price B�t� and m stocks 
risky assets� with prices per share X i�t�� i � �� ���� m�
satisfying the equations

dB � r�t�Bdt� B�t�� � ��
����

dX i � X i��i�t� X�dt�
mX
j��

�ij�t� X�dW j�t��� t � t�� i � �� ���� m�

Here� for the time being� r�t� is a deterministic interest rate� X � �X�� ���� Xm��� W �
�W �� ����Wm�� is anm�dimensional standardWiener process on a probability space ���F � P ��
We denote by fFtg the P �augmentation of the �ltration generated by W� It is assumed
that r�t�� the vector ����t� x�� ���� �m�t� x���� and the matrix ��t� x� � f�ij�t� x�g� t �
�t�� T �� x � Rm

� 	� fx 	 x� � 
� ���� xm � 
g� are su�ciently smooth and such that there
exists a unique processX�t� � Rm

� � t � �t�� T �� withX�t�� � Rm
� satisfying 
���� 
for exam�

ple� all the �i� �ij are smooth and bounded�� Moreover� we assume that the volatility ma�
trix ��t� x� � f�ij�t� x�g � fxi�ij�t� x�g has full rank for every �t� x�� t � �t�� T �� x � Rm

� �
From now on we shall not always state explicitly the properties of the originating functions
which we regard as su�ciently good in analytical sense�

We consider a model where the stocks pay dividends to the share holders at a rate
ri�t� X�t�� for the i�th stock and a consumption process C is assumed and de�ned by
a consumption rate c�t� X�t��� t� � t � T�

dC � c�t� X�t��dt� C�t�� � 
�
����

The portfolio value V �t� of a trading strategy ��t� �t� � ��t� �
�
t � ���� �

m
t �� i�e� the positions

in bond B�t� and stocks Xj�t� respectively� is given by

V �t� � �tB�t� �
mX
i��

�i
tX

i�t��
����

A portfolio ��t� �t� is called 
generalized� self��nancing� if its value V �t� satis�es

dV � �tdB �
mX
i��

�i
tdX

i �
mX
i��

ri�t� X�t���i
tX

i�t�dt� c�t� X�t��dt
����



�

� �tr�t�Bdt�
mX
i��

�i
tX

i � ��i�t� X�dt�
mX
j��

�ij�t� X�dW j�t��

�
mX
i��

ri�t� X�t���i
tX

i�t�dt� c�t� X�t��dt�

which is equivalent with

Bd�t �
mX
i��

X id�i
t �

mX
i��

d�i
tdX

i �
mX
i��

ri�t� X�t���i
tX

i�t�dt� c�t� X�t��dt�
����

Let a European claim at maturity time T be speci�ed by a payo� function f which
depends on X�T � only and let V �t� be the present value of the claim� Since the model is
Markovian we have

V �t� � �tB�t� �
mX
i��

�i
tX

i�t� � v�t� X�t��� V �T � � v�T�X�T �� � f�X�T ���
����

where v is a function of the variables t� x�� ���� xm�

Just as in the one dimensional case we may derive a parabolic pde for the function v�t� x�

see� e�g�� ����� Due to It��s formula we have

dv�t� X�t�� �
	v

	t
dt�

mX
i��

	v

	xi
dX i �

�

�

mX
i�j��

	�v

	xi	xj
dX idXj
����

�
	v

	t
dt �

mX
i��

	v

	xi
X i�idt�

mX
i��

	v

	xi

mX
j��

�ijdw
j�t� �

�

�

mX
i�j��

aij
	�v

	xi	xj
dt�

where

aij�t� x� �
mX
k��

�ik�jk � xixj
mX
k��

�ik�jk�

i�e�� the matrix a � faijg is equal to a � ����

Comparing 
���� with 
����� we obtain

�i
t � �i�t� X�t�� �

	v

	xi
�t� X�t��� �i�t� x� �

	v

	xi
�t� x��
�� �

and

	v

	t
�t� X�t�� �

�

�

mX
i�j��

aij�t� X�t��
	�v

	xi	xj
�t� X�t��
����

� �tr�t�B�t� �
mX
i��

ri�t� X�t���i
tX

i�t�� c�t� X�t���

Substituting 
see
���� and 
�� ��

�tB�t� � v�t� X�t���
mX
i��

�i
tX

i�t� � v�t� X�t���
mX
i��

	v

	xi
�t� X�t��X i�t��



�

in 
���� and taking into account 
�� �� we get the following Cauchy problem for the
function v�t� x� 	

Lv�t� x� � c�t� x� 	�
	v

	t
�

�

�

mX
i�j��

aij�t� x�
	�v

	xi	xj

�����

�
mX
i��

bi�t� x�
	v

	xi
� r�t�v � c�t� x� � 
�

v�T� x� � f�x��
�����

where we introduced the notation bi � �r � ri�xi� b � �b�� ���� bm��

Let v�t� x� be the solution of the problem 
������
������ Then the required hedging strategy
��t� �

�
t � ���� �

m
t � as a function of �t� X�t�� is given by

�t �
�

B�t�
�v�t� X�t���

mX
i��

	v

	xi
�t� X�t��X i�t��� �i

t �
	v

	xi
�t� X�t��� i � �� ���� m�
�����

The relation 
���� for this strategy can be checked directly� Indeed

Bd�t � �r�v �
mX
i��

X i 	v

	xi
�dt� d�v �

mX
i��

X i 	v

	xi
�

� �r�v �
mX
i��

X i 	v

	xi
�dt� dv �

mX
i��

	v

	xi
dX i �

mX
i��

X id�
	v

	xi
��

mX
i��

d�
	v

	xi
�dX i�

mX
i��

X id�i
t �

mX
i��

X id�
	v

	xi
��

mX
i��

d�i
tdX

i �
mX
i��

d�
	v

	xi
�dX i�

Therefore the left part of 
���� is equal to

Bd�t �
mX
i��

X id�i
t �

mX
i��

d�i
tdX

i � �r�v �
mX
i��

X i 	v

	xi
�dt� dv �

mX
i��

	v

	xi
dX i�
�����

Further� see
�����

dv �
mX
i��

	v

	xi
dX i �

	v

	t
dt�

�

�

mX
i�j��

aij
	�v

	xi	xj
dt

and according to 
�����

dv �
mX
i��

	v

	xi
dX i � ��c� rv �

mX
i��

�r � ri�xi
	v

	xi
�dt�

which combined with 
����� gives 
�����
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Remark ���� Consider the model 
���� with now r depending on t and X� i�e�� 
���� with
the �rst equation

dB � r�t� X�Bdt� B�t�� � ��

Then in general V �t� depends on t� X�t�� B�t�� i�e�� V �t� � v�t� X�t�� B�t��� Arguing as
above� we obtain that v satis�es the following equation

	v

	t
�

�

�

mX
i�j��

aij�t� x�
	�v

	xi	xj
�

mX
i��

bi�t� x�
	v

	xi
� r�t� x�B

	v

	B
� r�t� x�v � c�t� x� � 
�

But� if the claim depends as before on X�T � only the solution of the above equation
satisfying condition 
����� is independent of B� So 	v
	B � 
 and we obtain Cauchy
problem 
������
����� where r � r�t� x�� The formulas for the required hedging strategy�

������ remain the same�

Moreover it is possible to consider the model in which all the coe�cients depend on t� X
and B and the claim is a function f�X�T �� B�T ��� In this case we derive in a similar way
the following degenerate problem

	v

	t
�

�

�

mX
i�j��

aij�t� x� B�
	�v

	xi	xj
�

mX
i��

bi�t� x� B�
	v

	xi

�����

�r�t� x� B�B
	v

	B
� r�t� x� B�v � c�t� x� B� � 
�

v�T� x� B� � f�x�B��
�����

If this problem has a solution v � v�t� x� B�� then a hedging strategy is given by

�t �
�

B�t�
�v�t� X�t�� B�t���

mX
i��

	v

	xi
�t� X�t�� B�t��X i�t���

�i
t �

	v

	xi
�t� X�t�� B�t��� i � �� ���� m�

Remark ���� We note that a Cauchy problem is considered in spite of the fact that
the variable x belongs to Rm

� � fx 	 x� � 
� ���� xm � 
g� This is possible because
every solution X�t�� X�t�� � Rm

� � of system 
���� evolves in Rm
� during the whole time

interval �t��T �� Consider a stock model with prices evolving in an open parallelepiped
� � fx 	 
 � ��� � x� � ���� ���� 
 � �m� � xm � �m� g� where �k� � �k� � k � �� ���� m� are
constants 
it is possible to consider cases when some of �� are equal to ��� For example�

dX i � �X i � �i����
i
� �X i���i�t� X�dt�

mX
j��

�ij�t� X�dW j�t��� t � t�� i � �� ���� m�

with suitable coe�cients �i and �ij�

For such a model the construction of a hedging strategy leads to a corresponding Cauchy
problem as well 
not to a boundary value problem��
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Remark ���� Let us consider a model consisting of a cash bond B�s� and a stock X�s�

we take only one stock for notational simplicity�� where the price of the stock satis�es
the equation

dX � ��s�X�ds� ��s�X�dW �s��
�����

Let 
 � �� � ��� �� � x � ���  � t�x � T � inffs 	 Xt�x�s� 
� ���� ���� t � s � Tg 
we
put inf to be equal� for an empty set�� We now consider an example of a barrier option�
The option is speci�ed by a payo� equal to zero if  � T and equal to f�Xt�x�T �� if  � T �
where f�x� is a function de�ned on ���� ���� We note that a more rigorous notation for

����� would be

dX � �f��sg��s�X�ds� �f��sg��s�X�dW �s��

but we use the simpli�ed notation as long as it doesn�t lead to any confusion� In addition�
we assume that f�x� is equal to zero in some neighborhood of �� and �� respectively�
Then� it is not di�cult to show that the portfolio value V �t� of the hedging strategy is
equal to v�t� X�t�� where v�t� x� satis�es the following boundary value problem

	v

	t
�

�

�
���t� x�

	�v

	x�
� r�t�x

	v

	x
� r�t�v � 
� t� � t � T� �� � x � ���
�����

v�T� x� � f�x�� v�t� ��� � v�t� ��� � 

��� �

and as before we have

V �t� � v�t� X�t�� � �tB�t� � �tX�t��

with

�t �
�

B�t�
�v�t� X�t��� 	v

	x
�t� X�t��X�t��� �t �

	v

	x
�t� X�t���

Note that for this example we did not use the multipliersX i 
see 
����� in the stock model�

�� Evaluation of a hedging strategy

Frequently� works in numerics for �nance 
see� e�g�� ���� and references therein� are de�
voted to the evaluation of a portfolio value v�t� x�� Of course� in case v�t� x� is known� it
is possible to �nd 	v�t� x�
	xi approximately as
�v�t� x�� ���� xi�xi� ���� xm��v�t� x�� ���� xi� ���� xm��
xi 
or as �v�t� x�� ���� xi�xi� ���� xm��
v�t� x�� ���� xi � xi� ���� xm��
�xi� but such an approach requires very accurate calcula�
tions for v� In this sequel we give special attention to the probabilistic evaluation of the
deltas 	v�t� x�
	xi and other Greeks�

Usually� in many�dimensional cases 
in reality for m � �� it is impossible to �nd v�t� x�
for all �t� x� because of the complexity of problem 
������
������ However� for constructing
the hedging strategy we only have to �nd at any instant t the individual values v�t� X�t��
and 	v�t� X�t��
	xi� i � �� ���� m� where X�t� is the known state of the market�

The probabilistic approach for the evaluation of a particular value v�t� x� is well known�
It turns out that for speci�c �t� x� the values 	v�t� x�
	xi� i � �� ���� m� can be found
e�ectively by a probabilistic approach as well� Let us recall the probabilistic representation
for the solution of the Cauchy problem 
������
������ where now we take r�t� x� in 
�����
instead of r�t��



�

In fact� the solution to problem 
������
����� has various probabilistic representations�

v�t� x� � E�f�Xt�x�T �� � Yt�x���T � � Zt�x�����T ��� t � T� x � Rm
� �
����

where Xt�x�s�� Yt�x�y�s�� Zt�x�y�z�s�� s � t� is the solution of the following system of
stochastic di�erential equations�

dX � �b�s�X�� ��s�X�h�s�X��ds� ��s�X�dW �s�� X�t� � x�
����

dY � �r�s�X�Y ds� h��s�X�Y dW �s�� Y �t� � y�
����

dZ � c�s�X�Y ds� Z�t� � z�
����

Here h�t� x� � �h��t� x�� ���� hm�t� x���� hi are fairly arbitrary functions� Y and Z are
scalars� In what follows we assume that all the coe�cients in 
������
����� and in 
�����

���� and the solution of 
������
����� are su�ciently smooth and satisfy necessary growth
conditions for large jxj� so that we may apply the theory of weak methods for numerical
integration of SDEs� The usual probabilistic representation 
see� e�g�� ���� ���� follows
from 
�����
���� for h � 
� The representation for h �� 
 is a consequence of Girsanov�s
theorem�

We introduce the notation

uk�t� x� �
	v

	xk
�t� x�� k � �� ���� m�
����

The functions v and uk� k � �� ���� m� satisfy the Cauchy problem for the following system
of m � � linear parabolic equations consisting of 
������
����� and

	uk
	t

�
�

�

mX
i�j��

aij�t� x�
	�uk
	xi	xj

�
mX
i��

bi�t� x�
	uk
	xi

� r�t� x� � uk
����

�
�

�

mX
i�j��

	aij
	xk

�t� x�
	uj
	xi

�
mX
i��

	bi
	xk

�t� x�
	v

	xi
� 	r

	xk
�t� x� � v � 	c

	xk
�t� x� � 
�

uk�T� x� �
	f

	xk
�x�� k � �� ���� m�
����

The Cauchy problem 
������
������ 
�����
���� belongs to the class of problems� which so�
lutions has probabilistic representations given in � � � However� we obtain a representation
from 
�����
���� directly by di�erentiating 
���� with respect to xk� We get

uk�t� x� �
	v

	xk
�t� x�
�� �

� E

�
mX
i��

	f

	xi
�Xt�x�T �� � �kX i�T � � Yt�x���T � � f�Xt�x�T �� � �kY �T � � �kZ�T �

�
�

where

�kX
i�s� 	� �kX

i
t�x�s� 	�

	X i
t�x�s�

	xk
� �kY �s� 	� �kYt�x���s� 	�

	Yt�x���s�

	xk
�
����

�kZ�s� 	� �kZt�x�����s� 	�
	Zt�x�����s�

	xk
� t � s � T�



�

Let �kX � ��kX
�� ���� �kX

m��� The functions �kX�s�� �kY �s� and �kZ�s� satisfy the fol�
lowing system of �rst order variation associated with 
�����
���� 
we remind that we keep
k �xed��

d�kX �
mX
l��

	�b�s�X�� ��s�X�h�s�X��

	xl
� �kX lds
�����

�
mX
l��

	��s�X�

	xl
� �kX ldW �s�� �kX

l�t� � 
� if l �� k� and �kX
k�t� � ��

d�kY � �
mX
l��

	r�s�X�

	xl
� �kX l � Y ds� r�s�X��kY ds
�����

�
mX
l��

	h��s�X�

	xl
� �kX l � Y dW �s� � h��s�X��kY dW �s�� �kY �t� � 
�

d�kZ �
mX
l��

	c�s�X�

	xl
� �kX l � Y ds� c�s�X��kY ds� �kZ�t� � 
�
�����

We underline here that there is an opportunity of parallelizing� one can consider m
problems 
�� �� 
�����
����� 
������
����� for every �xed k � �� ���� m separately�

Remark ���� The solution of the boundary value problem 
������
��� � for the barrier
option has the following probabilistic representation

v�t� x� � E�f�t�x�Tg�f�Xt�x�T �� � Yt�x���T ���
�����

where

dX � �r�t�X � ��s�X�h�s�X��ds� ��s�X�dW �s�� X�t� � x�
�����

dY � �r�t�Y ds� h�s�X�Y dW �s�� Y �t� � ��

and

	v

	x
�t� x� � E�f�t�x�Tg

�
	f

	x
�Xt�x�T �� � �X�T � � Yt�x���T � � f�Xt�x�T �� � �Y �T �

�
�
�����

where the equations for �X�T � and �Y �T � are analogous to 
������ 
������

The option under consideration is known as nulli�ed barrier option ���� For more general
barrier options the boundary value conditions are nonzero and instead of 
��� � we have

v�T� x� � f�x�� v�t� ��� � v��t�� v�t� ��� � v��t��
�����

Let � denote the set where the condition 
����� is speci�ed� Then 
����� can be written
as

v j�� g�
�����

where g�T� x� � f�x�� g�t� ��� � v��t�� g�t� ��� � v��t��

Instead of 
����� we may write

v�t� x� � E�g�t�x� Xt�x�t�x�� � Yt�x���t�x���
��� �



�

We note that in this case there is no expression for 	v�t� x�
	x such as 
����� because the
dependence on x is more complicated now due to the presence of t�x and the problem of
e�ective numerical construction of a hedging strategy requires special examination�

Thus� to �nd v�t� x� and 	v
	xk�t� x� we need to evaluate the expectations 
���� and

�� �� Let us consider 
����� Usually it is impossible to simulate the random variables
Xt�x�T ��� Yt�x���T �� Zt�x�����T � directly and we are forced to simulate some approximate
random variables X t�x�T ��� Y t�x���T �� Zt�x�����T �� To this aim we may use weak methods
for numerical integration of SDEs 
see ���� ����� The error of such a weak approximation
is of order of O�hp� where p is the order of weak convergence� depending on the speci�c
method� and h is a time discretization step� For simplicity we consider equidistant parti�
tions of the time interval �t� T � 	 t � t� � t� � ��� � tL � T with step size h � �T � t�
L�
For example� the Euler method with simpli�ed simulation of Wiener processes applied to
system 
�����
���� gives

X�t� � x� X�tl��� � X�tl� � �bl � �lhl� � h� �l � �l
p
h�
�����

Y �t� � �� Y �tl��� � Y �tl� � rlY �tl� � h� h�l Y �tl� � �l
p
h�

Z�t� � 
� Z�tl��� � Z�tl� � clY �tl� � h� l � 
� ���� L� ��

where bl� �l� hl� rl� and cl are values of the corresponding functions 
scalar� vector or
matrix� at �tl� X�tl�� and �l � ���l � ���� �

m
l �� is a vector of two�point random variables �jl

distributed by the law P ��jl � 	�� � �
� and independent in j � �� ���� m� l � 
� ���� L���

We obtain the usual Euler method if �jl are simulated as N�
� ���distributed random
variables� In either case the order of weak convergence is equal to �� i�e�� the following
relation

jv�t� x�� E�f�X�T �� � Y �T � � Z�T ��j � O�h�

is ful�lled for a su�ciently large class of functions f �

Among methods with a higher order of weak convergence let us consider the Talay�
Tubaro extrapolation method ����� We denote an approximation 
����� with step size

h by X
h
� Y

h
� Z

h
� According to the Talay�Tubaro method we have in particular�

jv�t� x�� �E�f�X
h��

�T �� � Y h��
�T � � Z

h��
�T �� � E�f�X

h
�T �� � Y h

�T � � Z
h
�T ��j � O�h���

The value E�f�X�T �� � Y �T � � Z�T �� can be evaluated by the Monte�Carlo method

E�f�X�T �� � Y �T � � Z�T �� 
 �

N

NX
n��

�f�X
�n�
�T �� � Y �n�

�T � � Z
�n�
�T ���
�����

where X
�n�
�tl�� Y

�n�
�tl�� Z

�n�
�tl�� n � �� ���� N� are independent approximate trajectories


generally in weak sense� of the solution of system 
�����
�����

The statistical error in 
����� is usually de�ned by �D��T �
N����� where ��T � � f�X�T �� �
Y �T � � Z�T ��



	

Thus� we have

v�t� x� 
 E�f�X�T �� � Y �T � � Z�T �� 
 �

N

NX
n��

�f�X
�n�
�T �� � Y �n�

�T � � Z
�n�
�T ���
�����

The �rst approximate equality in 
����� involves an error due to the approximate inte�
gration� whereas the second approximate equality involves a statistical error due to the
Monte�Carlo method�

Of course the same consideration holds with respect to the evaluation of 	v
	xk�t� x��

�� Variance reduction

This section is concerned with two methods of variance reduction in connection with
the Monte Carlo approach for the linear parabolic Cauchy problem� with the method of
importance sampling ���� ���� ����� ����� ����� and with the method of control variates �����
���� 
for the initial�boundary value problem see ���� ������ We consider variance reduction
for the evaluation of the portfolio as well as for the evaluation of the deltas�

We introduce the variables

��s� 	� v�s�Xt�x�s�� � Yt�x���s� � Zt�x�����s��
����

�k�s� 	�
mX
i��

	v

	xi
�s�Xt�x�s�� � �kX i�s� � Yt�x���s� � v�s�Xt�x�s�� � �kY �s� � �kZ�s��
����

Clearly

� 	� ��T � � f�Xt�x�T �� � Yt�x���T � � Zt�x�����T ��
����

�k 	� �k�T � �
mX
i��

	f

	xi
�Xt�x�T �� � �kX i�T � � Yt�x���T � � f�Xt�x�T �� � �kY �T � � �kZ�T ��


����

Because D� �D�k� is close to D� �D�k�� the error of a Monte Carlo evaluation of v�t� x�
depends on the variance of the random variable �� see 
���� whereas the Monte Carlo error
of an evaluation of uk�t� x� � 	v�t� x�
	xk depends on the variance of �k� see 
�� ��

The method of evaluating v�t� x� by importance sampling coincides with the method
described in ���� it is clear that E� does not depend on the choice of h� At the same
time� the variance D� � E��� �E��� does depend on h� Therefore it is natural to regard
h�� ���� hm as controls and to choose them such that the variance D� is minimal� This
problem is solved in ���� It turns out that the variance can be reduced to zero�

Proposition ���� Let the solution v�t� x� of the problem 
������
����� be positive� Let

hj � ��

v

mX
i��

�ij
	v

	xi
�
����



�


Suppose that for any �t� x�� t� � t � T� x � Rm
� � there is a solution of the system


�����
����� with hj as in 
����� for t � s � T� Then� � in 
����� computed according to


�����
���� with h as in 
����� is deterministic� i�e�� D� � 
�

Proof� By using It��s formula and taking into account Lv � c � 
 we derive

d�v�s�Xt�x�s�� � Yt�x���s� � Zt�x�����s�� � �Lv � c� � Y ds�
mX
i��

	v

	xi
��h�i � Y ds

�
mX
i��

	v

	xi
� Y ��dW �s��i � v � Y h�dW �s� �

mX
i��

	v

	xi
��dW �s��i � Y h�dW �s�

� Y � �
mX
i��

	v

	xi
��dW �s��i � vh�dW �s�� � Y �

mX
j��

�
mX
i��

�ij
	v

	xi
� vhj�dW j�s��

whence

v�s�Xt�x�s�� � Yt�x���s� � Zt�x�����s� � v�t� x� �

Z s

t

Y �
mX
j��

�
mX
i��

�ij
	v

	xi
� vhj�dW j�
����

For h in 
����� equation 
���� becomes an identity with respect to s� x� � �� � ���

��s� 	� v�s�Xt�x�s�� � Yt�x���s� � Zt�x�����s� � v�t� x��
����

i�e�� ��s� is deterministic� Moreover� ��s� is independent of t � s � T � In particular� by

������ we get for s � T�

��T � � � � f�Xt�x�T �� � Yt�x���T � � Zt�x�����T � � v�t� x��
�� �

The proposition is proved�

!From the proof of the proposition above we obtain the following corollary�

Corollary ����For an arbitrary h 
of course� the usual conditions of smoothness and
boundedness are supposed� the variance D��T � is equal to

D��T � � E

Z T

t

Y �
t�x���s� �

mX
j��

�
mX
i��

�ij
	v

	xi
� vhj��ds�

where the functions �ij� 	v
	x
i� v� hj have s�Xt�x�s� as their arguments�

Remark ���� Of course� the hj� j � �� ���� m� cannot be constructed without knowing the
function v� Nevertheless� the obtained result establishes that� in principle� it is possible to
reduce the variance D� arbitrarily by conveniently choosing the functions hj� The results
can be used� e�g�� in the following situation� Let all the parameters of the considered
problem be close to those one for which the solution is known and equal to v�� By taking
hj as in 
���� equal to

hj � � �

v�

mX
i��

�ij
	v�
	xi

�
����

the variance D�� although not zero� will be small� Also� it is shown in ���� that in
certain situations it is optimal to precompute a rough approximation for the solution of



��

the Cauchy problem by some �nite di�erence method and next to proceed with variance
reduced Monte Carlo where the controls hj are computed from the rough approximation�

Remark ���� If the condition v � 
 in Proposition ��� is not satis�ed� but e�g�� if
v � �K� K � 
� then we consider ev � v �K as a solution of the problem

Lev �Kr � c � 
� ev�T� x� � f�x� �K

and consider instead of 
�����

d eZ � �Kr�s�X� � c�s�X��Y ds� eZ�t� � z�

Next� taking

ehj � � �

v �K

mX
i��

�ij
	v

	xi
� ��ev

mX
i��

�ij
	ev
	xi

in 
�����
���� leads to e� � �f�Xt�x�T ���K� �Yt�x���T �� eZt�x�����T �� as being a deterministic
variable�

A remarkable fact now is that the variables �k� k � �� ���� m� for hj as in 
���� are
deterministic as well�

Proposition ���� Under the hypotheses of Proposition ��� the variables �k � �k�T �� k �
�� ���� m� in 
����� computed according to 
�����
���� and 
������
����� with h as in 
����
are deterministic�

Proof� By di�erentiating 
���� with respect to xk we get

	v

	xk
�t� x� �

mX
i��

	v

	xi
�s�Xt�x�s�� � �kX i

t�x�s� � Yt�x���s� � v�s�Xt�x�s�� � �kYt�x���s� � �kZt�x�����s��

Thus� we have proved that the variables �k�s� 
see 
����� are deterministic 
moreover they
do not depend on s� t � s � T �� Therefore all �k�T � are deterministic� Proposition ��� is
proved�

We now proceed to the method of control variates� In 
�����
����� we consider h to be
�xed and introduce the new random variable

�F �T � � ��T � �

Z T

t

Yt�x���s� �
mX
j��

Fj�s�Xt�x�s��dW
j�s��
�����

where Fj�s� x� are rather arbitrary functions depending on �s� x��

Clearly� the expectation E�F �T � is equal to E��T � and does not depend on the choice of
F � At the same time� the variance D�F �T � does depend on F � Also in this situation it
turns out that the variance can be reduced to zero�

Proposition ���� Let h in 
�����
���� be a �xed function� Then for

Fj�s� x� � ��
mX
i��

�ij�s� x�
	v

	xi
�s� x� � v�s� x�hj�s� x��� j � �� ���� m�
�����

the variable �F �T � is deterministic� i�e�� D�F �T � � 
�



��

Proof� The proposition is a consequence of the following equality 
see 
�����

�F �T � � f�Xt�x�T �� � Yt�x���T � � Zt�x�����T � �

Z T

t

Yt�x���s� �
mX
j��

Fj�s�Xt�x�s��dW
j�s�

� v�t� x� �

Z T

t

Yt�x���s� �
mX
j��

�
mX
i��

�ij
	v

	xi
� vhj�dW j�s� �

Z T

t

Yt�x���s� �
mX
j��

FjdW
j�s��

where the functions �ij� 	v
	x
i� v� hj� F j have s�Xt�x�s� as their arguments�

Clearly�

D�F �T � � E

Z T

t

Y �
t�x���s� �

mX
j��

�
mX
i��

�ij
	v

	xi
� vhj � Fj�

�ds
�����

which is equal to zero for Fj according to 
������ Proposition ��� is proved�

Of course� a remark similar to Remark ���� applies here as well�

The method of control variates in the case h � 
 was �rst considered by N�J� Newton
����� Following ����� let us look for F � �F�� ���� Fm� of the form

Fj�s� x� �
mX
i��

�ij�s� x�
lX

r��

cr�
i
r�s� x��
�����

where �r � ���r � ���� �
m
r �� r � �� ���� l� are known row vectors and cr are constants� According

to 
����� we have

D�F �T � � E

Z T

t

Y �
t�x���s� �

mX
j��

�
mX
i��

�ij�
	v

	xi
�

lX
r��

cr�
i
r� � vhj��ds�

However� determination of cr directly by minimization of the right�hand�side of this rela�
tion is impossible because the functions v and 	v
	xi are unknown� But by using

v�s�Xt�x�s�� � E���T � s�Xt�x�s�� j Xt�x�s���

	v

	xi
�s�Xt�x�s�� � E��i�T � s�Xt�x�s�� j Xt�x�s���

where

��T � s�Xt�x�s�� � f�Xs�Xt�x�s��T �� � Ys�Xt�x�s����T � � Zs�Xt�x�s������T ��

�i�T � s�Xt�x�s�� �
mX
k��

	f

	xk
�Xs�Xt�x�s��T �� � �iXk

s�Xt�x�s��T � � Ys�Xt�x�s����T �

�f�Xs�Xt�x�s��T �� � �iYs�Xt�x�s����T � � �iZs�Xt�x�s������T ��



��

it is not di�cult to show that the mentioned minimization problem is equivalent to the
following one

E

Z T

t

Y �
t�x���s� �

mX
j��

�
mX
i��

�ij��i�T � �� �
lX

r��

cr�
i
r� � ��T � ��hj��ds� min

c������cl
�
�����

where the functions �ij� �
i
r� ��T � ��� �i�T � �� have s�Xt�x�s� as their arguments�

The solution of the problem 
����� provides optimal values for c and leads to reduced
variance�

To conclude we consider the following system

dX � �b�s�X�� ��s�X�h�s�X��ds� ��s�X�dW �s�� X�t� � x�
�����

dY � �r�s�X�Y ds� h��s�X�Y dW �s�� Y �t� � ��
�����

dZ � c�s�X�Y ds� F��s�X�Y dW �s�� Z�t� � 
�
�����

and the random variables ��s�� �k�s� according to 
����� 
����� Of course� the equation
for �kZ becomes of the following form 
instead of 
������

d�kZ �
mX
l��

	c�s�X�

	xl
� �kX l � Y ds� c�s�X��kY ds
��� �

�
mX
l��

	F��s�X�

	xl
� �kX l � Y dW �s� � F��s�X��kY dW �s�� �kZ�t� � 
�

Note that the variables ��s� and �k�s� depend on h and F and a more correct notation
would be� for example� �h�F �s� instead of ��s� but the accepted notation does not lead to
any confusion�

The following proposition can be proved analogously to the previous ones�

Proposition ���� Let h and F be such that
mX
i��

�ij
	v

	xi
� vhj � Fj � 
� j � �� ���� m�
�����

Then ��T � from 
���� computed according to 
������
����� and�k�T � in 
���� computed

according to 
������
������ 
��� � are deterministic�

Example ���� Let all the parameters r� �i� �ij� c� r
i be independent of x� i�e�� they are

known deterministic functions of t� and let the payo� function be a sum

f�X�T �� � f��X
��T �� � ��� � fm�X

m�T ���

Then the system 
�����
���� becomes of the following form 
we put h � 
��

dX i � X i � �r�s�� ri�s��ds�X i �
mX
j��

�ij�s�dW
j�s�� X i�t� � xi� i � �� ���� m�

dY � �r�s�Y ds� Y �t� � ��



��

dZ � c�s�Y ds� Z�t� � 
� t � s � T�

We derive explicitly

X i
t�x�T � � xi � ki�t� � exp�

Z T

t

mX
j��

�ij�s�dW
j�s�� � xi � ki�t� � exp��i�i�t���

where

ki�t� � exp�

Z T

t

�r�s�� ri�s��ds� �

�

Z T

t

mX
j��

��ij�s�ds��

�i�t� � �

Z T

t

mX
j��

��ij�s�ds�
����

and �i is a normal random variable with zero mean and variance ��

!From 
���� we obtain

v��t� x�� ���� xm� �
mX
i��

E
�
fi�X

i
t�x�T �� � Yt�x���T � � Zt�x�����T �

�

�
�p
��

mX
i��

Z �

��

fi�x
iki�t� exp���i�t��� � exp����
��d� � exp��

Z T

t

r�s�ds�

�

Z T

t

c�s� exp��
Z T

s

r�s��ds��ds�

whence the derivatives 	v�
	xi� i � �� ���� m� can be found explicitly as well�

In case the parameters of an original problem do not di�er too much from the considered
ones above� we can use the recommendation of Remark ��� and� for example� take hj

according to 
���� with Fj � 
 or hj � 
 with Fj � �Pm
i�� �ij�s� x�	v

��s� x�
	xi�

�� Gamma� vega� theta

Clearly� di�erentiation with respect to xj in 
�� � gives the probabilistic representation
for the gammas 	�v�t� x�
	xk	xj � i� k � �� ���� m� The representation involves along with
the �rst variations �kX

i� �kY� �kZ the second ones

�kjX
i�s� 	�

	�X i
t�x�s�

	xk	xj
� �kjY �s� 	�

	�Yt�x���s�

	xk	xj
� �kjZ�s� 	�

	�Zt�x�����s�

	xk	xj
� t � s � T�

Let us write down the system for these variables� For notational simplicity we restrict
ourselves to the case m � �� In this case X� b� h� � and W in 
�����
���� are scalars� We
have for the delta

u�t� x� �
	v

	x
�t� x�
����

� E

�
df

dx
�Xt�x�T �� � �X�T � � Yt�x���T � � f�Xt�x�T �� � �Y �T � � �Z�T �

�
�



��

where 
together with 
�����
�����

d�X �
	�b�s�X�� ��s�X�h�s�X��

	x
� �Xds�

	��s�X�

	x
� �XdW �s�� �X�t� � ��
����

d�Y � �	r�s�X�

	x
� �X � Y ds� r�s�X� � �Y ds
����

�
	h�s�X�

	x
� �X � Y dW �s� � h�s�X� � �Y dW �s�� �Y �t� � 
�

d�Z �
	c�s�X�

	x
� �X � Y ds� c�s�X� � �Y ds� �Z�t� � 
�
����

We introduce the notation

�X�s� 	�
	�Xt�x�s�

	x�
� �Y �s� 	�

	�Yt�x���s�

	x�
� �Z�s� 	�

	�Zt�x�����s�

	x�
�

and obtain for the gamma

u��t� x� 	�
	�v

	x�
�t� x� � E

�
d�f

dx�
�Xt�x�T �� � ��X�T ��� � Yt�x���T �

�

����

�E

�
df

dx
�Xt�x�T �� � ��X�T � � Yt�x���T � � ��X�T � � �Y �T �� � f�Xt�x�T �� � �Y �T � � �Z�T �

�
�

where

d�X �
	�b�s�X�� ��s�X�h�s�X��

	x
� �Xds�

	��s�X�

	x
� �XdW �s�
����

�
	��b�s�X�� ��s�X�h�s�X��

	x�
� ��X��ds�

	���s�X�

	x�
� ��X��dW �s�� �X�t� � 
�

d�Y � �	r�s�X�

	x
� �X � Y ds� r�s�X� � �Y ds� 	h�s�X�

	x
� �X � Y dW �s�
����

�h�s�X� � �Y dW �s�� 	�r�s�X�

	x�
��X�� � Y ds� �

	r�s�X�

	x
�X � �Y ds

�
	�h�s�X�

	x�
� ��X�� � Y dW �s� � �

	h�s�X�

	x
� �X � �Y dW �s�� �Y �t� � 
�

d�Z �
	c�s�X�

	x
� �X � Y ds� c�s�X� � �Y ds
�� �

�
	�c�s�X�

	x�
� ��X�� � Y ds� �

	c�s�X�

	x
� �X � �Y ds� �Z�t� � 
�

Thus� to calculate the gamma one needs to evaluate the expectation 
���� by virtue of the
system consisting of equations 
�����
����� 
�����
������ and 
�����
�� ��

One can prove that the gammas for hj as in 
���� are deterministic as well�



��

Clearly� if the problem under consideration depends on some parameter �� then v �
v�t� x��� and it is possible to �nd 	v�t� x���
	� in the same way as above� Let us
�nd� for example� the vega 	v�t� x���
	� in the case of the one�dimensional model 
����

m � ��� where instead of ��t� x� � x��t� x� we have ��t� x��� � �x��t� x�� We have

v�t� x��� � E�f�Xt�x�T ���� � Yt�x���T ��� � Zt�x�����T �����
����

where

dX � �b�s�X�� ��s�X���h�s�X����ds� ��s�X���dW �s�� X�t� � x�
�����

dY � �r�s�X�Y ds� h�s�X���Y dW �s�� Y �t� � y�
�����

dZ � c�s�X�Y ds� Z�t� � z�
�����

Therefore

	v

	�
�t� x��� � E

�
df

dx
�Xt�x�T ���� � ��X�T ��� � Yt�x���T ���

�

�����

�E�f�Xt�x�T ���� � ��Y �T ��� � ��Z�T �����

where

��X�s��� �
	Xt�x�s���

	�
� ��Y �s��� �

	Yt�x���s���

	�
� ��Z�s��� �

	Zt�x�����s���

	�

satisfy the following system

d��X �
	�b � �h�

	x
� ��Xds�

	�

	x
� ��XdW �s�� 	��h�

	�
ds�

	�

	�
dW �s�� ��X�t� � 
�


�����

d��Y � �	r

	x
� ��X � Y ds� r � ��Y ds
�����

�
	h

	x
� ��X � Y dW �s� � h��Y dW �s� �

	h

	�
Y dW �s�� ��Y �t� � 
�

d��Z �
	c

	x
� ��X � Y ds� c��Y ds� ��Z�t� � 
�
�����

Let us now point out how to �nd theta� um���t� x� 	� 	v�t� x�
	t� The above way of
di�erentiation under the expectation sign is now impossible because of the nondi�erentia�
bility of Xt�x�s� with respect to t 
e�g�� the problem dX � dW �s�� X�t� � x� s � t� has
the solution Xt�x�s� � x�W �s��W �t� which is evidently nondi�erentiable with respect
to t�� Of course� one can evaluate theta by to the initial equation 
����� after �nding the
deltas and the gammas� But if we do not need the gammas� this way is irrational� It
is better to consider the system of m � � parabolic equations consisting of 
������
������

�����
���� and

	um��

	t
�

�

�

mX
i�j��

aij�t� x�
	�um��

	xi	xj
�

mX
i��

bi�t� x�
	um��

	xi
� r�t� x� � um��
�����



��

�
�

�

mX
i�j��

	aij
	t

�t� x�
	uj
	xi

�
mX
i��

	bi
	t

�t� x�
	v

	xi
� 	r

	t
�t� x� � v � 	c

	t
�t� x� � 
�

um���T� x� � ��

�

mX
i�j��

aij�T� x�
	�f

	xi	xj
�x��

mX
i��

bi�T� x�
	f

	xi
�x�
��� �

�r�T� x� � f�x�� c�T� x� 	� g�x��

and to use the probabilistic representations from � � consequently�

Let us consider a model in which the coe�cients �ij 
and consequently aij� do not depend
on t� In such a case we have a system of parabolic equations consisting of two equations
for v and um�� only� Namely� 
������
����� and the following equation

	um��

	t
�

�

�

mX
i�j��

aij�t� x�
	�um��

	xi	xj
�

mX
i��

bi�t� x�
	um��

	xi
� r�t� x� � um��
�����

�
mX
i��

	bi
	t

�t� x�
	v

	xi
� 	r

	t
�t� x� � v � 	c

	t
�t� x� � 
�

um���T� x� � g�x��
�����

with g�x� as in 
��� � and aij�T� x� � aij�x��

The probabilistic representation for the solution of the Cauchy problem 
������
������

������
����� has the following simple form 
see � ��� Introduce the system of stochastic
di�erential equations

dX � �b�s�X�� ��s�X�h�s�X��ds� ��s�X�dW �s�� X�t� � x�
�����

dY � � �r�s�X�Y �ds� 	r�s�X�

	s
Y �ds� h��s�X�Y �dW �s�� Y ��t� � y��
�����

dY � � �r�s�X�Y �ds� h��s�X�Y �dW �s�
�����

������s�X�
	b�s�X�

	s
��Y �dW �s�� Y ��t� � y��

dZ � c�s�X�Y �ds�
	c�s�X�

	s
Y �ds� Z�t� � 
�
�����

and the random variable

�t�x�y��y� � f�Xt�x�T �� � Y �
t�x�y��y��T � � g�Xt�x�T �� � Y �

t�x�y��y��T � � Zt�x�y��y����T ��
�����

where Y � and Y � are scalars�

Then the required solution v�t� x�� um���t� x� can be found from the relations

v�t� x� � E�t�x���� � um���t� x� � E�t�x���� �
�����

This fact can be veri�ed in the following way� We show by It��s formula that

v�s�Xt�x�s�� � Y �
t�x�y��y��s� � um���s�Xt�x�s�� � Y �

t�x�y��y��s� � Zt�x�y��y����s�
�����



��

�v�t� x� � y� � um���t� x� � y�

�

Z s

t

�
F�
� ���Xt�x��� � Y �

t�x�y��y���� � F�
� ���Xt�x��� � Y �

t�x�y��y����
�
dW ����

where F� and F� are some known vector�functions� From this the relations 
����� follow
immediately�

�� The Jamshidian LIBOR rate model

In this section we drop the assumption of an instantaneous saving bond numeraire and
consider a system of assets 
we now use the notation from ��� which di�ers a little from
the one used in the previous sections�

dBi

Bi
� �idt� �i  dW � �idt�

mX
k��

�ikdWk� t� � t � T� i � �� ���� m�
����

under the arbitrage free condition ����

�i � r � �i  �� i � �� ���� m�

for some processes r and �� We assume that the system is nondegenerate� i�e�� rank��i 
�j� � m almost surely�

A portfolio ���B� is said to be a self��nancing trading strategy when

V �t� 	�
mX
k��

�k�t�Bk�t� � V �
� �

Z t

�

�k�s�dBk�s��
����

We consider self��nancing trading strategies ���B� where � has the form � � ��t� B�� So
the corresponding portfolio value is of the form V � V �t� B� as well and we have

mX
i��

Bi
	V

	Bi
� V�
����

	V

	t
dt�

�

�

mX
i�j��

	�V

	Bi	Bj

dBidBj � 
�
����

Indeed� the self��nancing property implies
P

kBkd�k � 
 and consequently


 � �
mX
k��

Bkd�k��
mX

k���

Bk�d�k� � � �
mX
k��

mX
l��

Bk
	�k

	Bl
dBl��

mX
k���

mX
l���

Bk�

	�k�

	Bl�
dBl� �

�
mX

k�k���

mX
l�l���

Bk
	�k

	Bl

Bk�

	�k�

	B
l
�

dBldBl� �
mX

l�l���

�l  �l�
mX
k��

Bk
	�k

	Bl

mX
k���

Bk�

	�k�

	B
l
�

dt�

Then by non�degeneracy it follows that
P

k Bk	�k
	Bl � 
� or�

�l �
mX
k��

	��kBk�

	Bl
�

	V

	Bl
� l � �� ���� m�
����
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which gives 
����� Next� by expanding dV by It��s formula� by the self��nancing property
and 
���� we get 
����� From 
���� we conclude that the value of this self��nancing portfolio
is homogeneous of degree � in B� i�e�

V �t� �B� � �V �t� B� � � 
�

Therefore it is clear that any path�independent self��nancing portfolio must satisfy this
homogeneity condition ����

We now assume in addition that the process B is an Ito di�usion� i�e� � and � are functions
of �t� B�� hence

dBidBj � BiBj�ij�t� B�dt�

where �ij�t� x� 	� ��i � �j��t� x�� Then 
�����
���� can be rewritten in the form

mX
i��

xi
	V

	xi
� V�
����

	V

	t
�

�

�

mX
i�j��

�ijxixj
	�V

	xi	xj
� 
�
����

We assume also that

�i��x� � �i�x��
�� �

for all � � 
� x � 
� i � �� ���� m�

The 
abstract� LIBOR process is de�ned as the m� � dimensional process given by

Li 	� ���i �
Bi

Bi��
� ��� i � �� ���� m� ��

where the constants �i are so called "daycount fractions"� For the LIBOR dynamics we
can derive straightforwardly 
an empty sum is de�ned to be 
�

dLi � �
m��X
j�i��

�jLiLj�i  �j
�� � �jLj�

dt� Li�i  ��� �m�dt� Li�i  dW�
����

where

�i 	� ���i L��i �� � �iLi���i � �i����
�����

It is possible to write

dLi � �Li � ���i ���i � �i���  ��� �i���dt� �Li � ���i ���i � �i���  dW
but we prefer the representation 
���� since the class of LIBOR market models� speci�ed
by deterministic or even constant �i is of high practical importance�

Since the value V �t� B� of a path�independent portfolio is homogeneous of degree � in B�
we assume a payo� function g�B�T �� to be homogeneous of degree � as well� The function
V �t� B� can be expressed as

V �t� B� � Bm�t�v�t� L�



�


and therefore

g�B�T �� � Bm�t�f�L�T ��

for some functions v��� �� 	 R�Rm�� � R and f��� 	 Rm�� � R�

Hence�

V �t� x� � V �t� x�� ���� xm� � xmv�t� �
��
� �

x�
x�
� ��� ���� ���m���

xm��
xm

� ���

� xmv�t� y�� ��� ym��� � xmv�t� y��

where 
yk corresponds to Lk�

yk � ���k �
xk
xk��

� ��� k � �� ���� m� ��

and

v�T� y� � f�y��

Let us derive a partial di�erential equation for v�

Using 
����� we deduce from 
���� straightforwardly

	V

	t
�

�

�

m��X
i��j��

�ij�x�xixj
	�V

	xi	xj
� 
�
�����

where

�ij � �ij � �im � �jm � �mm � ��i � �m�  ��j � �m��

For i� j � m we have

	V

	xi
� xm

m��X
k��

	v

	yk

	yk
	xi

and

	�V

	xi	xj
� xm

m��X
k�l��

	�v

	ykyl

	yl
	xj

	yk
	xi

� xm

m��X
k��

	v

	yk

	�yk
	xi	xj

�

Hence 
����� yields

	v

	t
�

�

�

m��X
i��j��

�ij�x�xixj

�
m��X
k�l��

	�v

	ykyl

	yl
	xj

	yk
	xi

�
m��X
k��

	v

	yk

	�yk
	xi	xj

�
� 


or

	v

	t
�

�

�

m��X
k�l��

	�v

	ykyl

m��X
i��j��

�ij�x�xixj
	yl
	xj

	yk
	xi

�
�

�

m��X
k��

	v

	yk

m��X
i��j��

�ij�x�xixj
	�yk
	xi	xj

� 
�
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Next observe that
m��X
i��j��

�ij�x�xixj
	yl
	xj

	yk
	xi

� �lk�x�xlxk
	yl
	xl

	yk
	xk

� �l���k�x�xl��xk
	yl
	xl��

	yk
	xk

�

�l�k���x�xlxk��
	yl
	xl

	yk
	xk��

� �l���k���x�xl��xk��
	yl
	xl��

	yk
	xk��

�

��lk�x�� �l���k�x�� �l�k���x� � �l���k���x��
���k ���l xkxl
xk��xl��

�

��l � �l���  ��k � �k���
�� � �kyk��� � �lyl�

�k�l
� ykyl �k  �l

and

�

�

m��X
i��j��

�ij�x�xixj
	�yk
	xi	xj

�
m��X

i��j��	i�j

�ij�x�xixj
	�yk
	xi	xj

�
�

�

m��X
i��

�ii�x�x
�
i

	�yk
	x�i

� �k�k���x�xkxk��
	�yk

	xk	xk��
�

�

�
�k���k���x�x

�
k��

	�yk
	x�k��

� ���k�k���x� � �k���k���x���
��
k

xk
xk��

� ����k �� � �kyk���k � �k���  ��k�� � �m�

� �yk �k  ��k�� � �m� � �
m��X
p�k��

yk �k  ��p � �p��� � �
m��X
p�k��

�pypyk
� � �pyp

�k  �p�

We thus �nd

	v

	t
�

m��X
k��

m��X
p�k��

	v

	yk

�pypyk
� � �pyp

�k  �p � �

�

m��X
k�l��

	�v

	yk	yl
ykyl �k  �l � 
�

Note that because of assumption 
�� � �i are functions of y indeed�

We introduce

�k�t� y� � �
m��X
p�k��

�pypyk
� � �pyp

�k  �p�

�kl�t� y� � ykyl �k  �l�
So the Cauchy problem for v reads�

	v

	t
�

m��X
k��

�k�t� y�
	v

	yk
�

�

�

m��X
k�l��

�kl�t� y�
	�v

	yk	yl
� 
�
�����

v�T� y� � f�y��
�����
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Next� we will derive a representation for the hedge quantities �i� For i � m we have

	V

	xi
� xm

m��X
k��

	v

	yk

	yk
	xi

� �xm 	v

	yi��
���i��

xi��
x�i

� xm
	v

	yi
���i

�

xi��

�����

� � 	v

	yi��
���i�� � �� � �i��yi���

m��Y
k�i

�

� � �kyk
�

	v

	yi
���i �

m��Y
k�i��

�

� � �kyk
	� �i�t� y�

and

	V

	xm
� v�t� y�� �

xm

m��X
i��

xi
	V

	xi
� v�t� y��

m��X
i��

m��Y
k�i

�� � �kyk��i�t� y� 	� �m�t� y��
�����

Therefore the hedging strategy is constructed by

V �t� �
mX
i��

�i�t� L�t��Bi�t��
�����

According to 
����� and 
������ for calculating �i�t� L�t��� i � �� ���� m� we have to �nd v
and 	v
	yi� i � �� ���� m � �� Clearly they can be found by solving the Cauchy problem

������
����� in the same manner as it was done in the previous sections�

Set

ui 	�
	v

	yi
�

then di�erentiating with respect to yi yields

	ui
	t

�
m��X
k��

	�k
	yi

uk �
m��X
k��

�k�t� y�
	ui
	yk

�
�

�

m��X
k�l��

	�kl
	yi

	uk
	yl

�
�

�

m��X
k�l��

�kl�t� y�
	�ui
	ykyl

� 
�


�����

If we have a Cauchy problem 
������
����� for v� we have also a Cauchy problem for the
ui 	

ui�T� y� �
	f

	yi
�
��� �

�� Applications to European LIBOR derivative claims

Now� in practice we are given a �xed time tenor structure T� � T� � ��� � Tm� where
�i � Ti�Ti�� and a system of zero�coupon bonds Bi which mature at Ti with Bi�Ti� � ��
In ��� it is shown that when �k�t� L� are measurable� bounded and locally Lipschitz in
L� such a zero�coupon bond system always exists� However� although this system is not
uniquely determined it turns out that the price and hedge of LIBOR derivatives does not
depend on a particular choice of the bond system� Moreover� it is not di�cult to see that
it is possible to identify a system of bonds which is an Ito di�usion and thus Markovian�
Indeed� for given Bm�t�� � 
� de�ne Bm as follows 
an empty product is de�ned to be ���

Bm�t� � ���t�Bm�t�� � ���t�
�Qm��

j�� �� � �jLj�t��
� t � T��



��

Bm�t� � ���t�Bm�T�� � ���t�
�Qm��

j�� �� � �jLj�t��
� T� � t � T��

� � � � � � � � � � � �

Bm�t� � �m���t�Bm�Tm��� � �m�t�� Tm�� � t � Tm�

where the functions �j�t�� 
 � j � m� are smooth and such that for any t� � t � Tm

�j�t� � 
� j � 
� ���� m�
mX
j��

�j�t� � ��

�j�t� � �j���t� � �� j � 
� ���� m� ��

���t�� � �j�Tj� � �� j � �� ���� m�

Then the system B � �B�� ���� Bm� where

Bi � Bm

m��Y
j�i

�� � �jLj�t��� t� � t � Ti� i � �� ���� m� ��

is arbitrage free and satis�es Bi�Ti� � � 
see ����� In addition it is easily seen that the
system B thus constructed is an Ito di�usion on the probability space given by the L
process�

The developed general probabilistic method for the price and hedge of a European claim
can be applied to certain European LIBOR derivatives� We discuss two examples� the
"swaption" and the "callable" reverse #oater� For a LIBOR market model� in ����� one
factor analytical approximation formulas are derived both for the swaption and for the
callable reverse #oater� Clearly these analytical approximation can be used for variance
reduction in the Monte Carlo method presented in this sequel�

���� The European swaption� A swap contract with maturity T� and strike � on a loan
of �� over the period �T�� Tm� obliges to pay a �xed coupon � and receive spot LIBOR at
the settlement dates T�� ���� Tm� From a standard portfolio argument it is obvious that the
present value of this contract is equal to

Swap�t� � B��t�� Bm�t�� �
m��X
j��

�jBj���t�� t� � t � T��

The swap rate S�t� is now de�ned as that �xed coupon which sets this contract value to
zero�

S�t� 	�
B��t��Bm�t�Pm��
j�� �jBj���t�

�

A swaption contract with maturity T�� strike � and principal �� gives the right to contract
at T� to pay a �xed coupon � and receive spot LIBOR at the settlement dates T�� ���� Tm�
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Equivalently� one can contract for receiving the T��swaprate and one can show that the
payo� of the swaption is equivalent to a T� cash#ow of

Swpn�T�� �
m��X
j��

�ABj���T���Lj�T��� ���j�
����

where A denotes the FT� measurable event fS�T�� � �g and the swaprate S�T�� is given
by 
see �����

S�T�� 	�
B��T��� Bm�T��Pm��

j�� �jBj���T��
�

�� �Qm��
i�� �� � �iLi�T���Pm��

j�� �j
Qm��

i�j���� � �iLi�T���
�

!From 
���� we see that the swaption cash#ow is homogeneous of degree one� Therefore we
may compute the swaption price and the corresponding hedge by Monte Carlo simulation
of the probabilistic representations for 
������ 
����� with �nal value conditions 
������

��� �� with f given by

f�y� 	�
m��X
j��

�A�y��yj � ���j

m��Y
k�j��

�� � �kyk��
����

where

A �

�
y 	

�� �Qm��
k�� �� � �kyk�Pm��

k�� �k
Qm��

i�k���� � �iyi�
� �

�
and� for instance� use variance reduction from a one factor approximation formula derived
in �����

���� The callable reverse �oater� Let K�K � � 
� A reverse #oater 
RF� contracts for
receiving Li�Ti� while paying max�K � Li�Ti�� K

�� at time Ti�� for i � �� ��� m� �� with
respect to a unit principal� A callable reverse #oater 
CRF� is an option to enter into a
reverse #oater at T�� In ���� it is shown that in a LIBOR market model the reverse #oater
can be evaluated analytically and for K � � 
 the reverse #oater contract is equivalent
with a T��cash#ow of

RF �T�� � B��T���Bm�T���
m��X
i��

Bi���T��Fi�T�� K��
����

where Fi�T�� K� is known explicitly as a Black�type formula� only involving T�� K and the
deterministic �i� i � �� ���� m� �� ����� So the payo� of the CRF� being

CRF �T�� � max�RF �T��� 
��

is clearly homogeneous of degree one and the reverse #oater price and hedge may be
computed by Monte Carlo simulation of the probabilistic representations for the system

������ 
����� with �nal value conditions 
������ 
��� � and f given by an expression similar
to 
����� Moreover� in ���� a one factor approximation formula is derived which can be
used for variance reduction�
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