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Abstract
A major problem in applying neural networks is the determination of the size of the
network� Even for moderate networks the number of parameters can become high with
respect to the number of data used in learning�
In this paper we examine network performance while reducing the size of the network�
The reduction is based on graphical analysis of network output per hidden layer cell and
input layer cell� Performance is measured as the sum of squared residuals as well as by
the value of largest Lyapunov exponents which is a measure of dynamic instability of
time series�
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� Introduction

Initially neural networks were developed as a simulation model of the brains� The ter�
minology used is still a remainder of this origin� This physiological context� and the
fame to handle complex data� may have contributed considerably to the di�usion and
implementation of neural network models� also in economics and econometrics� see e�g�
Hecht�Nielsen 
��� Hertz� Krogh � Palmer 
��� Gallant � White 
�� and White 
����
In this paper we consider one type of neural network� feed�forward multilayer networks
with backpropagation� The analysis is twofold� We examine how the internal structure
of the network � the network parameters � works while the neural network attempts to
�nd a relation between in� and output� Secondly� we investigate the performance of the
network itself by calculating largest Lyapunov exponents of data sets� Lyapunov expo�
nents measure the sensitivity of the system with respect to small deviations and de�ne as
such a characteristic of the given time series� e�g� stability or instability� Moreover� with
positive largest Lyapunov exponents� the horizon of prediction is limited since deviations
are enhanced� Lyapunov exponent calculations involve the reconstruction of the original
data generating process by means of embedded �delayed� data series with the dynamics
approximated by a neural network function�
The paper is organized as follows� First we give an introduction to a feed�forward net�
work and how the learning � adaptation of parameters � can be implemented� The second
part involves the analysis of the network parameters while learning� We give a graphical
procedure to reduce the size of the network� In the third part we apply a neural network
to the calculation of Lyapunov exponents�

� Multi layer feed�forward network

A neural network system consists of neurons �cells�� neural interconnections �internal
links� and connections with the outer world� In a multi�layer network� neurons are or�
ganized in layers with interconnections only between cells of neighboring layers� The
network is connected to the outer world by the �rst or input layer and by the last or
output layer� Between input and output one can have the so�called hidden layers� Along
the internal links an input signal is fed forward through the hidden layers towards the
output layer without feedback�
The number of cells in a layer is called the dimension of the layer� a con�guration with
an input layer of dimension M � one hidden layer of dimension H� and an output layer
of dimension N � is denoted by nn�M�H�N�� This type of con�guration is applied in
this paper� Other con�gurations are described in Lippmann 
	� and Hertz� Krogh and
Palmer 
���
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��� Feed�forward in a multi layer network

The basic concept of a feed�forward neural network� is propagation of a signal from
one layer to an other layer� Let x � �x�� x�� � � � � xM�� be the output signal of an M �
dimensional layer� this signal is transmitted to a H�dimensional layer along links with
connection weights ahm� h � �� �� � � � �H� m � �� �� � � � �M such that the hth cell will
receive a signal ahmxm from the foregoing mth cell� The total signal received by hth cell
is equal to

PM
m�� ahmxm� Sensitivity of a cell� also called internal threshold� is incorporated

in the form of an additional signal bh� so totally� each cell h receives a signal sh with

sh �
MX

m��

ahmxm � bh� h � �� �� � � � �H�

Note that thresholds are automatically incorporated if the input signal has the form
x � ��� x�� x�� � � � � xM���
How signal sh is propagated depends on the activation function of cell h� This activation
function� denoted as g� will be monotone and bounded� commonly used is the logistic
function

g�x� �
�

� � e�x
� ���

So� the output signal of cell h equals to

g�
MX

m��

ahmxm � bh�� ���

Equation ��� describes one pass through one layer cell� In matrix form� a layer with
H�cells transmits the output signal x � �x�� � � � � xM� of the foregoing layer� as�

G�Ax�B� ���

where

A � 
ahm�� HxM matrix of connection weights�

B � �b�� � � � � bH�
�� vector of internal thresholds�

G�x�� � � � � xH� � �g�x��� � � � � g�xH��
�� G � RH � RH �

where g is an activation function� see e�g� equation ���� A multi�layer feed�forward
network consists of consecutive layers with an input�output relation given by equa�
tion ���� For a nn�M�H�N� three layer network with no transformations at input�layer
and output�layer level� the relation between an input signal x � �x�� � � � � xM�� and an
output signal �y � ��y�� � � � � �yN �� is given by

�y � C G�Ax�B� ���

where C is the matrix of NxH connections weights between hidden layer and output
layer�
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Depending on the activation function and sensibility of cells� di�erent con�gurations can
be implemented� For instance� a mixture of linear and non linear interaction is given if
part of the hidden layer cells have linear activation functions which results in an output
signal equal to

�y � Dx� E � CG�Ax�B��

��� Supervised learning� backpropagation

A neural network is designed to ful�ll some task� e�g� to �nd an approximation of a
supposed relation y � F �x�� x � RM � y � RN � In this section we describe the so�called
learning process�
Given the structure of the network and an input x� a network will produce an output
�y� The output depends on all connection weights and thresholds which we will call the
parameters of the network� In the case of so�called supervised learning network output �y
is compared with actual �or desired� output y for all input vectors x involved� here learn�
ing means a sequential process of parameter adjustments such that the error� di�erence
between �y and y� becomes smaller with respect to some norm� The implementation of
the learning process is one of the characteristics of the network�
In a multi layer neural network with supervised learning� one de�nes learning as decreas�
ing the sum of squared errors �residuals� at each layer using parameter adjustment by
gradient descent� see e�g� Amari 
��� With H hidden layers� we discriminate between
quantities and qualities of layers by a subscript h� where h � � is the input layer and
h � H � � is output layer� We use the following notations�

x �� network input vector�

Ah �� matrix of connection weights between layer h � � and layer h�

Bh �� vector of internal thresholds of layer h cells�

�yh �� network output vector at layer h� so �yh � G�Ah�yh�� �Bh��

yh �� vector of desired outputs at layer h�

eh �� error vector at layer level h� so eh � �yh � yh�

First we describe the parameter adjustment in one layer� with input�output relation

�yh � G�Ah�yh�� �Bh�� ���

In this case desired output is equal to yh so an error vector eh is computed as �yh � yh�
At this level� the object function is de�ned as the sum of squared errors� SSRh� with

SSRh � �G�Ah�yh�� �Bh�� yh�
��G�Ah�yh�� �Bh�� yh��

The state of the learning process at time t of the neural net is embodied in the value of
the parameters Ah and Bh at time t� We refer to this knowledge at time t� if necessary�
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by an additional subscript t�
Now learning is given by a sequential process in time�

Ah�t�� � Ah�t ��Ah�t ���

Bh�t�� � Bh�t ��Bh�t ���

where the adjustments �Ah and �Bh are chosen such that SSRh will decrease� In
general� gradient�descent steps are used�

�Ah � ��
�SSRh

�Ah

�	�

� ���DxG�Ah�yh���Bh��
��G�Ah�yh�� �Bh�� yh���yh���

� �
�

�Bh � ��
�SSRh

�Bh

����

� ���DxG�Ah �yh���Bh��
��G�Ah�yh�� �Bh�� yh� ����

where DxG�Ah�yh���Bh� is the gradient of G evaluated at Ah�yh�� � Bh� The parameter �
is called the learning rate and has to be chosen properly ��
The whole adjustment procedure is based on the existence of a desired output yh at each
layer h of the network� In general with one or more hidden layer units� only at output
level an error vector can be found directly by comparing network output with desired
output� To solve this problem� one applies backpropagation of the error vector which can
be derived as follows�
Suppose the error vector eh � G�Ah�yh�� � Bh� � yh at layer h exists� To �nd the error
eh�� in layer h � � output� we have to de�ne a desired output yh�� at this layer� The
desired value of yh�� is taken to be such that the object function SSRh �at layer h� has
a smaller value with input yh�� than with input �yh��� So with yh�� � �yh�� � eh��� yh��
is chosen such that�

�G�Ah��yh�� � eh��� �Bh�� yh�
��G�Ah��yh�� � eh��� �Bh�� yh� ����

is less or equal to

�G�Ah�yh�� �Bh�� yh�
��G�Ah�yh�� �Bh�� yh�� ����

After expansion of equation ���� in the �small� error eh��� one gets the following condition
on eh���

� ��DxG�Ah�yh���Bh�Ah eh���
��G�Ah�yh�� �Bh � yh� � higher order terms in eh�� � ��

����

�A re�nement of the updating equation is the use of a time delay� Denoting the adjustments calculated
in equation ��� and ���� by �Ah� and �Bh� and using the time subscript t one de�nes� �Ah�t 	
�Ah��t 
m�Ah�t�� where m is the so�called momentum parameter� and similar for �Bh�t� The use of
time�delay avoids erroneous wandering of the parameters which may occur if the learning parameter �
is too large�
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A solution is to take eh�� equal to

A�h�DxG�Ah�yh���Bh��
��G�Ah�yh�� �Bh � yh�� ����

Hence eh�� can be found according to the following equation�

eh�� � A�h�DxG�Ah�yh���Bh��
� eh� ����

Equation ���� de�nes the backwards propagation of an error vector through the network�
Since at output level the error vector is well de�ned in a supervised learning network� the
backpropagation mechanism provides an error vector at each layer of the network� The
adjustments of the parameters Ah and Bh are now calculated according to equation �
�
and �����
Finally� if the error vector has reached the input layer� all adjustments can be calculated
and the parameters of the network are updated� So one step in the learning process
consists of one forward pass of an input vector and one backward pass of the output
error vector with calculation of the parameter adjustments by equations �
� and �����
We note that this updating procedure is just a gradient descent method for minimizing
the network squared error function SSR�x� � ��y � y����y � y� for one input vector x�
Suppose the network is given as CG�Ax�B�� one hidden layer and no transformations
at input� and output level� Using the foregoing notations� desired output y� is equal to
y� network output is equal to �y� and e� is the error vector at output level� Moreover
A� � C and B� � �� Hence

e� � �y� � y � A��y� �B� � y � C�y� � y�

where
�y� � G�Ax�B��

The adjustment �C is given by equation �	� with h � �� A� � C�B� � � and �A� � �C�
Consequently� applying �C will decrease the network squared error function SSR�x�
where

SSR�x� � �C�y� � y���C�y� � y� � �CG�Ax�B�� y���CG�Ax�B�� y��

At hidden layer level �� the error vector e� is given as �see equation �����

e� � C � e� � C � �C�y� � y� � C � �CG�Ax�B�� y�� ����

Hence y�� desired output at level �� equals �y� � e� � G�Ax � B� � e�� So according to
equations �
� and ����� the adjustment �A is given as

�A � ��
�e��e�

�A
��	�

� ��
��G�Ax�B�� y���

��G�Ax�B�� y��

�A
��
�

� ��DxG�Ax�B� e� x
� ����
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and similar for �B�

�B � ��DxG�Ax�B� e� ����

Substituting e� � C � e� � C � �CG�Ax�B�� y� in those equations� one �nds

�A � ��DxG�Ax�B�C
��CG�Ax�B�� y�x� ����

�B � ��DxG�Ax�B�C
��CG�Ax�B�� y� ����

�C � ���CG�Ax�B�� y��G�Ax�B��� ����

Hence the adjustments obtained by the backpropagation scheme� are equal to one gradient
descent step applied to the object function SSR�x� � �CG�Ax�B��y���CG�Ax�B��y��

��� Nonlinear least squares

The iteration step exposed above� involves only one input vector and one related output
vector� Suppose one has a set X of input vectors xt� t � �� � � � � T and a set Y of output
vectors yt� In order that a neural network learns the assumed relation yt � F �xt�� input
vectors x are chosen at random from the given set X and for each input� the network
parameters are adjusted according to the foregoing procedure� � In this way� the learning
procedure is a iterative nonlinear least squares method which will minimize the total error
function� the sum of squares of the residuals SSR

SSR �
TX

t��

�CG�Axt �B�� yt�
��CG�Axt �B�� yt�� ����

As we are not interested in the neural network as a model of learning� we apply a nonlinear
optimization procedure to �nd the parameters A� B and C which minimize SSR given
by equation ����� To be speci�c� we apply a variable metric method known as Davidon�
Fletcher�Powell� see Press e�a�� 

�� However to avoid that the system gets stuck initially
in some small local minimum� we apply �rst the backpropagation learning procedure on
randomly chosen items of the learning set with learning parameter � not too small� As
soon as this procedure does not show any progress anymore� even with small learning
parameter �� we continue with the variable metric method�

� Reconstruction data generating process

Suppose one observes a one dimensional time series xt� t � �� � � � � T � In general� the
series xt is generated by a more dimensional system� Suppose the time series xt has a
deterministic explanation� the data generating process can be written as zt � G�zt���

�Generally the input and output set is divided in two subsets� one is the so�called learning set while
the remaining input and output vectors are used for testing the knowledge of the learned network�

	



and xt � h�zt� where G � RN � RN and h � RN � R� see Takens 
���� Now the
unknown N dimensional dynamical system can be reconstructed generally by the time
evolution of the M dimensional embedded vectors xMt � �xt� xt��� � � � � xt�M��� where M
is called the embedding dimension� According to Takens 
���� the dynamical system

xMt � ��xMt���� ����

� � ���� � � � � �M�� with �m � RM � R ����

is a reconstruction of the unknown system zt � G�zt��� if M � �N � ��
Note that the only unknown component of � is the Mth component function �M since

�m�x�� � � � � xM� � xm��� m � �� � � � �M � ��

Hence the reconstruction involves only the estimation of the Mth component function
�M �
For a given time series xt one has the relation

xt�M � �M�xt� � � � � xt�M���� ��	�

The function �M is now approximated by ��M as a neural network withM input neurons�
H hidden layer neurons and � output neuron� a nn�M�H� �� network�

��M�xM� � CG�AxM �B�� ��
�

Equation ��	� de�nes an auto�regressive process� in linear approximation� an AR�M�
process�
The reconstruction procedure involves still one major problem� the unknown dimension
N of the original system or equivalently� the unknown embedding dimension M � Since
for M large� M � �N � �� the characteristics of the embedded system will not alter�
one way out is to calculate a quantity which is a characteristic of the original dynamical
system and which is an invariant of embedding� By doing this for increasing embedding
dimensions M � the lowest value of M where this quantity will not alter� is the correct
embedding dimension� A possible characteristic value is the largest Lyapunov exponent
which we will introduce now�

��� Lyapunov exponents

Suppose zt � G�zt���� G � RN � RN � then under general conditions� see 
��� the largest
Lyapunov exponent � can be calculated as

� � lim
T��

��T �� ����

��T � �
�

T
ln kDzG

T �z�wk� for almost all w � RN � ����






where DzG
T is the gradient of the T th iteration of G� see 
��� If the dynamic function G

is given� one computes ��T � as follows�

��T � �
�

T
lnf

TY

t��

kDzG�zt����wt��k

kwt��k
g� ����

�
�

T

TX

t��

lnf
kDzG�zt����wt��k

kwt��k
g� ����

zt � G�zt���� ����

wt � DzG�zt���wt��� t � �� � � � � T� w� given� ����

The initial vector w� is chosen arbitrary	� With only �nite data available� one uses ��T �
as an approximation of ��
Although equation ���� involves only time steps of one unit� the largest Lyapunov expo�
nent can be calculated also with larger time steps� For a time step equal to k units� one
gets

��T � � k �k�T �� ����

�k�T � �
�

T
lnf

kDzG
k�zt�k��wt�kk

kwt�kk
� ����

As a consequence� the quantities �k�T � are linearly related in k� The graph of �k�T �
against time�steps k has to be linear � in the range of time�steps where expansion is not
limited by the extension of the attractor�� The largest Lyapunov exponent � is estimated
from this graph as the slope of the linear ��straight� part of the graph� This procedure
avoids the problem of spurious large exponents at too low embedding dimensions� see 
���

The largest Lyapunov exponent � measures the logarithmic rate of expansion of an initial
deviation w� along the solution zt of zt � G�zt���� If � is positive one has an unstable
orbit �time series�� deviations will expand according to e� t and consequently predictions
have limited time�horizon�

� Analysis of network learning

In this section we discuss the performance of a neural network� We will examine for each
hidden layer cell and each input layer cell the contribution to total network output� The
analysis is based on a nn��� �� �� network with input a ��dimensional embedded vector
given as �xt� xt��� xt��� xt�	� while desired output is given by xt��� The data set xt is
the Nelson�Plosser time series on unemployment in the USA with 

 observations
� This
data set is denoted by UNEMPLOY � All data are scaled down to a 
�� �� range�

�Since equation �

� with T � � will give a correct value of the largest Lyapunov exponent for
almost all w�� it makes sense to repeat the calculations for di�erent w��

�See Schotman � van Dijk ���� for an extensive description of the data�
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Figure �� Actual series �continuous curve� and prediction �one period ahead� from a
nn��� �� �� network� early stage of learning

The optimization �� learning� procedure is started with randomly chosen parameters
values� Already after a few ���� iterations the network output compares well with the
desired output although the dotted �� estimated data� curve seems to be one period
behind the continuous �� actual data� curve� see �gure ��
In �gure � we show neural network output with the contribution of one input cell left out�
a graph with label In� n � �� �� �� � displays neural network output minus the contribution
of input cell n �all network connections to input cell n are broken�� This procedure is
comparable with the analysis of partial contribution of linear terms in Theil� pag� �	� 
����
It is clear that the �rst input cell� the xt data� can not be neglected� while the contribution
of all other input cells is hardly signi�cant�

In �gure � we show network output of each hidden layer cell separately �connections from
output with all other hidden layer cells are broken�� At this stage� only hidden layer cell �
produces an output pattern comparable with actual data� output of all other cells are
more or less constant on the whole range of inputs� Especially the output of cell � is zero
and does not contribute to total output at all�

Figures �� � and � show the performance of the network at the �nal stage of optimization�
The picture has changed considerable� The predicted values are no longer lagged by one
period� see �gure �� The contribution of all input cells is signi�cant� see �gure �� However�
the output of the majority of hidden layer cells resembles a block function� the cells react
only to speci�c input values with a �xed response� see �gure ��
A second aspect is that hidden layer cells � and � have a similar output pattern� only
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Figure �� Network output with the contribution of one single input cell left out �dotted
curve� compared to actual data �continuous curve�� early stage of learning
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Figure �� Output of one hidden layer cell �dotted curve� compared to actual data �con�
tinuous curve�� early stage of learning
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Figure �� Actual series �continuous curve� and estimates series �dotted curve� from a
nn��� �� �� network� �nal stage of learning

reversed in sign� So it seems possible to reduce the size of the network by deleting one
of these hidden layer cells� The results of this reduced nn��� �� �� network is displayed in
�gure �� Now all hidden layer cells have di�erent output patterns��

If more hidden layer cells are added to the network� the output patterns will look more
and more like single bump functions� similar to the output of hidden layer cell � in
�gure �� Moreover� redundancy becomes apparent in two ways�

� Two layers may have similar output patterns but just reversed in sign� the contri�
bution to total output of those layers is very small� see e�g� �gure 	� This allows
also for a reduction in the number of parameters by sequential reducing the number
of hidden layers cells till the network output becomes signi�cantly a�ected�

� The response pattern of individual hidden layer cells resembles �a sum of � ��like
functions� it is clear that prediction �generalisation� by such a neural network will
be weak� Already by the nature of neural network� especially the range of the
sigmoid functions� prediction on values outside the learning data range is limited�
This e�ect will be enhanced if the neural network degenerates to a sum of ��like
functions�

�The SSR of the nn��� �� �� network is ����� while the reduced nn��� �� �� network has SSR 	 ���
��

��



Figure �� Network output with the contribution of one single input cell left out �dotted
curve� compared to actual data �continuous curve�� �nal stage of learning
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Figure �� Output of one hidden layer cell �dotted curve� compared to actual data �con�
tinuous curve�� �nal stage of learning
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Figure �� Output of one hidden layer cell �dotted curve� compared to actual data �con�
tinuous curve� in a nn��� �� �� network� �nal stage of learning
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� Lyapunov exponent

In this section we give some results on the calculation of the largest Lyapunov exponent
for di�erent data sets� The Lyapunov exponent is calculated along a given orbit �time
series�� e�g� in equation ���� the term zt�� represents an element of the orbit� So one
can do the calculations in two ways� either use a given time series or use a time series
generated by a neural network as an approximation of the data generating function� In
the latter case� the initial start vector is taken from the given data set but the next
data are generated according to equation ���� and equations ��	� and ��
�� The largest
Lyapunov exponent calculated this way will be denoted as ��nn� while the exponent
calculated from the given time series is denoted as ��ts�� If the neural network has
learned correctly the structure of the data generating process then both largest Lyapunov
exponents would be the same� Here we refer to structure as the deterministic component
of the data generating process� Although already in a deterministic� chaotic process
with positive largest Lyapunov exponent� nearby starting orbits will di�er in time and
are uncorrelated �limited forecasting horizon�� similarity between Lyapunov exponents
based on given time series and based on neural network series� will mean that one of the
characteristics of the data generating process is learned by the neural network� Hence
the di�erence between ��ts� and ��nn� is a measure of learning�
We will also report the value of the object function SSR� sum of squared residuals and
R�� the squared correlation coe�cient between actual data and network output� The
performance on test data is measured as the mean sum of squared residuals�MSSR�test��
Abundance of parameters is measured by the so�called information criterion� SIC� de�ned
as

SIC � ln�MSSR� �
np

�T
ln�T �� ��	�

where np is the number of parameters� T is the length of data set and MSSR is the
mean sum of squared residuals� see Schwartz 
����

In all cases we start with a high number of hidden layer cells� e�a� H � ��� As proposed in
the foregoing section� this number is reduced by deleting hidden layer cells which respond
to only one or few inputs and�or have similar output patterns� However it is known that
a correct estimation of Lyapunov exponents require a high degree of correlation between
actual and estimated series� see 
���

The �rst data are the UNEMPLOY series from the foregoing section with the �nal �
data used as test data� The results with H � �� are summarized in table ��
The Lyapunov exponents don�t show a convergence to a constant value with increasing
embedding dimension� This may well be caused by the possibility that with a high
number of hidden layer cells� the network learns not only about a deterministic component
but also about a stochastic component in the data� In that case� one can not �nd an
embedding dimension where the Lyapunov exponent becomes stabilized� a stochastic
process does not allow for a �nite embedding� Because of the steep decrease in SSR and
the similarity between Lyapunov exponent of the time series and of the orbit� we consider
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Table �� Neural network results on data set UNEMPLOY

network results learning data results test data
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embedding dimension � as su�cient��
In �gure 	 is shown the output of each hidden layer cell of the nn��� 
� �� network together
with the actual data� It is obvious that several hidden layers have similar output� only
di�erent in sign and�or scale� Now we reduce the net� either by letting out the hidden
layer with smallest contribution to total output� or two hidden layers at the same time
if the output of the layers are similar and only reverse in sign� The reduction process is
summarized in table ��
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network results learning data results test data
M H SSR R� SIC ��ts� ��nn� MSSR
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Note that with � hidden layer cells� the orbit has a negative Lyapunov exponent� This
orbit is periodic� In all other cases� the Lyapunov exponents of the time series and the
orbit are similar� As noted before� we observe with increasing SSR a decrease in the
Lyapunov exponents� However in all but one cases� similarity between time series and
orbit� generated by the neural network� is preserved� The largest Lyapunov exponents
along the given time series and the orbit are of the same order�

�For the nn��� ��� �� network� the orbit diverges� so the largest Lyapunov exponent could not be
calculated�

�




Figure 	� Hidden layer output of a nn��� 
� �� network applied to data UNEMPLOY �
�nal stage of learning
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The second data set contains the long term and short term interest rate in USA� see 
���
The data sets are denoted by LT � long term interest rate� and ST � short term interest
rate� The sample period is from January �
�� till April �
	
� The length of data series
��		� allows for a longer forecasting period� We restrict network learning to the �rst
��� data and use the rest as test data� The results for the long term interest rates are
summarized in table � while results on short term interest rates are reported in table ��

Table �� Neural network results on data set LT

network results learning data results test data
M H SSR R� SIC ��ts� ��nn� MSSR
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Table �� Neural network results on data set ST

network results learning data results test data
M H SSR R� SIC ��ts� ��nn� MSSR
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We stopped at embedding dimension �� we didn�t �nd an improvement in the SSR at
higher embedding dimension� In all cases the Lyapunov exponents are near to zero�
Without statistical analysis of those estimates� it is di�cult to make any decision about
the real sign� A linearization of the neural network function� results in a AR process
with coe�cients sum up to � �approximately�� this agrees with the results of Kleibergen
� van Dijk 
���
Since both time series are observations from one and the same dynamic process� one can
argue that both series are generated by the same dynamic function� So we constructed
a neural network with input vectors build from delayed long� and short term rent data
while actual output is given by a two�dimensional vector of long� and short term rents of
the next period� So the structure of the network is nn��M�H� �� whereM is the number
of lags �embedding dimension� applied to each data series separately� The results are
summarized in table ��
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Table �� Neural network results on bivariate input LT and ST

network results learning data results test data
M H SSR R��LT � R��ST � SIC ��ts� ��nn� MSSR
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In this case an embedding dimension of �� two time lags for each variable� seems to be
proper� The largest Lyapunov exponent of the bivariate system is positive which is to
be expected since at least one of the series itself has a positive largest Lyapunov exponent�

� Conclusions

At least two problems arise applying a neural network in the reconstruction of a data
generating process� First� the original system can be highly dimensional or a mixture of
a low dimensional process with a high dimensional stochastic component� This means
that the proper embedding dimension is either very large or hardly to �nd�
Second� one does not know the size of the hidden layer� As one would like to have a par�
simonious system� one chooses the number H of hidden layer cells as small as possible�
However a characteristic quantity like the largest Lyapunov exponent requires a high de�
gree of similarity between actual data and the neural network as data generating function�
So one is tempted to use a network with a high number of hidden layer cells� However� as
we have shown in this paper� redundancy in the number of hidden layer cells is re�ected
in ��like output patterns of some of the hidden layer cells�
In this paper we show that graphical analysis of hidden layer cell contribution to total
output may provide a way to reduce the size of the network� Applied to economic data�
reduction is possible while preserving similarity between given time series and orbits gen�
erated by the estimated neural network function�
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