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Abstract. This paper introduces a ‘dual’ way to price American options, based on simulating the
path of the option payoff, and of a judiciously-chosen Lagrangian martingale. Taking the pathwise
maximum of the payoff less the martingale provides an upper bound for the price of the option,
and this bound is sharp for the optimal choice of Lagrangian martingale. As a first exploration of
this method, three examples are investigated numerically; the accuracy achieved with even very
simple-minded choices of Lagrangian martingale is surprising. The method also leads naturally to
candidate hedging policies for the option, and estimates of the risk involved in using them.

Key words: Monte Carlo, American option, duality, Lagrangian, martingale, Snell envelope.

Abbreviated Title. Monte Carlo valuation of American options.

AMS(MOS) subject classifications: 49K35, 60G40, 91B28.

1 Introduction

The pricing of American options by simulation techniques is an important and dif-
ficult task, as witnessed by the contributions of Tilley (1993), Barraquand & Mar-
tineau (1995), Carriere (1996) Broadie & Glasserman (1997), Broadie, Glasserman
& Jain (1997), Raymar & Zwecher (1997), Carr (1998), and Longstaff & Schwartz
(1999). Frequently, the payoff of an American-style derivative depends in a highly
complex path-dependent fashion on many underlyings, which means that the tradi-
tional dynamic programming approach to computing the value and the optimal ex-
ercise policy is impossible, due to the dimension of the problem. This has prompted
interest in possible simulation methods for pricing such derivatives, and the papers
mentioned above offer a variety of approaches to the problem. In general terms, all
use simulation in some way to derive a stopping rule, by comparing the current value
of stopping with some estimate (based on simulated paths) of the value of waiting.
It follows that the answers obtained will be lower bounds for the value of the option,
since the value has been computed using an approximation to the optimal stopping
rule.

In contrast, the approach adopted here makes no attempt to determine an approx-
imately optimal exercise policy, and always comes up with an answer which is an
upper bound for the true price. While it says little about how such an option should
be ezercised, it does give guidance on how the option should be hedged. Thus this
approach should be of value to the party writing the option, and the other general
approach would be of value to the party buying the option. The perceptive reader
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may already have guessed that there are themes of convex duality at play here, and
the germ of the method is in an interesting but little-appreciated paper of Davis &
Karatzas (1994)%. In Section 2, we show how the price of the American option may
be expressed as the infimum of a family of expectations, the infimum being taken
over the class of Lagrangian martingales. This expression immediately suggests how
one might try to estimate the price of an American option, and in Section 4 we take
this further with a numerical study of some examples: the standard American put;
an American min-put (see Hartley (2000)); an American-Bermudan-Asian example
of Longstaff & Schwartz (1999). The method requires a good choice of Lagrangian
martingale to give good results, but it turns out that in the examples we study it is
not too hard to find martingales which give reasonably close approximations to the
true price.

After the first draft of this paper was written, the author became aware of a working
paper of Haugh & Kogan (2001), in which essentially the same dual approach to
pricing of American options is advanced. Haugh & Kogan’s numerical approach is
to apply methods from neural nets to estimate the payoff function of continuing.

2 The price of an American option.

We fix some finite time horizon 7" > 0, and suppose given on some filtered probability
space 3 (Q, F, (Fy)o<i<T, P) two adapted processes (1;)o<;<7 and (Zt>0§t§T. The first
is the spot rate of interest, and the second defines the amount paid to the holder
of an American option at the moment of exercise. We shall also assume that the
probability P is the (risk-neutral) pricing probability for the problem. Adopting the
notational device that a random time denoted by 7 (with or without superscripts or
subscripts) should be understood to be a stopping time, standard arbitrage pricing
theory gives the time-0 value of the American option to be

Y, = sup EZ, (2.1)

0<r<T

where Z; = exp(— fot rsds)Zt is the discounted exercise value of the option. To avoid
trivialities, we need to assume that Y < oo; in fact, for technical reasons we shall
assume a little more, namely that for some p > 1, supyc,«r|Z:| € LP, and also
that the paths of Z are right continuous. Under this assumption, the Snell envelope

process
Y, = ess supyc,p B[ 2| F]. (2.2)

is a supermartingale of class (D), and so has a Doob-Meyer decomposition

Y=Yy M - A (2.3)

2T am grateful to Mike Curran for drawing this paper to my attention, and persuading me that
Monte Carlo pricing of American options could work.

3satisfying the usual conditions; see, for example, Rogers & Williams (2000).
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where M* is a martingale vanishing at zero, and A* is an previsible integrable
increasing process, also vanishing at zero. See, for example, Dellacherie & Meyer
(1980), p432.

The following result is the theoretical basis of the paper.

Theorem 1
Yy = inf E[ sup (Z, — M,) |, (2.4)
MeH] 0<t<T
where H& 15 the space of martingales M for which SUPg<t<T | M| € L', and such that
My = 0. The infimum is attained by taking M = M*.

Before proving Theorem 1, let us note how this leads to a method of pricing the
American option: we pick a suitable martingale M, and evaluate by simulation the
expectation E[ supyc,«p(Z; — My) ]. In Section 4 we shall show how to go about
finding a ‘suitable’ martingale. Obtaining the optimal martingale is of course a task
of a similar complexity to finding the optimal exercise policy, but we can often find
simple martingales which provide remarkably good (and quick) bounds.

PROOF OF THEOREM 1. Firstly, we note that Y* is dominated by the LP-
bounded martingale z; = F(sup,|Z,||F;), and so supyc,cr |[M;| < supgc;cr 2 +
Y| + Ar, proving that M* is indeed in H.

Returning to the definition (2.1) of Y, and letting o denote a general random time
with values in [0, T], we have for any M € H| that

Y, = sup EZ;

0<7<T

= sup E[Z, — M;]
0<7<T

< sup E[Z, — M,]
0<o<T

= E| sup (Z,— M,) |

0<t<T

taking the infimum over all M € H} proves that Yy is bounded above by the right-
hand side of (2.4). On the other hand, since Z; < Y;* =Y + M, — A},

inf E[ sup (Z,— M,)] < E[ sup (Z, — M;)]

MeH} 0<t<T 0<t<T
< E[ sup (Y] — M) ]
0<t<T
= E[ sup (Y7 — 47) ]
0<t<T
= YE)*

as claimed.



REMARK. Davis & Karatzas (1994) proved that E[ supgc,<p(Z+M5— M) ] = Y,
in the present notation.

3 Hedging and exercise.

Theorem 1 tells us that in order to find a good approximation to the price Y of the
American option, it is necessary to find a ‘good’ martingale M € H}. We discuss
later how this can be done in practice, but for the moment we suppose that we have
a candidate martingale M, and interpret this in terms of hedging.

Holding M fixed, we have an upper bound for Y, namely, the mean of the random
variable
n= sup (Z, — M,). (3.1)

0<t<T
Let us set n, = E(n|F;) for the martingale closed on the right by 7, so that n =
nr. We now think of the martingale M as the discounted gains-from-trade process
of some portfolio; thus if we started with wealth 7y and used this portfolio, our
discounted wealth at time ¢ would just be ny + M;. Now (3.1) implies the inequality
for any ¢ € [0, T

Zt S n + Mta

and taking conditional expectation given F; and rearranging gives the key inequality
Zy < Elnr—mno | Fo |+ (My + no) (3.2)

The interpretation of this is immediate and illuminating; the (discounted) amount
Z; which has to be paid out to the holder of the option if exercised at time t 1s almost
hedged by the (discounted) value of our portfolio. The shortfall is at worst

E[WT—UO|7t]+§E[(77T—770)+|7t] (3.3)

So if we propose to use the martingale M as a hedging instrument, it will be highly
desirable that the quantity E|ny — mo|, which bounds the mean of the shortfall,
should be small. In the perfect solution, where M = M*, the random variable n
is constant, so we have a zero bound on the shortfall, but in general there is no
reason why this quantity should be small. Notice in particular that it could be that
a given martingale M gives a good bound on the price of the option (that is to say,
E(n)—Yy is small), while having a large shortfall, and therefore being less desirable
for hedging.

Remarks. (i) We can of course interpret the dual problem in a very concrete way; we
are trying to choose the hedging strategy to minimise the lookback value of Z — M.
In any Markovian example, we would typically have that Z were some function of
time and a (possibly high-dimensional) Markov process X, and we would therefore
expect the solution to be such that at any time the optimal hedging portfolio should
be a function of ¢, X; and sup,,(Z, — M,). In principle this could be solved by
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setting up the Hamilton-Jacobi-Bellman equations, but these are likely to be every
bit as difficult to deal with as the original problem. Nevertheless, this suggests a
much more refined approach to the choice of the hedging martingale than the very
simple-minded approach of Section 4.

(ii) We may also use a candidate martingale M to suggest an exercise policy, namely,
to stop when first Z exceeds the value of the hedging policy:

vy =inf{t € [0,T]: My +ny < Zi} AT.

In the case where the hedging policy was optimal, this stopping rule would also be
optimal. However, it turns out in the examples studied in Section 4 that this rule
was very poor, worse even than simply waiting until 7" and exercising then.

4 Numerical examples.

In this section, we report the results of numerical studies of three examples, the
standard American put, the American min-put (see Hartley (2000)), and the Asian-
Bermudan-American example studied by Longstaff & Schwartz (1999); firstly, though,
we describe the general approach used in all the three examples.

The first step is to simulate a relatively small number of sample paths (300 for
the first two examples, 1000 for the third) at a relatively coarse spacing of the time
points (40 time-steps in the results here). Using these, we generate the corresponding
sample paths of a small number of martingales, and the choice of these seems to be
important. If, for example, the reward process Z is a semimartingale of the form
f(t, Sy) for some function of a (vector) log-Brownian price process S, then a natural
choice to take is the martingale part of Z. This works well in our first two examples,
but not for the third where Z is a finite-variation process, and so has no martingale
part. Nonetheless, it is a fair guess that the martingale part of the corresponding
European option should be close in some sense to the desired martingale. There are
few general rules so far; the selection of the martingales appears to be more art than
science.

Now take this vector M of martingales, and consider all linear combinations of
them. By numerically minimising over A the value of E[ supyc,er(Z; — A M,;) |, we
make a presumably better martingale than any of those we began with. Using this
minimising value \*, we now proceed to simulate a large number of sample paths
(30,000 in most of the examples below) and the corresponding martingales \* - M,
and then compute the average value of E[ supg,«r(Z; —A*- M) ] over all the sample
paths.

It is perhaps not surprising that the time-consuming part of this process is the nu-
merical minimisation. Fortunately, high precision in the value of \* is not crucial,
since we are finding a value where a convex function is minimised, and assuming the
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function is differentiable at the minimum, small departures from the exact minimis-
ing value will result in even smaller changes in value of the function. No attempt
has been made to explore ways of speeding this part of the process up, though it
would be worth finding out whether fewer sample paths would do an acceptable
job, or whether there are rules for choosing the starting point for the minimisation
which improve the speed. The simulations themselves required relatively little time.
Since the class of hedging martingales is in every case chosen without any attempt
at refinement, it seems pointless to try to tighten up the minimisation step at this
stage.

As one last improvement, having generated the sample paths with 40 time-steps,
we reduced the sample paths to observations at even-numbered times, recomputed
the answer for these coarser paths with 20 time-steps, and then used Richardson
extrapolation.

While we could have tried various antithetic variable and control variate techniques
to reduce the variance of the estimate of the price, we avoided this, since the esti-
mated value of the mean absolute deviation from the mean (MAD) has an important

interpretation, and using such variance reduction techniques would have distorted
the values of the MAD.

Example 1: an American put on a single asset.

Our first study is of the example of an American put on a single log-Brownian asset,
whose price process is given by

Sy = Spexp(oW; + (r — a?/2)t), (4.1)

with r denoting as usual the riskless rate of interest, assumed constant, and o
denoting the constant volatility. No closed-form solution for the price is known, but
there are various numerical methods which give good approximations to the price
very rapidly. See the papers of Broadie & Detemple (1997), and Ait-Sahalia & Carr
(1997) for surveys and comparisons of some of the methods proposed.

In applying the present method, the choice of martingales was almost the crudest
possible; there was just one martingale in the hedging set, namely, the martingale
part of the corresponding European put, started when the option goes in the money,
at the first time that S; falls below the strike K. The results of the simulation are
presented in Table I; parameter values are K = 100, 0 = 0.4, r = 0.06, and T" = 0.5,
with Sy varying as shown in the table.

The column of true prices is quoted from the paper of Ait-Sahalia & Carr (1997), us-
ing their averaged binomial figures with 1000 time points. We give the Monte Carlo
values from the present method for comparison; in every case, there is agreement
to within 1%. The standard deviation of the estimates of the price is reported, and
the mean absolute deviation from the mean, E|nr — 1o/, one half of which bounds
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the expected hedging loss, is reported in the next column. Though they are not
reported, the program output the simulation values and Black-Scholes values for
the corresponding European puts; the agreement between European values was gen-
erally no better than the agreement between the American values. The final two
columns present the optimal value of A, and the time taken by the entire calculation
(on a 600MHz PC). Since the optimal value of X is very close to 1 in all cases, one
could obtain a very quick estimate of the price by just using A = 1, thereby cutting
out the slow numerical minimisation. Even including the numerical minimisation
and performing 30000 simulations, the times taken were of the order of 20-25s.

Other runs were tried with a variety of martingales in the hedging set, but none of

them showed any marked improvement over this simplest situation.

Table I: Simulation prices of standard American puts. Parameter values were K =
100, r = 0.06, T'= 0.5, and o = 0.4.

S(0) | American | American | Standard | MAD A* time
price (true) | price (MC) | deviation (seconds)
80 21.6059 21.8057 0.0084 | 0.9698 | 1.0542 | 24.5400
85 18.0374 18.2105 0.0097 | 1.1796 | 1.0485 | 23.4500
90 14.9187 15.0702 0.0105 | 1.3226 | 1.0372 | 23.3200
95 12.2314 12.3598 0.0111 1.4236 | 1.0361 | 23.0900
100 9.9458 10.0550 0.0264 | 3.2487 | 1.0152 | 21.9000
105 8.0281 8.1256 0.0294 | 4.0260 | 1.0124 | 22.4000
110 6.4352 6.4915 0.0307 | 4.6116 | 1.0262 | 23.1600
115 5.1265 5.1799 0.0304 | 4.7150 | 1.0371 | 20.7400
120 4.0611 4.1051 0.0289 | 4.4798 | 1.0409 | 21.9200

Example 2: American puts on the cheapest of n assets.

This study takes n log-Brownian assets (which are assumed independent so that we
can compare with the results of Hartley (2000)), given by

Si(t) = S;(0) exp(o;W;(t) + (r — 02 /2)t), i=1,...,n.
The reward process Z is simply

Zy = max e "(K — S;(t)".
The set of hedging martingales for this example is again almost as rudimentary
as one could imagine: we use the martingale parts of each of the corresponding
European puts, started once the process Z first goes positive, but only while that
share is the cheapest to deliver. Tables IT and III both report a range of numerical
values for different parameter choices. Throughout, we used K = 100, T" = 0.5,
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r = 0.06, and in the Table II we took the volatilities of both assets to be 0.6,
whereas in Table III the volatilities were oy = 0.4 and o9 = 0.8.

The two tables give a price computed by finite-difference methods, quoted from
Hartley (2000), alongside the simulation values. The differences are somewhat larger
than in the first example, but are still in the range 1-2%. Times are of the order of
80s; this is too high for a real-time trading environment, but perfectly acceptable for
pricing an OTC product. Reassuringly, the price estimates coming out of the present
method are all higher than the prices from Hartley’s finite-difference calculation.

Table II: Simulation prices of min-puts on two assets. Parameter values were K =
100, T = 0.5, r = 0.06, 01 = 09 = 0.6.

S1(0) | S3(0) | FD price | MC price |  SD MAD | time
80 80 37.30 37.94 0.0779 | 10.4550 | 80.83
80 100 32.08 32.52 0.0648 | 8.3611 | 81.53
80 120 29.14 29.51 0.0519 | 6.0384 | 83.28
100 100 25.06 25.48 0.0703 | 9.2609 | 79.02
100 120 20.91 21.24 0.0649 | 8.1642 | 81.67
120 120 15.92 16.23 0.0635 | 7.8660 | 78.62

Table III: Simulation prices of min-puts on two assets. Parameter values were K =
100, T = 0.5, r =0.06, 01 = 0.4, 05 = 0.8.

S1(0) | S2(0) | FD price | MC price | SD MAD | time
80 80 38.01 38.72 0.0812 | 10.8557 | 82.25
80 100 32.23 32.98 0.0752 | 10.0912 | 81.82
80 120 28.54 29.13 0.0664 | 8.6926 | 83.08
100 80 33.34 33.89 0.0610 | 7.4415 | 80.23
100 100 25.81 26.30 0.0750 | 9.9030 | 80.66
100 120 20.75 21.18 0.0725 | 9.7199 | 77.28
120 80 31.21 31.64 0.0431 | 4.7429 | 82.21
120 100 22.77 23.16 0.0636 | 7.8909 | 74.30
120 120 16.98 17.37 0.0678 | 9.0109 | 77.57

The approach used by Hartley is an ingenious attempt to base a stopping rule on the
minimum value of all the shares; of course, the stopping rule should ideally depend
on the values of each of the shares, but Hartley shows in the case of two assets that
his approximate method delivers numerical results within 1% of the finite-difference
values. He also uses the method on some examples with more shares, and we quote
his results in Table IV. For these calculations, the shares all have volatility o; = 0.6
and initial value S;(0) = 100, with the other parameters as before. Of course, in
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Hartley’s paper it is only possible to say that the prices obtained are lower bounds
on the price, and there is no way of knowing whether the true value is 1% larger,
or 40% larger. Hartley presents upper bounds based on the mean of the maximum
of Z along the path (corresponding to what we would get using M = 0), but these
bounds are not at all close. However, when we look at the upper bounds derived by
the present simulation method, we see that in fact Hartley’s values are very close to
the truth; the gap between his lower bounds and our upper bounds is of the order
of 1-2%. The times taken are again satisfactory for some OTC product, but would
ideally be shorter. The size of the standard deviation achieved is a lot smaller than
the error we are finding in the prices, so we could probably get prices close enough
with far fewer than 30000 simulations. In any case, errors of the order of 1-2%
are likely to be present in any estimate of the volatilities, and the assumption of
constant interest rates is likely to introduce errors of similar size, so in summary, we
have a method accurate to observational error.

Table IV: Simulation prices of min-puts on n assets. All shares have S;(0) = 100
and o; = 0.6, with T'= 0.5, K = 100 and r = 0.06.

n | FD price | MC price | SD MAD | European (MC) | SD time
2 24.87 25.3858 | 0.0856 | 9.2157 18.5185 0.1075 | 53.79
3 31.21 31.8906 | 0.1044 | 11.6200 23.6787 0.1036 | 90.80
4 35.72 36.3456 | 0.1192 | 13.2661 27.1762 0.0978 | 155.97
5 39.01 39.7567 | 0.1273 | 14.2813 29.8910 0.0920 | 209.67
10 47.99 48.7954 | 0.1356 | 15.2721 37.3026 0.0737 | 609.84
15 52.23 52.9456 | 0.1351 | 15.3063 40.8255 0.0649 | 1263.28

Example 3: American-Bermudan-Asian option.

This is one of the examples studied by Longstaff & Schwartz (1999), of an American-
Bermudan-Asian option, specified as follows. There is a single risky log-Brownian
asset, with dynamics (4.1), in terms of which is defined the cumulative average

[ Sudu

_ > 0).
! t+8 (t=0)

The positive value § is incorporated to prevent wild fluctations near ¢ = 0. There
is an initial lockout period ¢* during which the option may not be exercised, but at
any time between t* and 1" the holder may exercise the option and receive the option
payoff (A; — K)*. In fact, Longstaff & Schwartz allow only Bermudan exercise, with
100 equally-spaced exercise dates per year, so a better description of what they have
computed would be Bermudan-Asian; we shall compute values for the American-
Asian option, where there is unrestricted exercise between t* and 7. The values
(reported below in Table 4) are in any case very close; the Longstaff-Schwartz figures

9



quoted there for the finite-difference value of the option would rise very slightly if
the full American exercise were allowed, thereby closing the already small gap.

The simulation used linear combinations of three Lagrangian martingales, which
needed to be chosen with some care, in the light of the derivative being hedged. In
the notation of Section 2, the discounted exercise value of the option is

Zt — e_rt(At - K)—i—[{t*gt}a

and unlike the previous two examples, this has no martingale part; the paths are
absolutely continuous, except possibly at ¢*. This means that we cannot simply
follow the recipe of taking the martingale part of Z as one of the candidate hedging
martingales, but we can still make certain obervations. Firstly, there would never
be exercise at a time when A, < K; and secondly, there would never be exercise at
a time when s 4
G, =e " ;+5t — r(A4; — K)

were positive: the interpretation of G is that it is the derivative of Z with respect
to t, and it is clear that if the exercise value were increasing, then optimal exercise
requires the holder to wait to exercise, since the value will assuredly rise in the next

small instant of time.

The payoff of the European-style analogue would be the positive part of e ™7 (A —
K), and it is easy to work out that

fja Sy du + Sy(e" ™=t —1)/r e }

My(t) = Ele™ " (Ay — K)|F] =" { T+3

It follows from this that .
dM[)(t) — Hl(t)dSt,
where S, = ¢S, is the discounted share price process, and
1 — efr(Tft)
H(t) = —
1) (T + 6)
Guided by this, we choose the first martingale in the hedging set to be

dMi(t) = Iig, <ot Mo(ty>0y Mo (2). (4.2)

For the second, we take the closely-related martingale
dMs(t) = Lyse mo(ey>03dMo(2). (4.3)

As for the third martingale, we consider the European-style problem, whose value
at time t will be
Ele ™™ {[TS, du— (K(T +8) — [*,; S, du)}|F]

Mi(t) = Ele™" (Ar — K)*|F] = T3 :
(4.4)
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Now there is no closed-form expression for this, but it is known (see Levy (1990))
that by approximating the conditional distribution of j;T S, du by a log-normal dis-
tribution with matching first two moments, we get quite similar numerical values.
With this simplifying assumption, the conditional expectation in (4.4) can be ex-
pressed as a Black-Scholes-like formula; even though this new expression will not be
a martingale, we take for Mj its martingale part, when G; < 0 and t > t*.

Table V: American-Bermudan-Asian option prices. The parameters were o = 0.2,
K =100, t* = 0.25 = ¢, and T = 2. The optimisation was based on 1000 simu-
lated paths with 40 time-steps, and the subsequent simulation used a further 30000

simulated paths. The martingales used are specified in the text.

Ay | Sp | FD price | MC price SD MAD A Ao A3 time

90 | 80 0.949 0.9525 | 0.0179 | 1.5681 | 1.0000 | 0.0000 | 0.0000 | 151.64
90 | 90 3.267 3.297 0.0312 | 3.8778 | -1.2691 | 2.9607 | 0.0000 | 136.09
90 | 100 7.889 7.8916 | 0.0404 | 5.8087 | 2.9753 | 2.977 | 0.0000 | 144.10
90 | 110 | 14.538 14.5746 | 0.0521 | 7.3824 | 4.2962 | 2.5357 | -0.4190 | 163.14
90 | 120 | 22.423 22.5133 | 0.0554 | 7.7752 | -3.7813 | 2.7438 | 7.4299 | 164.38
100 | 80 1.108 1.0942 | 0.0191 | 1.7583 | 1.0000 | 0.0000 | 0.0000 | 113.52
100 | 90 3.710 3.6967 | 0.0348 | 4.3349 | -0.8784 | 2.049 | 0.0000 | 158.80
100 | 100 8.658 8.7524 | 0.0399 | 5.6947 | 2.2548 | 3.464 | 0.0000 | 161.07
100 | 110 | 15.717 15.9126 | 0.0539 | 7.7434 | 8.0858 | 2.3646 | -4.5773 | 163.37
100 | 120 | 23.811 23.9239 | 0.0565 | 7.9883 | 0.5154 | 2.5132 | 3.3145 | 164.15
110 | 80 1.288 1.2655 | 0.0207 | 1.9862 | -0.4028 | 1.2406 | 0.0000 | 158.22
110 | 90 4.136 4.4089 | 0.0286 | 3.9949 | -2.3167 | 3.6033 | 2.6306 | 160.86
110 | 100 9.821 10.3594 | 0.0376 | 5.2434 | 3.0337 | 3.5928 | -1.6677 | 163.05
110 | 110 | 17.399 17.6839 | 0.0467 | 6.6736 | 5.4616 | 3.0411 | -3.345 | 163.08
110 | 120 | 25.453 25.6614 | 0.0551 | 7.9072 | 13.6087 | 2.8399 | -11.266 | 128.31

5 Conclusions.

This paper presents a simple method for evaluating the prices of American-style
options by a direct simulation approach, based on a dual characterisation of the
optimal exercise problem. The method involves the choice of a suitable Lagrangian
hedging martingale, which can be thought of as a hedging strategy designed to
minimise the lookback value of the excess of the option exercise value over the
chosen hedging strategy. A choice of the hedging strategy gives bounds on expected
shortfall (evaluated through simulation).

Even using very primitive choices for the hedging martingales, the agreement with
other numerical methods in the three examples considered is remarkably good, usu-
ally in the range 1%-2%, or better in the first two examples. Errors of this order
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are already present in the problem, in the estimates one would need of volatilities,
or in the assumption of constant interest rates.

Further work remains to be done in deriving better hedging martingales, and in re-
ducing the number of simulations required, but already the method looks promising.
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Appendix: Duality.

There is a short but sweet convex duality story to be told about the main result,
Theorem 1, which appears as an example of the minimax principle when suitably
interpreted. Many of the ideas are already present in Davis & Karatzas (1994).
Recall that we assume that

for some p > 1, sup |Z;| € L?,
0<t<T

and that the paths of Z are right continuous with left limits.

The convex duality story requires two convex sets: for the first we use H} = {M €
H': My = 0}, and for the other we take the collection

A = {right-continuous increasing processes C,Cy = 0,Cy = 1}.

Notice that the processes in A are assumed jointly measurable, but not adapted.
There is a pairing on H} x A defined by

T
(M,C) — (M,C) = E/ M,dC,.
0

In view of our assumptions, this pairing is finite-valued. Now we define a function
on A by

T

C— o(C) = E[/ ZdCy |
0

evidently, ® is convex (in fact, linear) and in view of our assumptions, finite-valued.
Now for any M € H{,

sup{®(C) — (M,C)} = B[ sup (Z — M,)]. (A1)

CeA 0<t<T

The easy minimax inequality gives us

inf sup{®(C) — (M,C)} > sup inf {®(C)— (M,C)}  (A2)

MeHj CeA CeAMEH]

To understand the infimum on the right-hand side of (A.2), suppose that C' is held
fixed, and that C' denotes the dual optional projection of C (see, for example, Rogers
& Williams (2000), Chapter VI for definition and properties of the dual optional
projection.) We have

T
(M,C) = E/ MtdCt

= / MtdCt

= E(MpCyr)
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and if we now seek to take the supremum of this expression over all M € H}, we

obtain an infinite value unless C is almost surely constant; and that constant must
be 1, since Cr = 1. If we do have that Cp = 1, then (M, C') = 0; thus the right-hand
side of (A.2) is

sup ®(C),
CeA
where
A= {right-continuous adapted increasing processes C,Coy=0,Cp = 1}.
Now for any C' € A and any t € [0,1) we may define the stopping time
7 = inf{s: Cs > t},

and we may rewrite
T 5 1
o(C) = B / 2.0, ] = / BZ(r) dt = EZ(r),
0 0

say, where 7 is the randomised stopping time 77, where U is chosen uniformly from
[0, 1] independently of everything else. Thus if 7* denotes the class of randomised
stopping times, the right-hand side of (A.2) becomes

sup inf {®(C) — (M,C)} =sup ®(C)= sup EZ(7") = sup EZ,, (A.3)

CeA MEH; CeA THET
the last equality being evident.

Turning to the left-hand side of (A.2), we have that

sup{®(C) — (M,C)} = sup E| / (Zy — M,)dC, | = E| sup (Z; — M,) |,
ceA CeA 0 0<t<T

so taking the infimum over M € H; transforms the inequality (A.2) into

inf E[ sup (Z; —M;)] = inf sup{®(C)— (M, C)}
MEH}  0<t<T MeH; Ce A
> sup inf {®(C)— (M,C)} =sup EZ,.
CeAMEeH] T

The reverse inequality is part of Theorem 1, and the statement of that Theorem can
be reinterpreted as a minimax equality.
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