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ABSTRACT

Stochastic volatility is an interesting area in financial
mathematics. Parabolic partial differential equations with mixed
differentiation terms are the focus of numerical solution of Heston
model. This document covers the numerical methods to Heston

model.

Chapter 1 is an introduction to the problem and my main

interest.

Chapter 2 is an overview of Heston model and its closed-form
solution. The closed-form solution is a benchmark to test the

numerical methods

Chapter 3 talks about the explicit scheme which is a
straightforward method in solving Heston model. The result and

restriction of this model are illustrated.

Chapter 4 discusses the ADI method dealing with special
equations like Heston PDE. The details of this method are covered

and comparison between schemes is given.
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1. INTRODUCTION

The Black-Scholes model concerns with the option pricing problems and has
achieved great success, especially in stock option pricing. It also has practical and
theoretical value toward hedging strategies by calculating the Greeks analytically and
numerically. However, it has bias due to the variability of parameters which the original
Black-Scholes model assumes to be constant. The stochastic properties of interest rate r
and volatility o often lead to more complicated approaches because analytic solutions

are usually absent.

The stochastic volatility was first introduced to traditional model in the 1980s,
when Hull and White [1] and others generalized the Black-Scholes model. Heston model
was later presented in 1993 [2] which offered a practical method toward stochastic
volatility. Moreover, a closed-form solution exists and the calculations for the Greeks are

more straightforward.

Heston model is a nice benchmark in testing numerical schemes dealing with
parabolic partial differential equations. The explicit scheme is a quick approach while it
requires small time steps to retain the stability. This requires large number of time steps
and it is not economic in computation. The alternating direction implicit (ADI) schemes
are good alternative methods. Generally, ADI refers to any method that reduces
multi-dimensional problem into several one-dimensional steps. Various ADI methods
have made it possible to remove the restriction on time steps and to improve the
accuracy and efficiency of work. The ADI schemes are good tools in dealing with
parabolic partial differential equations like in stochastic volatility problem. [8]-[11]
provided several ADI methods which can solve the PDEs with mixed-derivatives terms.
What's the performance of ADI methods on the Greeks is of great interest and the

numerical results will be given as a basis for analysis.

2. THE HESTON MODEL AND THE EXACT SOLUTION

The Heston model concerns with cases where volatility is stochastic. Assume

that the spot index follows

dS = pSdt +\Jv(t)Sdz, (t) (2.1)



where 2z, (t) is a Brownian motion as usual. In Heston model, the volatility follows

dv(t)zk[n—v(t)]dt+0 v(t)dz,(t) (2.2)

where z, (t) is another Brownian motion. Here v(t) is a mean-reversion with k the

reversion rate and 5 the reversion level. The correlation between the two Brownian

motion is p. And the price U of contingent claims obeys the partial differential equation

2 2 2
lez 0 l2]+p0vS ov +102va l2]+rSa—U
2 oS oSov 2 ov oS

+[K(n_v(t))_a(s,v,t)]g_lvf_rU+‘z_(t’:o

(2.3)

The price of volatility risk A(S,v,t) is independent of particular asset. It can be
obtained theoretically from any asset depending on volatility.

Take the European call option as an example. Assume the strike price to be K and

expiring time T. The price is considered in the rectangular area of [0,00] X [0,00] and on

time horizon [O,T]. The option price obeys equation (2.3) with boundary

U(s,v,T)=max(0,s-K),
U(0,v,t)=0,

Z—Z(oo,v,t)zl, (2.4)

ou ou oU
rsg(s,o,t)+KUE(S,O,t)—rU(s,O,t)+E(s,0,t) =0,

U(s,0,t)=s.
Then the price is
U(s,v,t)=sP,— Kefr(H)P2 (2.5)

in which
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The characteristic functions f] (X,V,T;¢) can be found in [2]. Numerical integration is

available because the fast decay of the integrand.

Another method is the Green’s function, which is more useful way in computing the

Greeks. The price is

_ 1 —r(T-t) it o~
U—Ee J.iHoe W(w,v,0)G(w,v,T—t)dw (2.7)

where x=logs$ + r(T — t) . W(w,V,T — t) is the Fourier transformation of

W(a),v,T — t) —vVe'™ and G(w,V,T — t) is the Green’s function. More details are in

the Appendix and are referred to [4]. Then the exact solution is used to calibrate the

finite difference schemes.

Follow the specific parameter quantities chosen in [3]. The correlation factor

p=0.8,interestrate r=0.03, reversion level n=0.2, reversionrate k=2, and the

volatility factor of volatility ¢ =0.3. The maturity timeis T =1 and strike K =100.

So the payoff and the price computed are as following:

Payoff of European call

AR
P A
ZELTELA T




Heston model: exact solution

3. EXPLICIT SCHEME

Here I start to implement the finite difference schemes. I confine the area of

computation to a rectangular of [O,S ] X [O,V] which is a bit larger than the area I really

concern in order to eliminate the boundary effect. The discretization contains /+1 nodes
in s direction and /+1 nodes in v direction. Use the central difference for the first-order

differentiation. So all partial differentiations could be stated as following

- ui+1,j _ui—l,j

(), = 20s
(uv ),-,j ~ ui,j+1 _ui,j—l '

2Av
U, —2u;  +U_,
(uss)i,j m— (ASI')]Z —

U g —2u;  +U;
(uw)i’jz - (A\;)jz ’

- ui+1,j+1 + ui—l,j—l -
(usv )i,j ~

4AsAv (3.1)

)

u u

i-1,j+1

i+1,j-1

Hence we can reconstruct the current price problem into a linear transform series
along time horizon by introducing the initial condition and the boundary condition. That
is,

U'(t)=GU(t)+R (3.2)
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where G is the transformation matrix and R is the residue vector. Although the price

U (t) is actually a function of two variables s and v, an alternative way is treat it as a

vector which includes values corresponding all grids in s and v direction. Given that

there are [ and J divisions along the two directions, the dimension of this vector will be

(1+1)(J+1).

We substitute the finite difference forms, together with the forward difference on

time horizon, into the Heston PDE:

n+1 n
ui,j _ui,j _ (S. )2 v ui+l,j _Zui,j +ui—1,j +posy, ui+1,j+1 +ui—1,j—1 _ui—l,j+1 _ui+1,j—1
At Y z(As)z v 4AsAv
) (3.3)
u.. . —2u. .+1U. ., u., . —u. . . u. . .—u. .
_I_O_Zvj i,j+1 i,j - i,j-1 +rSi i+1,j i-1,j +K(n_vj)u_ruij
Z(Av) 2As 2Av :
and so we get the explicit finite difference formula directly
n+1 n_.n n .n n _.n n _.n n.n
u; :Ai,jui,j +Ci,jui—1,j +Di,jui+1,j +Ei,jui,j—1 +E’,jui,j+1
n n n n n
+Bi,j (ui—l,j—l _ui—l,j+1 _ui+1,j—1 + ui+1,j+1) (3.4)
where
2 .
. o’ jAt
A =ity At -TI= 1 rat
' Av
.2 .
I'V. ri
= —=L-— |At
2 2
) .
I'V. ri
D!, =| —L+— |At
2 2
2 _
o K\n—-v
2Av 2Av
n 0’ K(n_vj)
F + At
2Av 2Av
n _ POYj
Bi_j ——4 At (3.5)



The implementation is straightforward, except that the boundary conditions need
to be dealt specifically. Without loss of generality, suppose A=0. With the same

parameter of the above section, the graph of price landscape is

Price of European call

Then we can compare the explicit scheme with the exact solution to check the

stability requirement of this scheme. Note that
A +CL+D) +E +F <1 (3.6)

So to make sure each of the five terms on the right side is above zero, it's necessary that

for 0<i<I and 0<j<],

1 1
At < . = _ (3.7)
. oV, 5 Jo v,
i'v, + +r iv.+ +r
Av /
._ T
12—
Vi
and (3.8)
; K(n _VJ)
Jjz 2
o
, . 1
It's equivalent to say that At (3.9)

<— -
I’V + Jo* +r

In the last implementation, we have At = 1/3000 and At= 1/4000, and =40,

J=20, V=1, 0=0.3, r=0.03.So the right hand side is %604832At,andthe

6



requirement is met. The error landscape with different time steps is (At = %000 on

the leftand At =1 4000 0 the right).

The difference between exact solution and explicit scheme

20 0

Price difference between exact solution and explicit scheme of Heston model

This plot is consistent with the above criterion set for At, i.e., the larger the price

and volatility, the more likely stability would be demised. For the very node of (S,V),

the error is likely to evolve as At increases like following.
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Graph: the error of explicit scheme with the exact solution as time step length goes larger.
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There is a sharp increase of error when At exceeds 4x107",i.e. ASOO . There

is also a slight increase of error before this point, showing that smaller time steps indeed

increase the accuracy.

The computation of the Greeks plays an important role in trading strategies. So it’s
of great interest to examine the ability of the explicit scheme in computing the Greeks.
The exact solutions provide the control sample needed in checking the explicit scheme.
Central difference schemes are used in computing Greeks, as shown in equations (3.1).
The outcome of the computation of the Greeks, including the value and difference

between explicit scheme and exact solution is given in the Appendix 3.

The outcome shows that the overall result of explicit scheme is very closed to the
exact solution. But the error becomes larger as At becomes larger. This is another
evidence to show that the explicit scheme is conditionally stable. Furthermore, the

relative error of 4 is smaller than I" or Vega.

4. THEADI SCHEME

4.1 BASIC IDEAS

Now we turned to implicit scheme. Here, large number of iterations are needed in
each time steps, thus decrease the efficiency of computation. ADI scheme is a nice
method to increase the efficiency in multi-dimensional problems while refrain the

restriction on time steps. I start from the basic idea of the ADI scheme and implement it.

Similar to the explicit scheme, theoretically, the fully implicit scheme is based on the

finite difference type of the Heston PDE:

n n-1
U j _ui,j 2 ui+1,j _Zui,j + ui—l,j ui+1,j+1 + u171,1>1 _ui—l,j+1 _ui+1,j—1
P (s;)v, . +pos,V, P
t 2(As) sAv
4
u.. . —2u .+Uu . u. ., .—u. ., . u ... —u .
Lj+1 , Lj-1 1, -1, Lj+1 Lj-1
+o'v, —& o s, L ——— +K(n—vj)”+—"—ruij
Z(Av) 2As 2Av '

Rewrite it as



n ..n n _.n n..n
az ]ux j +C1 ]ux -1,j +d1',jui+1,j +ei,jui,j—1 +ﬁ,jui,j+1

(4.2)
n n n n-1
+bi,j (ui—l,j—l _ui—l,j+1 u1+1 ,Jj-1 +u1+1 ]+1) ui,j
where
2 .
. o jAt
al, =1+i°v At + A] +rit
' 1%
.2 .
v, ri
el =-| —=L-T |at
' 2 2
.2 .
I'v. ri
dfj =—| —L+— |At
' 2 2
(4.3)

n GZJ_K(”_VJ) A
" 20v  2Av

t

£ 02]+K(’7_V1) A

o t
7 2Av 2Av

pr =—PY A

ij

Thus, we can get the 8-scheme as the weighted average of the fully implicit scheme

and explicit scheme.

n+1 n+1 n+1 n+1 n+l. n+l n+l. n+l n+1 n+1
al] i,j +C uzl] dl] 1+1]+ezj 1]1+ 1]+1
n+1 n+1 n+1 n+1 n+1
bx N ( u;_ 1,j-1 _”1—1,j+1 _ui+1,j 1 T Uiy ]+1)
(4.4)
n . .n n _n n . .n n
Al}u1]+C1]11]+D1}1+1]+E1]111+E}1]+1
n n n
+Bi,j (ui—l,j—l _ui—l,j+1 u1+1 ,j-1 + u1+1 ]+1)

The coefficients are thus modified to reflect the implicit property 6. Because of the

difficulty in dealing with the mixed derivatives term implicitly, we set bl.'f ]+.1 =0.Then we

categorize the derivatives into three classes as in [5]. The #-scheme is

(1-04, - 64, )u"" =[1+ A4, +(1-0)A, +(1-0) 4, Ju" +O(At*) (4.5)

A, corresponds to the mixed derivative term, 4, the spatial derivatives in s direction and

A, the spatial derivatives in v direction. The ru term is split into A, and 4, .

9
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A = %pavSR o

A :1v52R52655 +1rSR56S —ert (4.6)
2 2 2

A, =%02vRV26W +%[K(n—v(t))—/\(S,v,t)JRﬁv —%rAt

At At At At At
inwhich R, =—, R,.=—, R,=——, R,=—, R, =
AS Av AS Ay ASAv
5 l,l 1+1 J ul—lj
635111 =Wy —2u U etc. (4.7)
6svu1 J 1+1,j+1 + ux 1,j-1 ux—l,j+1 _ui+1,j—1

Add 6°A,A,u™" toboth sides of (4.5), we have

(1-64,-04,+6°AA, )u"" =[ 1+ A, +(1-0) A, +(1-6) A, +6°A A, [u"
4.8
+60°A, A, (u" —u")+0(At*) 9

As AA, ~ O(Atz) and U™ —u" ~ O(At) , we can merge the term 0°4, 4, (u”” - u")

into the error term. Equation (4.8) is equivalent to

AU =(A+B)U" +0(At ) (4.9)
where
A=(1-64,)(1-64,) (4.10)
and
B=A,+A +A4, (4.11)

From this, we can get the alternative-direction implicit schemes. The simplest one
among them is Douglas-Rachford method (DR method) as in demonstrated in [8,9]. Start

from(4.9), ignoring the error term, we can write
(1-64,)(1-64,)u"" =[1+ A +(1-0) A, u"—(1-64,)6Au"  (4.12)

10



The DR method has steps

(1-64,)Y =[1+A4,+(1-0) A4, + 4, |u"

(4.13)
1-60A, )u™ =Y -6Au"
2 2

When 6 is 0, it becomes back to explicit scheme we’ve talked about in Chapter 3.
More methods stem from this and have more steps to achieve more stable and accurate
results. For example, the Craig and Sneyd [5] aimed to improve the stability and
accuracy of the DR method, so they proposed a method which is unconditional stable for
Heston PDE. The Craig-Sneyd method (CS method)is

(4.14)

where { is a positive weighting parameter.

Moreover, the Hundsdorfer and Verwer [10,11] proposed HV method:

(4.15)

The additional steps are added as the correction stages for stability. When the
mixed derivatives term disappears, the CS method will be equivalent to the DR method

but the HV method will not. Given any 6, the order of consistency of DR method is one.

1 1
The order will be two if and only if 8 ={= E in CS method and u= E in HV method

[3,5,8,10].

4.2 BOUNDARY CONDITIONS

It's important to treat the boundary value carefully to maintain the accuracy of the
results. The intermediate value of these methods are artificial and don’t necessarily copy

the real boundary conditions. Suppose the interior domain is
11



R, ={(ibs, jAv):i=1,..,1-1;j=1,.,] -1} (4.16)
And boundary domainis OR, = .OR, + OR, + _OR,, in which

,OR, ={(ins, jAv):i=0,1;j=1,..,] -1}
,OR, ={(iBs, jAv):i=1,..,1-1;j=0,]} (4.17)
~OR, ={(iBs, jAv):i=0,1;j=0,]}

From the first equation of (4.13), we can see that part of intermediate state Y, is

required to obtain the result. So Y}, :(iAS,jAV) € ,OR, are to be considered. For DR

method, the intermediate boundary condition comes from the second equation of (4.13).
Y, =(1-64,)u," +0Au, (4.18)

If the boundary is time-independent, like the Dirichlet boundary condition

U(O,V,t) =0 in (2.4), the intermediate boundary is the same to the original boundary,

according to (4.18). Otherwise, if the boundary is time-depedent, like Neumann

condition 6—U(oo,v,t) =1 in (2.4), Y, should be calculated specifically at each time

step. Use the second-order approximation on points at .OR,

ou u

ou , ~ Uy~
0s (IAS' ]AV) 2As

L) (4.19)

Combine this and equation (4.1), and eliminate the value Uy, we have

n+ n n IZjAv n n
u,‘}.1 =u;; —Ateru;  +At > (ZuHJ. +2As—2u,lj)
_ (4.20)
ae T (o s sae o acXO7IY) 0
+ 2Av(“1,j+1 ul,j+u1,j—1)+r + 2Av ( 1,j+1 ul,j—l)

Thus we can get the intermediate boundary condition on _OR, through (4.18).

Note that this condition only works when computing the inside elements of Y and it has
12



nothing to do in computing u"+1. So it is not necessary to leave the intermediate
boundary condition as it is and I let all boundary elements of Y be zero.
For points at ,OR, , I use the explicit scheme and use the second-order one-sided

approximation for the derivatives:

u, (0)= 4”(AV)_3;A(S)_”(2AV) +0(8v?) (421)

For CS method and HV method, the intermediate boundary condition is similar. I let
Y1 and Y3 satisfy the same intermediate boundary condition as Y, while Y> the boundary

condition as u"+1.

4.3 IMPLEMENTATION

The DR method is the basis for the CS method and HV method and the functions

used in the former one can fulfil the task of other two methods.

The idea of ADI scheme is to treat different dimensions separately, so we can avoid
the mess of dealing with differentiation along different directions at the same time. In
practise, the state vector at each time step is actually a matrix with x direction the

volatility grids and y direction the index grids.

For example, on the right hand side of scheme (4.13), we deal with only the s

direction, like

01 —« ] (4.22)

Each iteration deals with each column in the (I + 1)( J+ 1) vector. The transform

matrix of A1 is a (I + 1) X (I + 1) square matrix

13
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We reduce ittoa [x[square matrix which is just the inside elements. We also change

the inhomogeneous term to reflect the boundary of u~.

In the meantime, same approach applies to the v direction. The transition matrix is

0 0 0 0
0 ~ szl T szl K(U_Vl) 0
(av)’ 2 2(av)  24v
o v, k(m-v)  Kv, r 0 4.24
2(av)  28v (av)" 2 ey
0 0 0 S
(av)" 2

And the state vector needs modified to reflect the boundary condition too.

Moreover, the transition matrix Ao can be got via a linear transformation

i, (i,j)=u,_, (i+1,j+1)+u, (i-1,j-1)

4.25
—u, (i-1,j+1)-u,,(i+1,j-1) (4.25)

Then A,u, , =Ayil, , inwhich

s pA
4= 4AsAvV [S"Vf lm)x(m) '

The dot means element-wise multiplication.

14



[ use the Thomas algorithm to solve the left hand sides of the scheme because of the

tridiagonal matrices.

4.4 RESULT

We use the same parameters as in explicit scheme.

Use the Crank-Nicolson scheme, i.e. 8=0.5 and choose {=0.5 and pu=0.5 in

order to achieve the order of consistency two. The result of the ADI schemes are as

follows:

Heston: ADI Douglas method. Price Heston: ADI Craig method. Price

Heston: ADI HY method. Price

Now we are to check the affect of time step on the schemes. Below are the error at

the point (S,V) between the Douglas scheme and the exact solution.

15



The difference between Douglas method and the exact solution
23

275+ f

6=0.5
27r q

285

errar

6=1ar
2B q

215000 15‘00 QDbD 25‘00 SDIDD SSbD 40‘00 4Sbﬂ EDIDD 55‘00 6000
tirne step
This plot shows that the ADI scheme can deal with computation of large At, which is
not the case in the fully explicit scheme. Now let the number of time steps be fixed at

1000, the following graph shows the difference between the case §=0.3 and 6=0.5.

Heston: ADI DR method. Price difference hetween 8=0.3 and 6=0.5

Now use p=0.3 for HV Scheme (because the consistency of this scheme is

irrelevant with u), all others unchanged. The relations between error and 4t of the three

ADI schemes are the same in the following area:

Error as At approaches 0

error
L

4 L L L L L L L L L
0 0oz o004 o006 008 01 012 014 096 018 02
At
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Then change 6, the pattern is different:

error of DR scheme with different 8

error
=

1 1 1 1 1 1 1 1
0 oos o1 015 02 025 03 035 04 045 05
At

Next the work will be on the stability of computation of the Greeks via ADI schemes.

The Delta computed by the three methods is the same.

Heston: ADI HY method. A

So first look at the stability of 4 as the time step length gets smaller. The three ADI

schemes have the same results here when using the same parameter as before.

17



The A difference of ADI schemes and exact solution as At chanes
0.08 T T T T T T T T T

-0.06

I I I I I I I ! I
i} 002 004 008 008 01 042 014 016 018 02
At

The results of the above two graph show that the difference is minimized around
At=0.04, that is when the number of time steps is about 25. So from we use this

parameter thereafter.

Then look at the stability of 4 when 6 changes.

A error under different & in the three ADI schemes.
40 T T T T T T T T T

—=— DR method
—-—-C5 method H
+  H¥ method

[ai}
o

logarithrn of 4 errar
P — =) o] (4]
(o] [hg] [ [ag] [mm]

m

[}

It shows that the error of 4 will diverge when 8 approaches 0 from above. This is an
indication of better accuracy of implicit scheme than explicit scheme on the computation
of A. However, there is no evidence to show any difference in 4 computation between
the three ADI schemes.

Also, the performance of CS method has no difference between different value of ¢.

18



A difference

Heston: ADI C5 method. Different ©

Also the HV method is tested for different u.

Price difference

05

045

Heston: ADIHY method. Different p

The Vega is also tested. The Vega computed via the DR method is

Wega

Hestan: ADI DR method. Vega

This is similar to the result I've got in Chapter 3.
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5. CONCLUSION

From the result of my modelling, I've shown that the ADI schemes are reliable when
we need the length of every time step At be long enough. The error between ADI scheme

and exact solution is smaller than the explicit scheme.

The results have shown that the ADI scheme is more accurate when it is more
‘implicit’. The parameter test shows that it’s not very sensitive to the parameter of CS
scheme. Work has been done on the stability of the ADI schemes and further work is

needed to cover the efficiency of the numerical schemes.
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APPENDIX

1. HESTON’S APPROACH FOR EXACT SOLUTION

Restate the Heston PDE:

2 2 2
1,529 Lzl+p0v5 OU 15,9 L2]+rSa—U
2 0§ oSov 2 ov oS (A1.1)
ou ou '
+[K(n—v(t))—)\(S,v,t)]g—rU+E—0
And the boundary conditions:

U(s,v,T)=max(0,s—K),

U(0,v,t)=0,

Z—lsj(oo,v,t)zl, (A1.2)

ou ou ou
rsg(s,O,t) + KT]E(S,O,t)—FU(S,O,t) +§(s,0,t) =0,
U(s,0,t)=s.
Suppose that the solution to the Heston PDE is like the form of Black-Scholes model
U(s,v,t)=sP,—KB(t,T)P, (A13)

where B (t,T) represents the risk-free discounting asset, P and P, are what we are

going to find. Make the transform x =Ins and substitute the formula (A1.3) into the
PDE (A1l.1). We'll get

1 0°P, P, 1, O°P, oP,
—V—-+pov ’+—ov—2’+(r+u.v)—’
2 Ox oxov 2 ov 77 ox
(A1.4)
(a—b )apf %P o 1=1,2
+la-bv)—L+—L=0, =1,
Yo " et /

where ”1:%' uzz—%, a=kn, by=k+A-po, b,=k+A.

Considering the payoff of the option, they are subject to the initial condition
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P].(x,v,T;an)zl (A1.5)

x>InK

P, are the conditional probability that the option will expire in the money. Heston

showed that the characteristic function of PJ ) f] (X,V,t;(p), satisfies the PDE (A1.4).

The terminal condition is
jfj(x,v,t;<p):ei"’x (A1.6)
So the solution of characteristic function is
f; (x,v,t;0)= CT-ti)+D(T-tip)v+ipx (A1.7)

where (Let T=T—t)

dt
C(T;(p)zr(pir+%{(bj _pg(pi+d)r_21n[1—ge }}

1—
. g (A1.8)
b, —popi+d| 1-e™
D(t;¢)=-2
(ri) =222 Lo
and
b, —popi+d
9=7"_ >
b —pogi-d (A1.9)
. 2 .
d=\/(po<p1—bj) —oz(Zu].qm—(pz)
Convert the characteristic function back, we can get
" e—i(pan ' X,V,T;
P.(x,v,T;an):1+lj Re ff,( ¢) do (A1.10)
g 2 mo ip

Then solution of Heston PDE is a direct result.

2. SHAW’S APPROACH FOR EXACT SOLUTION
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Start from the Heston PDE, we make transformation:

T=T-t
x=Ilgs+rt (A2.1)
W =Ve"

Then use the Fourier transform

1 fo .~
W(x,v,t)=—| e W(w,v,T)dw
( ) 27TL° ( ) (A2.2)
W(w,v,r):jw

—0

e“W(x,v,T)dx

The initial condition of W(w,v,r) for European call is

(0,v,0)=[" e”W(x,v,0)dx=[" eV (x,,0)dx
= ie max (e - K,0)dx = jl:Ke"wX(eX ~K)dx (A2.3)
- l:K<e e ’“’X)dx_ ialffzz
The integral is evaluated at Im(w)>1.
The Fourier transform satisfies PDE
L Y R LA N o)

Now introduce the Green'’s function G(a),V,T) . It satisfies the above PDE and it has

specific initial condition G(a),v,O) =1.So

1 —re [T joxyr
V:Ee Lc_we W(w,v,0)G(w,v,7)dw (A2.5)

The Green’s function has form

G= eC(r,w)+vD(r,w) (A26)

in which
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dt
C(T,w):ﬂ (k+A+powi+d)T—2In 1=g9¢

o 1-
, g (A2.7)
D(T,w)=;<+/\+p20wl+d 1—ed
o 1-ge™
and
_K+A+powi+d
K+ A+ powi—d (A2.8)

d=\/(K+A+p0wi)z —oz(a)i—wz)
The advantage of Shaw’s approach is that the computation of the Greeks is
straightforward. 4 and I" can be got just by multiplying the integrand of (A2.5) with

Iw w’ ,
—? and—S—2 respectively.

3. THE GREEKS COMPUTED BY EXPLICIT SCHEME AND BY SHAW’S APPROACH.

Delta:

- Delta: exact solution
& of Heston model: explicit scheme B

LR I
DRLLALT

2
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4 difference
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[ difference
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Wega of Heston model: exact solution
“ega of Heston model: explicit scheme e

o
-
AT P
LR AT F o AT P T
H A T i i O g A %
S

L
Sty

Vega difference

Avega

200 0

4., THE CODE IN MATLAB

The code for exact solution:

function R3 = HestonCall(S,K,v,r,t,kp,et,sm,rh, ld,trunc,greek)
if nargin < 11, trunc = 100; greek=1; end

1
X

sqrt(-1);
log(S)+r*t;
switch greek

case 1 % price
inte = A(w)
(exp(-1*w*x) . *(K.~(A+1*w)) . *FFun(t,w,Vv,kp, Id,et,sm,rh) . ..
S (1Fw-w."2));
case 2 % delta
inte = (W) (-1*w./S.*exp(-1*w*x) . *(K.~*(1+1*w)) ...
*Ffun(t,w,v,kp, ld,et,sm,rh) ./(1*w-w."2));
case 3 % gama
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inte = (W) (-(W-"2).7(5"2) - *Fexp(-1*w*x) . * (K- N(1+1*w)) . ..
*Ffun(t,w,v,kp, Id,et,sm,rh) . /Z(1*w-w_."2));
case 4 % vega
inte = @(w) (exp(-1*w*x) . *(K-MN(1+1*w)). ..
*Ffun(t,w,v,kp,ld,et,sm,rh,1) . /(1*w-w."2));
end

R3t = exp(-r*t)*quadgk(inte,-trunc+2i,trunc+2i)/(2*pi);
R3 = real(R3t);

end

function R1 = Ffun(t,w,v,kp,ld,et,sm,rh, Indi)

if nargin<9
Indi = 0;

end

|

sqrt(-1);

sgrt((rh*sm*1*w+kp+1d) . "2+(w."2-1*w) . *(sm™2));
(kp+ld+rh*sm*1*w+d) ./ (kp+1d+rh*sm*1*w-d) ;
((kp+ld+rh*sm*1*w+d)/(sm™2)) . *(1-exp(d*t)) ./ (1-g-*exp(d*t));

O O« o
1

kp*et*((kp+ld+rh*sm*1*w+d)*t-2*log((1-g.*exp(d*t)) ./ (1-9)))/(sm™2);
if Indi ==

R1 = exp(C+D.*Vv);
else R1 =D.*exp(C+D.*Vv);

end

end

The code for the explicit scheme:

% Solutions to Heston PDE using explicit scheme.
function Un=hestonex(kappa,theta,sigma,rho,V,J,r,T,dt,S,1,K,type)

nt=ceil (T/dt);
% dt = T/nt;

% the lower bounds of s and v are both 0
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sbound = S*1.2;

vbound = V*1.3;

ds = S/1; % step length of s
dv = V/J; % step length of v
svalue = 0:ds:sbound;

vvalue = 0:dv:vbound;

ns = size(svalue,2)-1;

nv = size(vvalue,2)-1;

iline = 0:1:ns;

Jjline = 0:1:nv;

temp = max(0, svalue-K); % as usual, the payoff of European call option.
uinitial = temp®"*ones(1,nv+1l); % to construct the initial condition of
U = uinitial; % u in dimension of (ns+1)*(nv+1).

for n=1:nt

% the interior elements. Cross term part.

Upp = U(3:ns+1,3:nv+1l);
Unm = U(1l:ns-1,1:nv-1);

Ump = U(1:ns-1,3:nv+1);

Upm = U(3:ns+1,1:nv-1);

ut = Upp+Umm-Ump-Upm;

GO = rho*sigma*iline**jline/4;

GOt = GO(2:ns,2:nv);

Ult = GOt.*Ut*dt;

Ul = [zeros(l,nv+1);zeros(ns-1,1) Ult
zeros(ns-1,1);zeros(1,nv+1)];

% the elements in S direction.

B1 = iline(2:ns).*iline(2:ns)/2; B1 = [B1";0;0];
B2 = -iline(2:ns).*iline(2:ns); B2 = [0;B2";0];
B3 = iline(2:ns).*iline(2:ns)/2; B3 = [0;0;B3"];
B = spdiags([B1 B2 B3],[-1 0 1],ns+1,ns+1);

Cl1 = -r*iline(2:ns)/2; C1 = [C17;0;0];

C2 = -r*ones(ns+1,1)/2;

C3 r*iline(2:ns)/2; C3 = [0;0;C3"];

C = spdiags([C1 C2 C3],[-1 0 1],ns+1l,ns+1);

for j=2:nv
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A =UCLD):

G1 = vvalue(J)*B+C;

U2temp = dt*G1*A; % the interior elements along the j-th sub-vector.
U2temp(ns+1) = 0; % where s=S;

U2temp(l) = 0; % where s=0;

if j==

U2 = U2temp;
else U2 = [U2 U2temp];
end

end

U2 = [zeros(nhs+1,1) U2 zeros(ns+1,1)];

% elements in V direction

D1 =
sigma*sigma*vvalue(2:nv)/(2*dv*dv)-kappa*(theta-vvalue(2:nv))/(2*dv);

D1 = [D17;0;0];

D2 = -sigma*sigma*vvalue(2:nv)/(dv*dv)-r/2;

D2 [0;D2";0];

D3 =
sigma*sigma*vvalue(2:nv)/(2*dv*dv)+kappa*(theta-vvalue(2:nv))/(2*dv);

D3 = [0;0;D3"];

D = spdiags([DP1 D2 D3],[-1 O 1],nv+1l,nv+1l);

for i = 2:ns
A=U@(,D)";
U3temp = dt*D*A;
U3temp(l) = O;
U3temp(nv+1l) = O;
if i==
U3 = U3temp*;
else U3 = [U3; U3temp™];
end
end

U3 = [zeros(l,nv+1);U3;zeros(1,nv+1)];

Uvtank = U(:z,1); % the First column of the previous U
U=U+ Ul +U2 + U3 ;

U(l,:) = zeros(l,nv+l);

U(:,nv+1l) = svalue”;
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% elements where v=0
for 1=2:ns

U(i,1)=CUvtank(i)-r*i*dt*U(i-1,1)+kappa*theta*dt*U(i,2)/dv)/ ...
(1-r*i*dt+kappa*theta*dt/dv+r*dt);
end
U(ns+1,2:nv) = (2*ds+4*U(ns,2:nv)-U(ns-1,2:nv))/3;

end

ifT type==1 % price

Un = U(1:1+1,1:3+1);
elseif type==2 % delta

un(1,1:3+1)= (U(2,1:3+1)-U(1,1:3+1))/ds;

Un(2:1+1,1:3+1)=(U(3:1+2,1:3+1)-U(1:1,1:3+1))/(2*ds);
elseif type ==3 % gamma

Un(1,1:3+1)= U(2,1:3+1)/(ds"2);

Un(2:1+1,1:J+1) =
(U@B:1+2,1:J+1)-2*U(2:1+1,1:3+1)+U(1:1,1:3+1))/(ds*ds);
elseif type ==4 % vega

Un(l:1+1,1) = (U(Q:1+1,2)-U(1:1+1,1))/dv;

Un(1:1+1,2:3+1)=(U(1:1+1,3:3+2)-U(1:1+1,1:3))/(2*dv);
end

end

The code for ADI scheme:

% DR Scheme

function ¥ = douglas(theta,r,rho,sigma, kappa,eta,V,nv,S,ns,T,nt,K)

dt = T/nt;
dv = V/nv;
ds = S/ns;

svalue = 0:ds:S;
vvalue = 0:dv:V;

u0 = max(svalue®"*ones(1,nv+1)-K,0);
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for n = 1:nt
bnd = boundary(uO,dt,r,V,S,kappa,eta);
stbnd = uO(ns+1,:);
% stbnd = stbound(uO,dt,r,V,S,kappa,eta,sigma,theta);
ul = u0 + TransAO(uO,rho,sigma,dt) ...
+ (1-theta)*TransA1(uO,r,V,dt) ...
+ TransA2(u0O,r,sigma, kappa,eta,V,dt);
Y = MasAl(ul,theta,r,V,S,dt,stbnd);
u2 =Y - theta*TransA2(u0,r,sigma, kappa,eta,V,dt);
u0 = MasA2(u2,theta,r,sigma, kappa,eta,V,S,dt,bnd);
uo(ns+1,:) = (2*ds+4*u0(ns, :)-u0(ns-1,:))/3;

% CS scheme

function f = craig(theta,r,rho,sigma, kappa,eta,V,nv,S,ns,T,nt,K)

clear T;

dt = T/nt;
dv = V/nv;
ds = S/ns;

svalue = 0:ds:S;
vvalue = 0:dv:V;
ze = 0.5;

uo max(svalue®*ones(1,nv+1)-K,0);

for n = 1:nt
bnd = boundary(u0O,dt,r,V,S,kappa,eta);
stbnd = u0(ns+1,:);
ul = u0 + TransAO(uO,rho,sigma,dt) ...
+ (1-theta)*TransAl1(uO,r,V,dt) ...
+ TransA2(u0O,r,sigma, kappa,eta,V,dt);
MasAl(ul,theta,r,V,S,dt,stbnd);
Y1l - theta*TransA2(u0,r,sigma, kappa,eta,V,dt);

Y1
u2

33



Y2 = MasA2(u2,theta,r,sigma, kappa,eta,V,S,dt,bnd);
Y2(ns+1,:) = (2*ds+4*Y2(ns,:)-Y2(ns-1,:))/3;
u3 = ul + ze*TransAO(Y2-uO,rho,sigma,dt);

Y3 = MasAl(ul,theta,r,V,S,dt,stbnd);
u4 = Y3 - theta*TransA2(u0,r,sigma, kappa,eta,V,dt);
u0 = MasA2(u4,theta,r,sigma, kappa,eta,V,S,dt,bnd);

uo(ns+1,:) = (2*ds+4*u0(ns, :)-u0(ns-1,:))/3;

end

end

% HV scheme

function ¥ = hunds(theta,r,rho,sigma, kappa,eta,V,nv,S,ns,T,nt,K)

clear T;

dt = T/nt;
dv = V/nv;
ds = S/ns;

svalue = 0:ds:S;
vvalue = 0:dv:V;

u0 = max(svalue®*ones(1,nv+1)-K,0);

mew = 0.5;

for n = 1:nt
bnd = boundary(uO,dt,r,V,S,kappa,eta);
stbnd = u0(ns+1,:);
ul = u0 + TransAO(uO,rho,sigma,dt) ...
+ (1-theta)*TransAl1(uO,r,V,dt) ...
+ TransA2(u0O,r,sigma, kappa,eta,V,dt);

Y1l = MasAl(ul,theta,r,V,S,dt,stbnd);
u2 = Y1 - theta*TransA2(u0,r,sigma, kappa,eta,V,dt);
Y2 = MasA2(u2,theta,r,sigma, kappa,eta,V,S,dt,bnd);

Y2(ns+1,:) = (2*ds+4*Y2(ns, :)-Y2(ns-1,:))/3;
u3 = ul + mew*TransA0(Y2-uO,rho,sigma,dt) ...
+mew*(1-theta)*TransA1(Y2-u0,r,V,dt);

Y3 = MasAl(ul,theta,r,V,S,dt,stbnd);
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u4 = Y3 - theta*TransA2(u0,r,sigma, kappa,eta,V,dt);
uo MasA2(u4,theta,r,sigma, kappa,eta,V,S,dt,bnd);
uo(ns+1,:) = (2*ds+4*u0(ns, :)-u0(ns-1,:))/3;

function ¥ = TransAO (u0O,rho,sigma,dt)

clear T;

ns = size(u0,1)-1;
nv = size(u0,2)-1;
iline = 0:1:ns;

Jline = 0:1:nv;

ul = u0(3:ns+1,3:nv+1l) + u0(l:ns-1,1:nv-1) - u0(l:ns-1,3:nv+1l)...
- u0(3:ns+l1l,1:nv-1);

u2 = zeros(ns+l,nv+l);

u2(2:ns,2:nv) = ul;

T = rho*sigma*dt*(iline"*jline).*u2/4;

end

function ¥ = TransA1(u0,r,V,dt)

clear T;

ns = size(u0,1)-1;
nv = size(u0,2)-1;
dv = V/nv;

vvalue = 0:dv:V;
iline = 1:ns-1;

f = zeros(size(u0));

Bl = iline.”~2/2; B1 = [B1";0;0];
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B2 = -iline.”2; B2 = [0;B2";0];
B3 = iline.”~2/2; B3 = [0;0;B3"];
B = spdiags([B1 B2 B3],[-1 O 1],ns+1,ns+l);

Cl = -r*iline/2; C1 = [C17;0;0];

c2 -r*ones(ns-1,1)/2;C2 = [0;C2;0];

C3 r*iline/2; C3 = [0;0;C3"];

spdiags(JC1 C2 C3],[-1 0 1],ns+1,ns+1);

(@]
I

for j=2:nv
A = u0(:,0);
G1 = vvalue(jJ)*B+C;
U2temp = dt*G1*A; % the interior elements along the j-th sub-vector.
f(2:ns,j) = U2temp(2:ns);
end

end

function ¥ = TransA2(u0,r,sigma, kappa,eta,V,dt)

clear T;

ns = size(u0,1)-1;
nv = size(u0,2)-1;
dv = V/nv;

Jjline = 1:nv-1;

f = zeros(size(u0));

D1 = sigman™2*jline/(2*dv)-kappa*eta/(2*dv)+kappa*jline/2; D1
[D17;0;0];

D2 = -sigma™2*jline/dv-0.5*r; D2 = [0;D2";0];

D3 = sigma™2*jline/(2*dv)+kappa*eta/(2*dv)-kappa*jline/2; D3
[0;0;D3"];

D = spdiags([D1 D2 D3],[-1 O 1],nv+1,nv+l);

for 1 = 2:ns
A =uo(i,:)";
U3temp = dt*D*A;
f(i,2:nv)=U3temp(2:nv);
end
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end

function ¥ = MasA1(uO,theta,r,V,S,dt,stbnd)

clear T;
size(u0,1)-1;
nv = size(u0,2)-1;
% ds = S/ns;

dv = V/nv;

vvalue = 0:dv:V;

ns

% svalue = 0:ds:S;
iline = 1:ns-1;

f = zeros(size(u0));

for j=2:nv
stp = u0(2:ns,j);

a = -theta*(0.5*vvalue()*iline."2*dt - 0.5*r*iline*dt);
b =1 + theta*(vvalue(@)*iline.~"2*dt + 0.5*r*dt);
c = -theta*(0.5*vvalue()*iline."2*dt + 0.5*r*iline*dt);

stp(ns-1) = stp(ns-1) - c(ns-1)*stbnd(J);
for k=2:ns-1

m = a(k)/b(k-1);

b(k) = b(k) - m*c(k-1);

stp(k) = stp(k) - m*stp(k-1);
end
f(ns,j) = stp(ns-1)/b(ns-1);
for k=ns-2:-1:1

f(k+1,3) = (stp(k)-c(k)*f(k+1,3))/b(k);
end

end

end

function ¥ = MasA2(uO,theta,r,sigma, kappa,eta,V,S,dt,bnd)
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clear T;

ns = size(u0,1)-1;
nv = size(u0,2)-1;
ds = S/ns;
dv = V/nv;

svalue = 0:ds:S;
Jjline = 1:nv-1;

f = zeros(size(u0));

f(:,1) = bnd;

for j=2:ns
stp = u0(j,2:nv);

a = -theta*(0.5*sigma™2*jline*dt/dv - 0.5*kappa*eta*dt/dv ...

+ 0.5*kappa*jline*dt);
1 + theta*(sigma™2*jline*dt/dv + 0.5*r*dt);

(=2
I

- 0.5*kappa*jline*dt);

stp(1) = stp(1) - a(1)*bnd();
stp(nv-1) = stp(nv-1) - c(nv-1)*svalue(j);

for k=2:nv-1
m = a(k)/b(k-1);
b(k) = b(k) - m*c(k-1);
stp(k) = stp(k) - m*stp(k-1);
end
f(g,nv) = stp(nv-1)/b(nv-1);
for k=nv-2:-1:1
f(,k+1) = (stp(K)-c(K)*F(,k+1))/b(K);
end
end

f(:,nv+1l) = svalue®;

end

% Boundary condition for v=0
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function ¥ = boundary(u0O,dt,r,V,S,kappa,eta)

ns = size(u0,1)-1;
nv = size(u0,2)-1;
dv = V/nv;
ds = S/ns;

iline = 0:1:ns;

%

% for i=2:ns

%

f(i,D)=(vtank(1)-r*i*dt*f(i-1,1)+kappa*theta*dt*f(i,2)/dv)/ ...

% (1-r*i*dt+kappa*theta*dt/dv+r*dt);

% end

% Del = r*iline(2:ns)".*(u0(2:ns,1)-u0(1:ns-1,1))*dt;

% fin = Del + kappa*eta*(u0(2:ns,2)-u0(2:ns,1))*dt/dv ...
% - r * u0(2:ns,1)*dt + u0(2:ns,1);

Dels = r*iline(2:ns)".*(u0(3:ns+1,1)-u0(1l:ns-1,1))*dt/2;
Delv = kappa*eta*(4*u0(2:ns,2)-3*u0(2:ns,1)-u0(2:ns,3))*dt/(2*dv);
fin = Dels + Delv - r*u0(2:ns,1)*dt +u0(2:ns,1);

last = (4*fin(ns-1)-fin(ns-2)+2*ds)/3;
f = [0;Ffin;last];

end

39



