
14. Cross-currency Derivatives 

In this chapter, we deal with derivative securities related to at least two 
economies (a domestic market and a foreign market, say). Any such secu- 
rity will be referred to as a cross-currency derivative. In contrast to the 
model examined in Chap. 4, all interest rates and exchange rates are as- 
sumed to be random. It seems natural to expect that the fluctuations of in- 
terest rates and exchange rates will be highly correlated. This feature should 
be reflected in the valuation and hedging of foreign and cross-currency deriva- 
tive securities in the domestic market. Feiger and Jacquillat (1979) (see also 
Grabbe (1983)) were probably the first to study, in a systematic way, the val- 
uation of currency options within the framework of stochastic interest rates 
(they do not provide a closed-form solution for the price, however). More 
recently, Amin and Jarrow (1991) extended the HJM approach by incorpo- 
rating foreign economies. Frachot (1995) examined a special case of the HJM 
model with stochastic volatilities, in which the bond price and the exchange 
rate are assumed to be deterministic functions of a single state variable. 

The first section introduces the basic assumptions of the model along the 
same lines as in Amin and Jarrow (1991). In the next section, the model is 
further specified by postulating deterministic volatilities for all bond prices 
and exchange rates. We examine the arbitrage valuation of foreign market 
derivatives such as currency options, foreign equity options, cross-currency 
swaps and swaptions, and basket options (see Jamshidian (199313, 1994b), 
Turnbull (1994), Frey and Sommer (1996), Brace and Musiela (1997), and 
Dempster and Hutton (1997)). 

Let us explain briefly the last three contracts. A cross-currency swap is 
an interest rate swap agreement in which at least one of the reference interest 
rates is taken from a foreign market; the payments of a cross-currency swap 
can be denominated in units of any foreign currency, or in domestic currency. 
As one might guess, a cross-currency swaption is an option contract written 
on the value of a cross-currency swap. Finally, by a basket option we mean 
here an option written on a basket (i.e., weighted average) of foreign interest 
rates. Typical examples of such contracts are basket caps and basket floors. 
The final section is devoted to the valuation of foreign market interest rate 
derivatives in the framework of the lognormal model of forward LIBOR rates. 
It appears that closed-form expressions for the prices of such interest rate 
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derivatives as quanto caps and cross-currency swaps are not easily available 
in this case, since the bond price volatilities follow stochastic processes with 
rather involved dynamics. 

14.1 Arbitrage-free Cross-currency Markets 

To analyze cross-currency derivatives within the HJM framework, or in a 
general stochastic interest rate model, we need to expand our model so that 
it includes foreign assets and indices. Generally speaking, the superscript i 
indicates that a given process represents a quantity (e.g., an exchange rate, 
interest rate, stock price) related to the ith foreign market. The exchange rate 
Q: of currency i, which is denominated in domestic currency per unit of the 
currency i, establishes the direct link between the spot domestic market and 
the ith spot foreign market. As usual, we write P* to denote the domestic 
martingale measure, and W* stands for the d-dimensional standard Brow- 
nian motion under P. Our aim is to construct an arbitrage-free model of 
foreign markets in a similar way to that of Chap. 4. In order to avoid rather 
standard Girsanov-type transformations, we prefer to start by postulating 
the "right" (that is, arbitrage-free) dynamics of all relevant processes. For 
instance, in order to prevent arbitrage between investments in domestic and 
foreign bonds, we assume that the dynamics of the ith exchange rate Qi under 
the measure P* are 

where rt and rj stand for the spot interest rate in the domestic and the ith 
foreign market, respectively. The rationale behind expression (14.1) is similar 
to that which leads to formula (4.14) of Chap. 4. In the case of generalized 
HJM methodology, the interest rate risk will be modelled by the domestic and 
foreign market instantaneous forward rates, denoted by f (t ,  T )  and f i(t ,  T )  
respectively. We postulate that for any maturity T 5 T*, the dynamics under 
P* of the foreign forward rate f i(t, T )  are given by the following expression 

where 

We assume also that for every i we are given an initial foreign term structure 
f i(O, T) ,  T E [0, T*], and that the foreign spot rates ri satisfy r: = f i(t, t)  
for every t E [O,T*]. The price Bi( t ,T)  of a T-maturity foreign zero-coupon 
bond, denominated in foreign currency, is 
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Consequently, the dynamics of Bi(t, T) under the domestic martingale mea- 
sure P* are 

with Bi(T,T) = 1, or equivalently 

Similarly, we assume that the price of an arbitrary foreign asset Zi that pays 
no dividend satisfies1 

for some process Ei. For simplicity, the adapted volatility processes ui (t, T) ,  ui 
and t i ,  taking values in EXd, are assumed to be bounded. 

Remarks. Let us denote dWj = dW,* - u: dt. Then (14.2) and (14.3) become 

and 
d ~ ’ ( t ,  T) = ~ ’ ( t ,  T) (r: dt - of( t ,  T) . d ~ j )  (14.7) 

respectively, where Wi follows a Brownian motion under the spot probabil- 
ity measure Pi of the ith market, and where the probability measure Pi is 
obtained from Girsanov’s theorem (cf. (14.14)). It  is instructive to compare 
(14.6)-(14.7) with formulas (11.14)-(11.15) of Corollary 11.1.1. 

Let us verify that under (14.4)-(14.5), the combined market is arbitrage- 
free for both domestic and foreign-based investors. It  is easily seen that pro- 
cesses Bi (t, T)QI and Z:Qi , which represent prices of foreign assets expressed 
in domestic currency, satisfy 

Let Bt represent a domestic savings account. It follows immediately from 
(14.8)-(14.9) that the relative prices Bi (t, T)Q;/Bt and Z:Q!/Bt of foreign 
assets, expressed in units of domestic currency, are local martingales under 
the domestic martingale measure P*. Because of this property, it is clear that 
by proceeding along the same lines as in Chap. 8, it is possible to construct 
an arbitrage-free model of the cross-currency market after making a judicious 
choice of the class of admissible trading strategies. 

Recall that the superscript i refers to the fact that Z: is the price of a given asset 
at time t ,  expressed in units of the ith foreign currency. 
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Remarks. The existence of short-term rates in all markets is not an essen- 
tial condition if one wishes to construct an arbitrage-free model of a cross- 
currency market under uncertain interest rates. It  is enough to postulate 
suitable dynamics for all zero-coupon bonds in all markets, as well as for 
the corresponding exchange rates. In such an approach, it is natural to make 
use of forward measures, rather than spot martingale measures. Assume, for 
instance, that B(t ,  T*) models the price of a domestic bond for the horizon 
date T*, and PT* is the domestic forward measure for this date. For any 
fixed i,  we need to specify the dynamics of the foreign bond price Bi( t ,T) ,  
expressed in units of the ith currency, and the exchange rate process QZ. In 
such an approach, it is sufficient to assume that for every T,  the process 

follows a local martingale under PT.. One needs to impose the standard 
conditions that rule out arbitrage between foreign bonds, as seen from the 
perspective of a foreign-based investor (a similar remark applies to any foreign 
market asset). 

14.1.1 Forward Price of a Foreign Asset 

Let us start by analyzing the forward price of a foreign bond in the domestic 
market. It  is not hard to check that for any maturities T 5 U, the dynamics 
of the forward price FBi (t, U, T )  = Bi(t,  U)/Bi(t, T), under the domestic 
martingale measure P*, expressed in the ith foreign currency, satisfy 

where yi(t, U, T) = bi(t, U )  - bi(t, T). On the other hand, when expressed in 
units of the domestic currency, the forward price at  time t for settlement at 
date T of the U-maturity zero-coupon bond of the ith foreign market equals2 

Relationship (14.11) is in fact a universal property, meaning that it can be 
derived by simple no-arbitrage arguments, independently of the model of 
term structure. Notice that 

in general. This means that the domestic forward price of a foreign bond does 
not necessarily coincide with the foreign market forward price of the bond, 

It should be made clear that we consider here a forward contfact in which a 
U-maturity foreign bond is delivered at time T, in exchange for F&(t,  U, T) units 
of the domestic currency. 
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when the latter is converted into domestic currency at  the current exchange 
rate. It is useful to observe that in the special case when T = U, the forward 
price F; (t, TI T) satisfies 

i.e., it agrees with the forward exchange rate for the settlement date T (cf. 
formula (4.16) in Chap. 4). More generally, we have the following result, 
which is valid for any foreign market asset Zi (recall that the price Zl is 
expressed in units of the ith foreign currency). 

Lemma 14.1.1. The domestic forward price Pzi (t, T) for the settlement at 
time T of the foreign market security Zi (which pays no dividends) satisfies 

- ZlQf 
FZi(t ,T)  = - 

B(t1 T )  
= FZt (t , T) FQi (t , T). (14.13) 

Proof. The first equality follows by standard no-arbitrage arguments. For the 
second, notice that 

where FZi(t, T )  is the foreign forward price (in units of the i th currency). 
For our further purposes, it is useful to examine the dynamics of the 

forward price of a foreign market asset. Let us start by analyzing the case of 
a foreign zero-coupon bond. It is easily seen that for any choice of maturities 
T 5 U 5 T*, the dynamics of the forward price process F;(t, U, T )  under 
the domestic martingale measure P* are given by the expression 

or, in the standard HJM framework 

since b(t,T) = -a*(t,T). Similarly, the dynamics of the forward price 
flZ, (t, T )  under the domestic martingale measure P* are 

that is 

d F z i ( t , ~ )  = F z t ( t , ~ )  (v; + c: + o*(t,T)) . (dw; + o*(t, T )  dt). 

Let Pi be the probability measure on (Q,37-*) defined by the Doleans expo- 
nential 
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By virtue of Girsanov’s theorem, the process Wi, which is given by the for- 
mula 

t 
w ; = W ; - l  vtdu,  V t t  [O,T*], 

follows a Brownian motion under the probability measure Pi. Since 

we conclude that the probability measure Pi is the (spot) martingale measure 
of the ith foreign market (cf. formulas (4.7)-(4.8) of Chap. 4). Let us now 
examine the corresponding forward probability measures. Recall that the 
forward measure PT in the domestic market is given on (R, FT) by means of 
the following expression (cf. formula (9.32) in Sect. 9.6) 

Moreover, under the domestic forward measure PT, the process wT1 which 
equals 

t 
T Wt = W; - l b(u, T )  du = W; + a*(u,  T )  du, I' 

is a d-dimensional standard Brownian motion. Analogously, the forward mea- 
sure for the ith foreign market, denoted by P$, is defined on ( 0 ,  FT) by the 
formula 

The process WT>i, which satisfies 

follows a d-dimensional standard Brownian motion under P$. Furthermore, 
the foreign market forward rate f i(., T )  follows a local martingale under P$, 
more explicitly 

dfi(t, T) = ai( t l  T )  . dwTi .  

The next result links the forward measure of a foreign market to the domestic 
spot martingale measure. 
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Lemma 14.1.2. The Radon-Nikodym derivative o n  ( 0 , 3 ~ )  of the forward 
measure P$ of the ith foreign market with respect t o  the domestic spot mar- 
tingale measure P* equals 

Proof. For any two continuous semimartingales X, Y defined on a probability 
space (0,IF, Q),  with Xo = Yo = 0, we have (see Theorem 11.37 in Protter 
(1990)) 

E t ( X ) £ t ( Y ) = E t ( X + Y + ( X , Y ) ) ,  V t E  [O,T]. 
Applying this equality to the density 

Furthermore, by virtue of (14.14) and (14.15), we find that 

and thus for every t E [0, T] 
t 

uT1' + U; + (u’>~, ui), = 1 bi(u, T) . (dW;  - v: du) 
0 

Combining the last equality with (14.18), we obtain (14.17). 0 

The next auxiliary result, which gives the density of the foreign forward 
measure with respect to the domestic forward measure, can be proved along 
similar lines. 

Lemma 14.1.3. The following formula holds 

where 
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14.1.2 Valuation of Foreign Contingent Claims 

In this section, we deal with the valuation of general contingent claims de- 
nominated in foreign currency. Consider a time T contingent claim Yi in the 
ith foreign market - that is, a contingent claim denominated in the currency 
of market i .  We assume as usual that Yi is a random variable, measurable 
with respect to the a-field 3 ~ .  Under appropriate integrability conditions, 
its arbitrage price at time t ,  expressed in domestic currency, is 

where the second equality is a consequence of Lemma 9.6.3. Indeed, a claim 
XT = YiQ$, which is denominated in units of domestic currency, can be 
priced as any "usual" domestic contingent claim. An alternative way of valu- 
ing Yi is to first determine the price rI(Yi) in units of foreign currency, which 
is 

r:(yi) = BjIEpi (yi /B$ 1 3,) = B ~ ( ~ , T )  I E ~ ( Y ~  I Ft ) ,  (14.19) 

and then to convert it into domestic currency, using the current exchange 
rate. This means that we have 

The former method for the valuation of foreign market contingent claims 
is frequently referred to as the domestic market method, while the latter is 
known as the foreign market method. Since the arbitrage price is uniquely 
defined, both methods must necessarily give the same price for any given 
foreign claim. A comparison of (14.19) and (14.20) yields immediately an 
interesting equality 

which can alternatively be proved by standard arguments. To show more 
directly that (14.21) holds, observe that 

dPi def . 

dP* - = ET(ui) = [+, P*-a.s. 

On the other hand, the exchange rate Qi is easily seen to satisfy 

so that Q$ and Qe satisfy the following relationship 

Consequently, from Bayes rule we get 
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Finally, taking (14.22) into account, we obtain 

as expected. 

14.1.3 Cross-currency Rates 

In some instances it will be convenient to consider a cross-currency rate, 
which is simply the exchange rate between two foreign currencies. Consider 
two foreign markets, say 1 and m, and denote by QmlZ the corresponding 
cross-currency rate. More specifically, we assume that the exchange rate QmlZ 
is the price of one unit of currency 1 denominated in currency m. In terms of 
our previous notation, we have 

QY/’ sf Q ~ / Q ~ ,  Y t  E [O, T*], 

hence by the It6 formula 

which, after rearranging, gives 

where Wm is a Brownian motion of the mth foreign market under the spot 
martingale measure Pm. Concluding, we can identify the volatility urn/’ of 
the exchange rate Qm/’ in terms of the volatilities uz and urn of the exchange 
rates QZ and Qm, respectively, as 

$" =; - .2" 
for every t E [O,T*]. 

14.2 Gaussian Model 

We do not present here a systematic study of various option contracts based 
on foreign currencies, bonds and equities. We consider instead just a few typi- 
cal examples of foreign market options (cf. Chap. 4). For simplicity, we assume 
throughout that the volatilities of all prices and exchange rates involved in 
a given contract follow deterministic functions. This assumption, which can 
be substantially weakened in some circumstances, leads to closed-form so- 
lutions for the prices of typical cross-currency options. Results obtained in 
this section are straightforward generalizations of option valuation formulas 
established in Chap. 4. 
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14.2.1 Currency Options 

The first task is to examine the arbitrage valuation of European currency op- 
tions in a stochastic interest rate framework. Recall that the forward exchange 
rate FQi ( t ,  T)  may be interpreted as the forward price for the settlement date 
T of one unit of foreign currency (i.e., of a foreign zero-coupon bond that ma- 
tures at  T) .  This implies the martingale property of F4 under the domestic 
forward probability measure. More precisely, for any fixed T,  we have under 
the domestic forward measure lPT 

for a deterministic function aQi(.,T) : [O,T] + R. In view of (14.12), the 
volatility aQi can be expressed in terms of bond price volatilities and the 
volatility of the exchange rate. For any maturity T E [0, T*], we have 

Our goal is to value a European currency call option with the payoff at  expiry 

where N is a preassigned number of units of foreign currency (we set N = 1 in 
what follows), K is the strike exchange rate, and T is the option expiry date. 
The arbitrage price of such an option under deterministic interest rates was 
found in Chap. 4 (see Proposition 4.2.2). Under the present assumption - that 
is, when f f ~ i  (t, T )  is deterministic - the closed-form expression for the price 
of a currency option can be established using the forward measure approach. 
Since c:' is expressed in domestic currency, it is enough to find the expected 
value of the option’s payoff under the domestic forward probability measure 
PT for the date T. Since this involves no difficulties, we prefer instead to 
apply a simple approach to the replication of currency options, based on the 
idea employed in Sect. 11.3.5. We claim that for every t E [0, TI, we have 

where Fj = FQi (t, T )  is the forward exchange rate, 

and V Q ~  (t, T) represents the volatility of the forward exchange rate integrated 
over the time interval [t, TI - that is 

Formula (14.26) can be rewritten as follows 
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where 

ln(Qf/K) + l n ( B i ( t , T ) / ~ ( t , T ) )  k a u$,(t,T) 
h1,2(~: ,  t, T) = 

UQ" (t, T )  

To check, in an intuitive way, the validity of (14.26) for t = 0, let us consider 
the following combined spot-forward trading strategy: at  time 0 we purchase 
Fc(O, T) = C?’/Bd(O, T) zero-coupon domestic bonds maturing at T; in 
addition, at any time t E [0, TI, we are long $$ = N(&(F,~, t ,  T)) forward 
currency contracts. The wealth of this portfolio at  expiry equals 

since direct calculations yield 

where Fc(t, T )  = CFi/Bd(t,  T)  is the forward price of the option. We con- 
clude that formula (14.26) is valid for t = 0. A general formula can be estab- 
lished by similar arguments. For the valuation formula (14.27) to hold, it is 
sufficient to assume that the volatility of the forward exchange rate follows a 
deterministic function. 

14.2.2 Foreign Equity Options 

The following examples deal with various kinds of European options written 
on a foreign market asset. 

Option on a foreign asset struck in foreign currency. Let Zi stand 
for the price of a foreign asset (for instance, a bond or a stock). We consider 
a European call option with the payoff at expiry 

1 def CT = &$(Z$ - Ki)+,  

where K i  is the strike price, denominated in the ith foreign currency. To price 
this option, it is convenient to apply the foreign market method. It  appears 
that it is sufficient to convert the foreign price of the option into domes- 
tic currency at the current exchange rate. Therefore, we get an intuitively 
obvious result (cf. Sect. 4.5 and Corollary 11.3.3 of Sect. 11.3) 

where 
ln(Zj/Ki) - In Bi(t, T )  f $ v;, (t, T )  

gl,a(Z;, t, T) = 
vzi (t, T )  
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and 
T 

&. (t, T) = 1 16 
t 

Note that this result remains valid even 

- bi(u, T)[’ du. 

if the volatility of the exchange rate 
is random, provided that the volatility function of the asset’s foreign market 
forward price is deterministic. 

Option on a foreign asset struck in domestic currency. Suppose now 
that the option on a foreign asset has its strike price expressed in domestic 
currency, so that the payoff from the option at expiry equals 

2 def CT = (&$Z$- K)’, 

where K is expressed in units of the domestic currency. By applying the 
domestic market method to the synthetic domestic asset 2: = QdZ:, it is not 
hard to check that the arbitrage price of this option at time t E [0, T] is 

where 
ln(,@/K) - lnB( t ,T)  f ifi$(t,T) 

11,2(2t, t ,  T) = fizi (t , T) 
and 

T 

f i $ ( t , ~ )  = 1 Iv: + - b(u1~) I2du .  
t 

For instance, if the underlying asset of the option is a foreign zero-coupon 
bond with maturity U 2 T,  we obtain 

where 

il,z(Bi(t, U), t ,  T )  = 
ln(Qe/K) + ln(Bi(t, U)/B(t, T) )  f 6$(4 T) 

fiu (t, T )  

and T 
e $ ( t , ~ )  = 1 14 +bi (u ,u )  - b(u1~)12du.  

It  is not difficult to check that if we choose the maturity date U equal to the 
expiry date T, then the formula above agrees, as expected, with the currency 
option valuation formula (14.27). Also, it is clear that to establish equality 
(14.29), it is sufficient to assume that the volatility GZ2 (t, T) of the domestic 
forward price of the foreign asset Zi follows a deterministic function. 

Quanto option. As usual, let Zi denote the price process of a certain foreign 
asset. The payoff at expiry of a quanto call equals (in domestic currency) 

3 def - .  cT = Q"Z$ - K ~ ) + ,  (14.30) 
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where @ is the prescribed exchange rate that is used eventually to convert the 
terminal payoff into domestic currency. Therefore, Qi is specified in domestic 
currency per unit of the ith foreign currency. Moreover, the exercise price K i  
is expressed in units of the ith foreign currency. Let FZi (t, T) be the forward 
price of the asset Zi in the foreign market. Recall that we write FQi(t, T) 
to denote the forward exchange rate for the ith currency. Observe that the 
cross-variation of these processes satisfies 

where aQi,zi (., T) is a deterministic function. We find it convenient to denote 

T 
uQi,z.(t, T) = 1 C T Q ~ , ~ ~ ( U ,  T)  d ~ ,  Vt E [0, TI. 

t 

Assume, in addition, that the volatility Ji of an underlying asset Zi is also 
deterministic, and put 

T 

vi ,  (t, T) = (E:)~ du. 

Then the arbitrage price of a quanto call option at time t E [0, TI equals 

where 

The reader may find it instructive to compare this result with the formula 
established in Proposition 4.5.1. 

Equity-linked foreign exchange option. The payoff at expiry of an Elf-X 
option equals (see Sect. 4.5) 

where K is a fixed level of the ith exchange rate, and FZi (t, T) is the foreign 
market forward price of a foreign asset Zi. The dynamics of the price of the 
foreign asset Zi and foreign bond Bi(t, T )  under the domestic martingale 
measure P* are (see (14.4)-(14.5)) 

respectively. 
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Using It6’s formula, we find the dynamics of the foreign market forward 
price FZ, (t, T )  under the domestic martingale measure P*, namely 

Consequently, under the domestic forward measure PT, we have 

where (cf. (14.25)) 

For the sake of notational simplicity, we consider the case t = 0. Let us define 
an auxiliary probability measure QT by setting 

where ct = - bi(t, T) for t E [0, TI. It is easily seen that Z$ equals 

Z$ = FZi (T, T )  = Fzi (0, T )  VT eee(o,T), 

where we write 

The price of the option at time 0 equals 

c," = B(O,T)IE~,((Q& - K)+z&),  

or equivalently, 

To evaluate the expectation in (14.32), we need to analyze the dynamics of 
the forward exchange rate FQi (t, T) under the auxiliary probability measure 
QT. We know already that FQi (t, T )  satisfies, under PT, the following SDE 
(cf. (14.24)) 

dFQt (t, T) = FQi (t, T) a ~ i  (t, T) . ~ w , T .  
Therefore, under QT we have 

where the process W ,  given by the formula 
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follows a Brownian motion under QT. Consequently, the forward exchange 
rate FQi (t, T)  can be represented as follows 

Putting the last equality into (14.32), we obtain 

C: = B(O, T)Fzi (0, T)  IE q, ((FQ~ (0, T)  ,E - Ke-e(o,T) ) + ),  (14.33) 

where ( is a Gaussian random variable, with zero mean and the variance 
under QT 

T 

varQ,(() = u ~ , ( o ,  T) = / loP, (u, du. 
0 

Calculation of the expected value in (14.33) is standard. In general, we find 
that the price at time t E [0, T] of the Elf-X call option equals 

where Fj = FQi (t, T), 

and 
(bi(u,~)-(;).ff~i(u,T)d~, vtE[O,T] .  

After simple manipulations, we find that 

where 

ln(q/K) + ln(Bi(t,T)/B(t,T)) - Q(t,T) f % v$(t, T)  
51,2(q1 t ,  T) = 

VQ" (tl T) 

This ends the derivation of the option’s pricing formula. 
Remarks. Assume that the domestic and foreign interest rates rt and r; are 
deterministic for every t E [0, TI; that is, b(t, T)  = bi(t, T )  = 0. In this case, 
the value of C: given by the formula above agrees with the formula established 
in Proposition 4.5.2. Furthermore, if we take the foreign bond that pays one 
unit of the foreign currency at time T as the underlying foreign asset of 
the option, then 6 vanishes identically, and we recover the currency option 
valuation formula (14.27). 
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14.2.3 Cross-currency Swaps 

Cross-currency swaps are financial instruments that allow financial managers 
to capture existing and expected floating or money market rate spreads be- 
tween alternative currencies without incurring foreign exchange exposure. 
Let us briefly describe a typical cross-currency swap. The party entering into 
such a swap will typically agree to receive payment in a particular currency 
on a specific principal amount, for a specific term, at  the prevailing floating 
money market rate in that currency (such as, e.g., the LIBOR). In exchange, 
this party will make payments on the same principal amount, in the same 
currency, for the same term, based on the prevailing floating money market 
rate in another currency. Therefore, the major features of a typical cross- 
currency swap are that: (a) both payments and receipts (which are based on 
the same notional principal) are on a floating-rate basis, with the rate reset 
at  specified intervals (usually quarterly or semi-annually); (b) all payments 
under the transaction are made in the preassigned currency, thereby elimi- 
nating foreign exchange exposure; and (c) consistent with the transaction’s 
single-currency nature, no exchange of principal amounts is required. Our 
aim is to find valuation formulas for cross-currency swaps as well as for their 
derivatives, such as cross-currency swaptions - that is, options written on 
cross-currency swaps. 

Formally, by a cross-currency (or differential) swap we mean an interest 
rate swap agreement in which at  least one of the interest rates involved is 
related to a foreign market. In contrast to a classic fixed-for-floating (single- 
currency) swap agreement, in a typical cross-currency swap, both underlying 
interest rates are preassigned floating rates from two markets. To be more 
specific, a floating-for-floating cross-currency (k, 1; m) swap per unit of mth 
currency consists of swapping the floating rates of another two currencies. 
At each of the payment dates Tj, j = 1,. . . , n ,  the floating rate L ~ ( T ~ - ~ )  
of currency k is received and the corresponding floating rate L1(Tj-1) of 
currency 1 is paid. Let us emphasize that in the most general form of a 
swap, the payments are made in units of still another foreign currency, say 
m. Similarly, by a fixed-for-floating cross-currency (k; m) swap we mean a 
cross-currency swap with payments in the mth foreign currency, in which one 
of the underlying rates of interest is a prespecified fixed rate, while the other 
is a reference floating rate from currency k. 

Floating-for-floating (k, 0; 0) swaps. Let us first consider a floating-for- 
floating cross-currency (k, 0; 0) swap between two parties in which, at each of 
the payment dates, the buyer pays the seller a U.S. dollar3 amount equal to 
a fixed notional principal times the then level of a prespecified U.S. floating 
interest rate. The seller pays the buyer a U.S. dollar amount equal to the 
same principal times the then level of a prespecified foreign (e.g., Japanese, 

For ease of exposition, we assume hereafter that U.S. dollars play the role of the 
domestic currency. 
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German, Australian) floating interest rate. If foreign interest rates are higher 
than U.S. interest rates, one may expect that the buyer should pay the seller 
a positive up-front fee, negotiated between the counterparts at the time the 
contract is entered into. Our goal is to determine - following, in particu- 
lar, Jamshidian (1993b, 1994a) and Brace and Musiela (1997) - this up-front 
cost, called the value of the cross-currency swap. We will also examine a cor- 
responding hedging portfolio. It is clear that at each of the payment dates 
Tj, j = 1, .  . . , n, the interest determined by the floating rate Lk(TjPl) of the 
foreign currency k is received and the interest corresponding to the floating 
rate L(Tj-1) of the domestic currency is paid. In our framework, the rate 
levels Li(Tj- l), j = 1, . . . , n, are set by reference to the zero-coupon bond 
prices; namely, we have 

for i = 0, k. The time t value, in units of the domestic currency, of a floating- 
for-floating (k, 0; 0) cross-currency forward swap is 

or equivalently 

We define a (TI U) roll bond to be a dollar cash security that pays l /B(T, U )  
dollars at its maturity U. Similarly, by a (T, U) quanto roll bond we mean a 
security that pays ~/B’(T, U) dollars at time U. In view of the last equality, 
it is evident that a long position in a cross-currency swap is equivalent to 
being long a portfolio of (Tj, Tj+l) quanto roll bonds, and short a portfolio of 
(Tj, Tj+l) roll bonds. Therefore, we need to examine the following conditional 
expectation 

for any t 5 Tj-1. One can easily check that 

Indeed, to replicate the payoff of a (TjPl, Tj) roll bond it is sufficient to 
buy at time t 5 Tj-1 one bond with maturity Tj-1, and then reinvest the 
principal received at time Tj-1 by purchasing l/B(Tj-l, Tj) units of bonds 
with maturity Tj. The problem of the replication of a cross-currency swap 
thus reduces to replication of a quanto roll bond for t 5 Tj-1, supplemented 
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by a simple netting of positions at  payment dates. Observe that for t > TjPl, 
we have simply 

In particular, for t = TjVl this yields 

Therefore, our goal is now to find a replicating strategy for the contingent 
claim X that settles at time TjP1 and whose value is 

To simplify the notation, we denote T = TjPl and U = Tj. Let us consider 
a dynamic portfolio composed at any time t 5 T of 4: units of U-maturity 
domestic bonds, 4; units of U-maturity foreign bonds, and finally 4; units 
of T-maturity foreign bonds. The wealth of such a portfolio at  time t 5 T, 
expressed in domestic currency, equals 

where for any maturity date T ,  we write 

Note that Bk(t ,  T) and Bk(t ,  U) stand for the price at time t of the for- 
eign market zero-coupon bond, expressed in units of domestic currency, with 
maturities T and U respectively. As usual, we say that a portfolio q5 is self- 
financing when the relationship 

is valid. To provide an intuitive argument supporting (14.36), observe that 
in the case of a discretely adjusted portfolio we have 

if a portfolio is held fixed over the interval [tl, t2),  and revised at time t2. This 
shows that processes Bk (t, T) and Bk (t, U) can be formally seen as prices of 
domestic securities. Recall that 
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and 
d ~ ' " ( t ,  T )  = Bk(t ,  T )  ( r t  dt + bk( t ,  T )  . dW,*), 

where W* follows a Brownian motion under P*, and the exchange rate Q k  
satisfies (see formula (14.1)) 

Finally, recall that the forward exchange rate for the settlement date U is 

and the forward price of a T-maturity foreign market bond for settlement at  
time U equals 

FBk ( t ,  T ,  U )  = B k ( t ' T )  Q ~ E [ O , U ] ,  Bk(t ,  U )  ' 
where U 5 T .  Observe that we have the following expression for the forward 
price FBk ( t ,  T ,  U ) ,  under the domestic martingale measure P*, 

where y k ( t ,  T ,  U )  = bk( t ,  T )  - bk( t ,  U ) .  We will show that to replicate a short 
position in a cross-currency swap, it is enough to hold a continuously re- 
balanced portfolio involving domestic and foreign zero-coupon bonds with 
maturities corresponding to the payment dates of the underlying swap. The 
net value of positions in foreign bonds is assumed to be zero - that is, the 
instantaneous profits or losses from foreign market positions are immediately 
converted into domestic currency and invested in domestic bonds. We start 
with an auxiliary lemma. 

Lemma 14.2.1. Let vk(T, U )  stand for the following process 

where 
T 

(14.39) 

and 
d ( T 1  U )  = yk@, U1 T )  . (d  + bk@, U )  - b(t ,  U ) ) ,  (14.40) 

where y k ( t ,  U ,  T )  = bk( t ,  U )  - bk( t ,  T ) .  Suppose that the process G k ( T ,  U )  
is adapted. Then the It6 differential of V k ( T ,  U )  is given by the following 
expression 



546 14. Cross-currency Derivatives 

Proof. Since Gk(T, U) is an adapted process of finite variation, It6’s formula 
yields 

+ rk ( t ,T ,  U) . (vt + bk(t, U) - b(t, u))V,’"(T, U) dt, 

where we write Ft = FBk(t, T, U). The asserted formula now follows eas- 
ily from equality (14.37), combined with the dynamics of the forward price 
FBk (t, T, U) under the domestic martingale measure. 0 

Note that the adapted process gk(T, U) is linked to the instantaneous 
covariance between the U-delivery forward exchange rate and the T-delivery 
forward price of a U-maturity foreign market bond. More explicitly, the cross- 
variation equals 

Assumption. We assume from now on that Gk(T, U) follows an adapted 
process of finite variation (in particular, it can be a deterministic function). 

The above assumption is motivated by the following two arguments, each 
of a different nature. First, we can make use of Lemma 14.2.1. Second, it is 
evident that if Gk(T, U), and consequently the process Vk(T, U), were not 
adapted, then the process 4 that is given by formula (14.41) below, would 
fail to satisfy the definition of a trading strategy. 

Proposition 14.2.1. Let us consider the portfolio 4 = (4’, 42, 43) that 
equals 

Then the strategy 4 is self-financing and the wealth process V(4) equals 
V"T, U). 

Proof. For the last claim, it is enough to check that 

for every t E [O,T]. It remains to verify that the trading strategy 4 is self- 
financing. By virtue of (14.36) and (14.41), it is clear that we need to show 
the following equality 

For any maturity T, we have 
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d B k ( t , q  = Q: d ~ ~ ( t , ~ )  + B ~ ( ~ , T )  d ~ :  + ( Q ~ ,  B ( . , T ) ) ~ ,  

so that 

d S k ( t , ~ )  = Bk( t ,  T )  ( ( r t  + b k ( t , ~ )  . v:) dt + ( b k ( t , ~ )  + v:) . d ~ ; ) .  

A substitution of this relationship into the right-hand side of (14.42) gives 

- - d ~ ( t ,  U )  - d ~ ~ ( t ,  U )  d ~ ~ ( t ,  T )  
B(t ,  U )  Bk(t ,  U )  + Bk(t,T) + rk(t) . v: d t ,  

where rk(t)  = y k ( t , T ,  U ) .  Comparing this with the formula established in 
Lemma 14.2.1, we conclude that 4 is self-financing. 0 

Corollary 14.2.1. The arbitrage price at time t E [0, T jPl]  of a contingent 
claim X that is given by  formula (14.35), equals 

where 
T j - 1  

G:(T'-1, T j )  = exp k 

( 7 ( ~ ~ ~ j ~ ~ j - 1 )  - ( v t  + b k ( u , T j )  - ~ ( U , T ~ ) )  du) 

Proposition 14.2.2. The arbitrage price of the floating-for-floating cross- 
currency ( k ,  0; 0 )  swap at time t E [0, To] equals 

Proof. It  is enough to observe that 

and to apply Corollary 14.2.1. 0 
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Floating-for-floating (k, 1 ;  0) swaps. The next step is to examine the 
slightly more general case of a floating-for-floating cross-currency (k, I; 0) 
swap. The contractual conditions of a (k,1;0) swap agreement imply im- 
mediately that its arbitrage price CCFSt(k,  1; 0) at time t satisfies 

or equivalently 

It  is easily seen that the arbitrage price CCFS(k,  1; 0) also admits the fol- 
lowing representation 

Since we wish to apply the results of the previous section, we assume that 
for every j = 1 , .  . . , n ,  both Gk(Tj-l,Tj) and GE(TjPl,Tj) follow adapted 
processes of finite variation. Arguing along the same lines as in the proof of 
Proposition 14.2.2, we find the following equality, which holds for t E [0, To] 

where &k (Tj-1, Tj) and &’(Tj-1, Tj) are given by the expressions 

respectively. To visualize the replicating portfolio of the (k, I; 0) swap agree- 
ment, let us consider an arbitrary payment date Tj. Then the portfolio 
4 = (4’, 42, 43, 44, 45) that replicates a particular payoff of a swap that 
occurs at  time Ti involves, at time t ,  4; units of Tj-maturity domestic bonds, 
where 

and the following positions in foreign bonds ~ ~ ( t ,  Tj), B~ (t, TjP1), ~ ’ ( t ,  Tj) 
and B’ (t, Tj-1) respectively 
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where qk = &k(Tj-l, Tj) and = q(TjWl,  Tj). It  is not hard to verify that 
the trading strategy given by the last formula is self-financing. Moreover, 
for every t E [0, Tj-l], the wealth of such a portfolio, expressed in units of 
domestic currency, equals 

as expected. 
Fixed-for-floating (k;m) swaps. Before studying the general case of 
floating-for-floating cross-currency (k, 1; m) swaps, we find it convenient to 
examine the case of a fixed-for-floating cross-currency (k; m) swap. In such 
a contract, a floating rate Lk(Tj-1) is received at each payment date, and 
a prescribed fixed interest rate a is paid. Let us stress that the payments 
are made in units of the mth foreign currency. Consequently the price of the 
fixed-for-floating swap, expressed in units of domestic currency, equals (cf. 
(14.34)) 

for every t E [O,To]. Equivalently, 

where Jj = 1 + adj. Let us write the last representation as CCFSr(k;  m) = 
It - Jt, where the meaning of It and Jt is apparent from the context. We 
define 

T 
(14.47) 

where 
gfrn(T, U) = yk (t, U, T )  . ( v r l k  + bk (t, U) - bm(t, U)). 

Observe that in the special case when m = 0, the process GkO(T, U) given 
by (14.47) coincides with the process Gk(T, U )  introduced in the preceding 
section (see formula (14.39)). For notational simplicity, we write 

and 
~ , * ( k , m , j ) = b k ( t , ~ j ) - b m ( t , T j ) ,  Vt�[O,Tj] ,  (14.48) 

in what follows. Notice that 
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Lemma 14.2.2. The following equalities hold for eve? t E [0, To] 

(14.49) 

and 
n Q Y B ~ ( ~ ,  T ~ ) B ~ ( ~ ,  T ~ - ~ ) G ; ~ ( T ~ - ~ ,  T ~ )  

It = c (14.50) 
j=1 Bk(t7Tj) 

Proof. For the first formula, it is enough to observe that the equality 

Bt 
EL@* { BT, Q? I &  ) = QPBrn(t1 Tj) 

is valid for every t E [0, Tj]. To establish (14.50), observe first that 

Consequently, we obtain the following equality 

which expresses I t  in terms of the forward measure JPE_l for the market m. 
In order to evaluate this conditional expectation, observe that the dynamics 
of Bm(t ,  Tj) and Bk( t ,  Tj), k # m, as seen in the market m, are given by the 
following expressions 

dBm(t, Tj) = Bm(t,  Tj) (rY dt + bm(t, Tj) . dWtm) 

since d ~ , k  = dWF - vylk  dt. Let us denote 
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Using It6’s formula, we get 

and 

d ~ :  = H : ( T ~  - rr - bk(t,TjT1) . v?lk - bm(t,Tj-l). d;(k,m, j - 1)) dt 
+ ~ : d t ( k ,  m, j - 1) . dWy.  

Consequently, for the process H, which equals 

we obtain 

for every j = 1 , .  . . , n. Since the quantities gkmj are assumed to follow deter- 
ministic functions, taking into account the relationship 

and using the just-established expression for the differential of H ,  we obtain 

Note that the last equality is valid for every j = 1,. . . , n. Combining it with 
(14.51), we arrive at equality (14.50). 0 

The next result follows from Lemma 14.2.2 and formula (14.46). 

Proposition 14.2.3. The arbitrage price at time t E [O,To] of a fixed-for- 
floating cross-currency (k; m) swap with the underlying fixed interest rate 
equal to K is given by the expression (recall that Zj = 1 + rcdj) 

Consider a fixed-for-floating cross-currency (k; k) swap - that is, a swap 
in which the floating rate and the currency used for payments are those of 
the market k. Proposition 14.2.3 yields the following price of such a swap, 
expressed in units of domestic currency (cf. Sect. 13.1) 
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Similarly, for the (k; 0) fixed-for-floating swap (that is, an agreement in which 
the underlying floating rate is that of the market k, but where payments are 
made in domestic currency), we get 

Floating-for-floating (k, I ;  m) swaps. Let us now examine the case of a 
general floating-for-floating cross-currency (k, 1; m) swap per unit of the cur- 
rency m, which consists of swapping the floating rates of another two cur- 
rencies, say k and l. At each of the payment dates Tj, j = l , .  . . , n ,  the 
floating rate Lk(Tjel) of currency k is received and the corresponding float- 
ing rate L ’ ( T ~ - ~ )  of the currency 1 is paid. As usual, the underlying floating 
rates Li(TjFl), i = k,l ;  j = 1, .  . . , n  are set by reference to the price of a 
zero-coupon bond, so that 

B ~ ( T ~ & , T ~ ) - ~  = 1 + L ~ ( T ~ - ~ ) ( T ~  - T ~ - ~ )  = 1 + 6 j ~ i ( ~ j - l )  
for j = 1, . . . , n. The value at time t ,  in the domestic currency, of the floating- 
for-floating forward (k, 1; m) swap equals 

" Bt CCFSt(k ,  1; m) = ~ p *  { - (Lk(Tj-~)  - L ’ ( T ~ - ~ )  QR 6, Ft . 
j=1 B T ~  1 I }  

(14.54) 
Therefore, the following useful relationship 

CCFSt(k,  1; m) = CCFS,"(k; m) - CCFSr(1; m) (14.55) 
holds for any fixed level 6. The next result follows immediately from formula 
(14.55) and Proposition 14.2.3. 

Proposi t ion 14.2.4. The price CCFSt  = CCFSt(k,  1; m) at t ime t E 
[0, To] of the floating-for-floating cross-currency forward swap of type (k, I ;  m) 
i n  a Gaussian HJM model equals 

where 

for every k, m = 0,. . . , N, j = 1 , .  . . , n, and 

f o r p  = k,1. 

For the special case of a floating-for-floating cross-currency (k, 1; 0) swap 
(i.e., a swap agreement with payments in domestic currency), the above 
proposition yields the pricing result (14.45), which was previously derived 
by means of a replicating portfolio. 
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14.2.4 Cross-currency Swaptions 

By a cross-currency swaption (or differential swaption) we mean an option 
contract with a cross-currency forward swap being the option’s underlying 
asset. Note that the option expiry date, T, precedes the initial date (i.e., the 
first reset date) of the underlying swap agreement - that is, T 5 To. We first 
examine the case of a fixed-for-floating swaption, subsequently we turn our 
attention to a floating-for-floating swaption. 

A fixed-for-Boating (k; 0) cross-currency swaption is an option, with expiry 
date T 5 To, whose holder has the right to decide whether he wishes to pay 
at  some future dates T I ,  . . . , Tn a fixed interest rate, say K, on some notional 
principal, and receive simultaneously a floating rate Lk of currency k. Note 
that we assume here that all payments are made in units of the domestic 
currency. Using our terminological conventions, a cross-currency fixed-for- 
floating ( k ;  0) swaption may be seen as a call option (whose exercise price 
equals zero) with a fixed-for-floating (k; 0) cross-currency swap being the 
underlying financial instrument. Therefore, it is clear that the value at  time 
t E [0, T] of a fixed-for-floating (k; 0) cross-currency swaption, denoted by 
CCS;"(~; 0) or shortly CCSt  (k; 0), equals 

More explicitly, we have 

In view of (14.53), the formula above can also be rewritten in the following 
way 

where jj = 1 + K & ~  and (cf. (14.39)-(14.40)) 

for t E [0, TI. Under the forward measure PT, we have 

or equivalently CCSt(k; 0) = B(t, T )  IEp, (X I Ft) ,  where 
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Recall that the dynamics of the process Ft = F B ( ~ ,  Tj, T )  under the forward 
measure PT of the domestic market are (cf. (11.40)) 

dFt = Ft y(t ,Tj ,T) . dw,T, 

so that for any t E [0, TI, we have 
T T 

FT = Ft exp (1 y(u,T’,T)~d~~- il l y ( % ~ j , ~ ) I ~ d ~ ) $  

Furthermore, by virtue of (14.10), we get the following expression for the 
dynamics under PT of the process F,kj = F B k  (t, Tj-1, Tj) 

d ~ , k j  = ~ : ’ r * ( t , ~ ~ - l , ~ ~ ) .  (dwy + ( b ( t , ~ )  - V: - b * ( t , ~ ~ ) )  dt). 

Consequently, 

where L is given by the following expression 

By straightforward calculations, we obtain 

We conclude that 

We are in a position to state the following result, whose proof presents no 
difficulties. 
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Proposition 14.2.5. The arbitrage price CCS;"(~; 0) = CCSt(k; 0) of a 
fixed-for-floating cross-currency swaption at time t E [0, TI equals 

k where the vectors yf,. . . , yn, zl,  . . . , z, E E l d  satisfy for i ,  j = 1 , .  . . , n 

By a floating-for-floating cross-currency swaption we mean a call option, 
with strike price equal to  zero, to  receive the floating rate Lk of currency k 
plus margin p, and to  pay simultaneously the floating rate L1 of currency 1. 
At any time t before the swaption’s expiry date T ,  the value of a floating- 
for-floating cross-currency swaption is 

where Aj-l = dj ( L ~ ( T ~ - ~ )  + p-  L ’ ( T ~ - ~ ) ) .  From the definition of a floating- 
for-floating cross-currency swap, it is easily seen that the value CCS:(k, 1 ;  0) 
also equals 

Therefore, using representation (14.45), we get 

where 

Proposition 14.2.6. The arbitrage price of a floating-for-floating cross- 
currency swaption at time t E [O,T] equals 

where for every x E IRd 
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and nd is the standard d-dimensional Gaussian probability density function. 
k 1 I Moreover, the vectors yf,. . . , y,, yl, . . . , y,, 21,. . . , z, E Rd satisfy for h = 

k,1 a n d i , j = l ,  . . . ,  n 

rti . ruhj du, yt . zj = lT r~ . y(u, T, , T) du, 

T with rhi given by (14.58), and zi . zj = St y(u, Ti, T )  . ~ ( u ,  T’, T )  du. 

Proof. The proof goes along the same lines as in the case of a cross-currency 
fixed-for-floating swaption. 0 

14.2.5 Basket Caps 

As the next example of a foreign market interest rate derivative, we shall 
now consider a cap (settled in arrears) on a basket of floating rates L ~ ,  k = 
1,. . . , N of foreign markets; such an option is usually referred to as a basket 
cap. In this agreement, the cash flows received at times Tj, j = 1 , .  . . , n,  are 

where the weights wk, k = 1 , .  . . , N are assumed to be strictly positive con- 
stants, and K, is a preassigned rate of interest. The value of each particular 
basket caplet at  time t equals 

N where ij = ndj + C k = l  wk. Therefore, 

It is convenient to denote F? = FB(t,Tj-l,Tj) and F? = FBr,(t,Tj-i,Tj). 
Reasoning along the same lines as in Sect. 14.2.4, we find that (recall that 
G? is defined by (14.39)-(14.40), see also (14.57)) 
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where 

( t j  = y k ( u , ~ j l ~ j - l )  - ~ ( U , T ~ , T ~ - ~ ) ,  and 

The following result can thus be proved by standard arguments. 

Proposition 14.2.7. The  arbitrage price of a basket cap at  t ime t equals 
N 

k '  k '  + 
BC; = 2 B(~,T , )  1 (x W ~ F ,  ' ~ , ' n d ( x  + yx)  - 8 p d ( x  + yo))  d x ,  

j=1 Rd k=1 
N where 8 j  = I E ~ ~  + w k ,  the vectors y?,..  . , y? E IKd are such that for 

e v e y k , l  = 1 ,  . . .  , N  a n d j = l ,  . . . ,  n 

and 
y y / 2  = ST'-' I Y ( u , ~ j - l , ~ j ) 2  du .  

t 

14.3 Model of Forward LIBOR Rates 

A cross-currency extension of a market model of forward LIBOR rates can be 
constructed by proceeding along the same lines as in Sect. 14.1 - the details 
are omitted (see Mikkelsen (2002) and Schlogl (2002)) .  Let us only mention 
that the main notions we shall employ in what follows are the forward mea- 
sures and the corresponding Brownian motions. For each date TO, T I ,  . . . , T,, 
the dynamics of the forward LIBOR rate L i ( t ,  T j )  of the ith market are gov- 
erned by the SDE 

under the corresponding forward probability measure P$3, where the volatil- 
ities Xi(t, Tj-1) are assumed to follow deterministic functions. Furthermore, 
the process W T ~ > i  is related to the domestic forward Brownian motion wTj 

through the formula (cf. (14.16)) 
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14.3.1 Quanto Cap 

For simplicity, we consider only two dates, Tj = T and Tj+l = T + S; that 
is, we deal with a single caplet with reset date T and settlement date T + 6 
(note that we consider here the case of a fixed-length accrual period). A 
quanto caplet with expiry date T pays to its holder at  time T + S the amount 
(expressed in domestic currency) 

where Q is the preassigned level of the exchange rate and Li(T) is the (spot) 
LIBOR rate at  time T in the ith market. Consequently, the domestic arbitrage 
price of a quanto caplet at  time t equals 

per one unit of nominal value (the nominal value of a quanto cap is expressed 
in foreign currency). It  is thus clear that to value such a contract, we need to 
examine the dynamics of the foreign LIBOR rate under the domestic forward 
measure. The payoff of a quanto caplet, expressed in foreign currency, equals 
SQ(L~(T)-K)+/Q&+~. Consequently, its price at  time t ,  in domestic currency, 
admits the following representation 

where P&+a is the foreign market forward measure. The last representation 
makes clear that the volatility of the forward exchange rate FQi(t,T), and 
thus also bond price volatilities bi(t, T+6) and b(t, T+b) (cf. (14.24)-(14.25)), 
will enter the valuation formula. To uniquely specify these volatilities, we may 
adopt, for instance, the approach of Brace et al. (1997). In their approach, 
bond price volatilities are linked to forward LIBOR rates by means of the 
formula (cf. (12.29)) 

n(t) bLk(t, T - m6) 
b k ( t , ~ + 6 )  = - x ~ ’ " ( t ,  T - mb), (14.61) 

m=o 1 +6Lk( t ,T  - mS) 

where n(t)  = [F1(T-t)].  It  is thus clear that bond price volatilities bi(t, T+6) 
follow necessarily stochastic processes, and thus the Gaussian methodology 
examined in preceding sections is no longer applicable, even under deter- 
ministic volatilities of (spot) exchange rates. Therefore, we will examine an 
approximation of the caplet’s price. Combining the dynamics (14.59), which 
read 

d ~ ~ ( t ,  T) = ~ ~ ( t ,  T) Y( t ,  T) . ~ W , T + & > ~ ,  
with (l4.60), we obtain (recall that Li (T) = Li (T, T))  
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L ~ ( T )  = L i ( t ,  ~ ) e - ~ ~ ( ~ > ~ )  exp Xi(u, T )  . d w T S s  - - LT lXi(% T ) l 2 d ~ )  

where 

To derive a simple approximate formula for the price of a quanto caplet 
at  time t ,  it is convenient to substitute into (14.62) the term vi(t,T) with 

( t ,  T ) ,  where 

and bi(u, T + 6 )  and b(u, T + 6 )  are Ft-measurable random variables, namely 
(recall that Xk(t, T )  is a deterministic function) 

for k = 0, i and u E [t, TI. The following result provides an approximate 
valuation formula for a quanto caplet in a lognormal model of forward LIBOR 
rates. 

Proposition 14.3.1. The arbitrage price of a quanto caplet written on a 
L IBOR rate of the ith market satisfies 

where 

and 

Proof. It is enough to observe that 

where 
T 

~ ( t ,  T )  = exp (1 x ~ ( u , T )  . d ~ y ~ + '  - - 1 LT I A ~ ( ~ ,  T ) I ~  d u )  

and K: = ~ e q ' ( O > ~ ) .  The expected value can be evaluated in exactly the same 
way as in the case of a domestic caplet (see Proposition 12.6.1). 0 
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14.3.2 Cross-currency Swap 

As the next example, let us consider a floating-for-floating (k, 1; 0) swap. Re- 
call that the payoffs of such a swap are made in domestic currency. Therefore, 
its price at  time t,  denoted by CCFSt(k, 1; 0), equals (cf. (14.44)) 

per one unit of the nominal value (in domestic currency), where IPT~ is the 
forward measure of the domestic market for the date Tj. Notice that 

for i = k, 1 and j = 0, . . . , n - 1, where 

(t, T ~ )  = exp (lT3 hi(ol Tj) . - lT' I A ~ ( U ,  T,)IZ do) 

Applying an approximation similar to that of the previous section, we find 
that 

where jjk(t,Tj) and fjl(t,Tj) are given by (14.62)-(14.63). Let us end this 
section by commenting on the valuation of a floating-for-floating (k, I ;  m) 
swap, which is denominated in units of the mth currency. The price of such 
a swap at time t ,  in domestic currency, equals (cf. (14.54)) 

F’rom the results of Sect. 14.2.1, we know that the forward exchange rate 
satisfies F Q m ( T j + l ,  Tj+l) = &g+l and (see (14.24)-(14.25)) 

d F ~ m  (tl T.+l) = F Q m  (t, Tj+l)aQm (t, Tj+i) . d ~ ? " ,  

where a ~ m ( t ~ T j + l )  = v? + bm(t,Tj+l) - b(t,Tj+l). Replacing the term 
a Q m  (t, Tj+l) with 

it is possible to derive an approximate formula for the price of a floating-for- 
floating (k, 1; m) swap in a lognormal model of forward LIBOR rates. 
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14.4 Concluding Remarks 

Let us acknowledge that term structure models examined in this text do not 
cover all kinds of risks occurring in actual fixed-income markets. Indeed, we 
assumed throughout that all primary fixed-income securities (and derivative 
financial contracts) are default-free; that is, we concentrated on the market 
risk due to the uncertain future behavior of asset prices, as opposed to the 
credit risk (or default risk) that is known to play a non-negligible role in some 
sectors of financial markets. The latter kind of risk relates to the possibility of 
default by one party to a contract. If default risk is accounted for, one has to 
deal with such financial contracts as, for instance, defaultable (or credit-risky) 
bonds, vulnerable options, or options on credit spreads. 

In this regard, let us mention that in recent years, term structure models 
that take explicit account of the default risk has attracted growing interest. 
Generally speaking, this involves the study of the impact of credit ratings 
on the yield spread - that is, modelling the term structure of defaultable 
debt - as well as the valuation of other contingent claims that are subject to 
default risk. Mathematical tools that are used in this context have attracted 
attention of several researchers and, as a result, a considerable progress in 
the theory of default risk was achieved in recent years. From the practical 
perspective, the demand for more sophisticated mathematical models was 
further enhanced by a rapid growth of trading in credit derivatives, that is, 
financial contracts that are capable of transferring the credit (default) risk of 
some reference entity between the two counterparties. 

Since neither the modelling of defaultable term structure nor the valuation 
and hedging of credit derivatives were covered in this text, we refer the reader 
to the recent monographs by Ammann (1999), Cossin and Pirotte (2000), 
Bielecki and Rutkowski (2002), Duffie and Singleton (2OO3), Schonbucher 
(2003), and Lando (2004) for an introduction to this field. The interested 
readers may also consult original papers by Merton (1974), Geske (1977), 
Jonkhart (1979), Brennan and Schwartz (1980b), Ho and Singer (1982,1984), 
Titman and Torous (1989), Chance (1990), Artzner and Delbaen (1992,1995), 
Kim et al. (1993), Lando (1994), Hull and White (1995), Jarrow and Turn- 
bull (1995), Cooper and Martin (1996), Duffee (1996, 1998), Longstaff and 
Schwartz (1995, 1997), Duffie (1996b), Duffie and Huang (1996), Duffie and 
Singleton (1997, 1999), Jarrow et al. (1997), Duffie et al. (1997), Huge and 
Lando (1999), Kusuoka (1999), Elliott et al. (2000), Jeanblanc and Rutkowski 
(2002), BBlanger et al. (2004), and Bielecki et al. (2004a, 2004b). 

We have also implicitly assumed that the inflation plays no role in the 
valuation of interest rate derivatives. In fact, the distinction between nominal 
and real interest rates is not important for most interest rate derivatives, but, 
obviously, this is not true for the so-called inflation-based derivatives, such 
as inflation-linked bonds or options. Let us only mention that a few models 
aiming the valuation and hedging of inflation-based derivatives were recently 
developed (see, for instance, Jarrow and Yildirim (2000)). 




