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Summary: Part I [13] introduces the application of the barycentric approximation methodology
for evaluating profit-and-loss distributions numerically. Although, convergence of the quantiles
is ensured by the weak convergence of the discrete measures, as proclaimed in [13], recent
numerical results have indicated that the approximations of the profit-and-loss distribution are
less practical when the portfolio gets a reasonable complexity. This experience has revealed that
the weak convergence of the probability measures appears not to be strong enough for evaluating
quantiles numerically in a satisfactory way.

Thereupon, the authors have focused on information offered by the barycentric approximation
but still unused in the algorithmic procedure [13]. It has been realized that the dual to the
derived discrete probability measure helps evaluate the profit-and-loss distribution in a better
way. In this Part II, the barycentric approximation technique is outlined and benchmarked
with the intention to focus on the dual viewpoint for simplicial refinement. This technique
poses no assumption on the risk factor space, except that the variance-covariance matrix of the
risk factors exist. Therefore, it is applicable for general multivariate or empirical distributions.
Furthermore, the technique provides approximation of the risk profile as well as of the risk factor
distribution.

Beforehand, various test environments are specified which help illustrate the sensitivity of value-
at-risk numbers. These environments are characterized by the probability measure P of the
risk factors and a risk profile ¢ which represents the payoff structure of some portfolio. The
corresponding numerical results illustrate the sensitivity of value-at-risk with respect to market
volatility and correlation of risk factors. This provides information on the model risk one is
exposed to within the value-at-risk approach.

1 Introduction

The evaluation of a portfolio and its risk exposure with respect to market movements become
difficult as soon as contingent claims are involved. In case only the performance of a portfolio
has to be determined, practitioners use the mark-to-market pricing each trading day and observe
the value changes of the underlying portfolio ex post. A price series becomes available which
reveals not only the performance but also the risk-return pattern of the various financial activities



untertaken by the portfolio manager. Practitioners prefer this approach due to its simplicity,
there is no need for information ex ante, neither for determining the value functions of the
financial instruments nor for assessing the probability distribution of the risk factors. However,
it is this lack of information, that makes it difficult to rebalance the portfolio for achieving an
improved risk-return pattern in an efficient way.

The risk-return pattern

Practitioners often identify the risk-return pattern of financial instruments through the average
return and the volatility of the return. In this work, we will characterize the risk-return pattern
of a portfolio with the so-called profit-and-loss distribution, associated with a specified planning
horizon. Clearly, the profit-and-loss distribution is determined by the value functions of the
instruments and the probability distribution of the risk factors. The latter represents the dy-
namics of the risk factors up to the end of the prespecified holding period. Herein, the notions
risk-return pattern and profit-and-loss distribution are used synonymously.

Requesting an appealing approximation of the profit-and-loss distribution requires to determine
the dynamics of the risk factors and the value functions of the corresponding contingent claims
held in the portfolio.

The dynamics of risk factors are commonly modelled via normal or lognormal distributions.
However, it has been observed empirically that market movements are distributed non-normally,
respectively non-lognormally. For taking this into consideration one may think of employing
series of high frequency data of the risk factors, which help assess more general distributions for
the market movements.

The wvalue function of contingent claims are often given implicitly through partial differential
equations, which have to be solved. The most common approach still used for valuing derivatives
is based on the Black-Scholes model, which allows for solving the underlying partial differential
equation analytically. In recent years limited applicability of the Black-Scholes model has been
seen by both scientists and practitioners due to the fact that the volatility is supposed to be
deterministic and known beforehand; in addition, empirically observed characteristics of certain
risk factors, like the mean reverting property of interest rates, cannot be incorporated adequately.
In finance, various extensions of the Black-Scholes approach and new valuation models have been
developed which take into account various dynamic features for pricing contingent claims in a
more realistic manner (see e.g. Hull 1997 [18], Wilmott et al. 1994 [35]). Therefore these models
build the basis for determining appealing approximations for the value functions, and, finally,
for the desired risk-return pattern.

Practical viewpoints

The practice of risk management faces analytical and organizational problems which make the
pointwise evaluation of the profit-and-loss distribution onerous.

Analytical problems: The progress of financial engineering has created increasingly sophisticated
financial instruments, for which there is no analytically closed-form solution to their value func-
tions. Instead, these value functions are given implicitly, so that even pointwise evaluations of
the profit-and-loss distribution become difficult.



Organization problems: Risk management units of large financial companies have to manage
a considerable quantity of data. The portfolios of such companies likely contain thousands of
financial instruments which depend on hundreds of risk factors. The delocalization of the trading
units of a worldwide institution causes the portfolio to be traded continuously, which results in
permanent shifts of the portfolio structure. This induces permanent changes of the underlying
risk factors and dynamic changes of the risk-return pattern.

Assessing the risk-return pattern of a portfolio provides the portfolio manager with information
on the frequency and amount of both, potential loss and potential profit. In case of linear or
quadratic value functions and normally distributed risk factors the quantiles of the profit-and-
loss distribution are available pointwise, i.e. with respect to prespecified levels. The challenge
lies in the numerical evaluation of quantiles which becomes onerous in case the nonlinear value
function of a portfolio is given implicitly and the risk factors are distributed non-normally. In
practice, quantiles which represent a loss are also called value-at-risk. Herein, value-at-risk and
quantiles of a profit-and-loss distribution are used synonymously.

Coherent risk-measures

Any number which represents the potential loss of a portfolio in an adequate predefined sense
may be accepted as a risk measure. In Artzner et al. 1996 [1] a distinguished class of risk mea-
sures has been introduced, the so-called coherent risk measures. These pay attention only to
those market movements that cause a loss to the portfolio manager. Those market movements
which provide profits are not taken into account. Coherent risk measures are not based on
market expectations of individual portfolio managers. Instead, a distinguished set of risk factor
distributions characterize the coherent risk measure and allows for identifying the potential loss.
The elements of this set are called generalized scenarios in Artzner et al. [1]. It should be noted
that coherent risk measures remain unchanged in case the set of generalized scenarios is convex-
ified. In this sense coherent risk measures help regulators assess the capital requirement with
respect to a distinguished set of market dynamics for controlling the possibility of bankruptcy.

One common coherent risk measure is the mazimum loss derived with respect to a predefined
feasible region of market movements. The distinguished set of probability measures, which
characterizes this measure in the sense of Artzner et al. [1], consists of the one-point distributions
at each point of a confidence region and its convexification. The challenge for evaluating the
maximum loss lies in the minimization of a nonconvex, high-dimensional value function. For
details on the numerical solvability of the maximum loss approach it is referred to Studer and
Liithi 1995 and 1997 [32, 33, 34].

Contents of this paper

We focus on algorithmic procedures for determining the risk-return pattern of a portfolio. As
mentioned above, the risk-return pattern characterized by the profit-and-loss distribution is
completely determined by the value functions of the underlying instruments and by the risk
factor distribution. For the reason of adequate benchmarking, we focus on normal distributed
risk factors and on value functions which stem from the Black-Scholes model. It will become
clear below for which methodologies these assumptions may be relaxed in what way. This work



is seen as a contribution for helping develop and improve risk assessement tools for both trading
and management.

The structure of this work is as follows: In section 2 the problem statement is introduced
formally. A specific financial instrument having been issued by a Swiss bank in June 97 is taken
as an example for illustrating the profit-and-loss distribution. Section 3 roughly surveys existing
approaches. In particular, the goodness and the numerical effort of the Delta approximation,
the Delta-Gamma approximation, the Monte Carlo simulation and the historical simulation
are discussed. In Section 4 various test environments are specified which help illustrate the
sensitivity of value-at-risk numbers. These environments are characterized by the probability
measure P of the risk factors and a risk profile ¢ which represents the payoff structure of
some portfolio. Section 5 reports on the numerical results within the specified environments
illustrating the sensitivity of value-at-risk with respect to market volatility and correlation of
risk factors. This provides information on the model risk one is exposed to within the value-at-
risk approach. Section 6 reveals that the dual to the derived discrete probability measure helps
evaluate the profit-and-loss distribution in an appealing way. The barycentric approximation
technique is outlined with the focus on this dual viewpoint for simplicial refinement. Section 7
benchmarks the barycentric approximation to the Delta-Gamma approximation for predefined
FX-portfolios and for the ROE Warrant on the ABB stock. Section 8 concludes and provides an
outlook for future research activities which should help improve an active portfolio management
with the value-at-risk approach.

2 Problem statement

Let w = (w1,...,wy) € RM denote the changes of M risk factors which define the value g(w) of
an underlying portfolio. g(-) represents a real-valued function from a proper domain Q@ ¢ RM
to IR and is called value function or risk profile. Let be g(0) = 0 and denote with <g(-) the short
position of the underlying portfolio. Clearly, the investor who sells the portfolio has risk profile
<g. The outcome of w at the end of the holding period [0, 1] is given by its probability measure
P on the Borel space (IRM, B). The profit-and-loss distribution (i.e. the risk-return pattern) is
then given by the induced probability measure P, of the transformed random variable g(w) on
(IR, B). The associated distribution function Fjy is given through

Fy(0) = P{w|g(w) < 0} (1)

It is stressed that only the frequency, that the portfolio value exceeds v, is revealed. There
is no information available concerning to what extent the portfolio value does not come up
to 9. This information would become available from the lower partial moments of order > 1.
Numerical evaluations are more cumbersome due to the inherent additional transformation of
the implicitly given risk profile. This will not be discussed in this work but postponed to future
research activities.

The positions in the portfolio are supposed to remain fixed within a pregiven holding period. Due
to its characterization a coherent risk measure provides neither information on the frequency (i.e.
probability) of the potential loss nor on the frequency and amount of potential profits. Hence,
no information can be deduced for the risk-return pattern and its asymmetry, which provides
the basis for improving the portfolio management. This is the motivation for focusing on the
profit-and-loss distribution. It is stressed that quantiles if accepted as risk measures do not



fulfill the subadditivity condition and, hence, are not coherent. Evaluating quantiles requires
that a unique probability measure is used for modeling the market movements. This unique
probability measure is denoted P and may be represented by the martingale measure or by the
individial investor’s expectations of future market movements.

Let 97 be the quantiles or value-at-risk numbers (VaR) of level « for the long portfolio g and
v %for the short portfolio <g. For the ease of exposition, it is supposed that these quantiles
oH®, 57 exist and that the distribution functions Fj, F_, are continuous on %, 7% In
case that both refer to the same prespecified level «, i.e. if

Fg(o7%) = Fy(07") = a, (2)

then both values, 9% and ™% reveal information on the asymmetry of the risk-return pattern.

Some special cases, in which the profit-and-loss distribution F, can be represented by some
standard distribution, will be discussed below roughly.

For the ease of understanding the profit-and-loss distribution of a warrant, which has been issued
recently by a Swiss private bank (see [4]), is evaluated. This ROE warrant on ABB is seen as
an alternative to money-market instruments. The warrant expires on June 24, 1998 and has
been priced with SFr. 1875.- on June 15, 1997. At this date the price of the ABB stock has
been SFr. 2130.-. Depending on the ABB stock price at the expiration date two payments are
possible: i) in case the price is greater or equal the cap of SFr. 2100.- then the holder of one
warrant obtains the cap of Sfr. 2100.- as payment; ii) in case the ABB stock price closes below
that cap SFr. 2100.- then the holder of one warrant receives one ABB stock.

We are interested in the value-at-risk corresponding to level 1%, 3% and 5%. The time horizon
is 3 months. The two-dimensional risk profile of the warrant is illustrated in Figure 1. The

Price ABB Warrant

Figure 1: Risk profile of the ROE warrant on ABB



current stock price pg is Sfr. 2130.- with a volatility o set to 26%. The risk factor changes of
price w; and volatility wo are normally distributed N (p,X) with parameters

_ 2 A . [ 0.070756 0.037240
n=0cR > T ( 0.037240 0.490000 |-

The associated profit-and-loss distribution is continuous and shown in Figure 2. The value-
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Figure 2: Profit-and-loss distribution of the ROE warrant on ABB

at-risk numbers of levels 1%,3% and 5% are listed in Table 1 and reveal information on the

asymmetry of the risk-return pattern.

a v v
1% || 378.123 | 180.683
3% || 300.441 | 163.559

5% || 261.284 | 151.669

Table 1: VaR for the ROE Warrant on ABB

3 Existing Approaches

We briefly review existing value-at-risk methodologies for measuring the potential loss of a
portfolio risk profile g(w) with respect to a corresponding domain © € RM. Goodness of the
value-at-risk proxies and their associated numerical effort is discussed. It will become clear
from the arguments below that each approach offers valuable information on the risk exposure.

However, each has to be utilized with care.



Delta approximation of the risk-profile

Linear approximations of the value functions at current price levels are denoted Delta approxi-
mations. These are widely used in classical risk management, and are known as duration analysis
in bond management or Delta hedging in portfolio management (see [8, 14, 18, 25]). Substituting
the risk profile by linear functions locally helps overcome the difficulty of implicitly given value
functions and provide analytical ways for determining the value-at-risk in case the risk factors
are normally distributed.

Mostly, the instanteneous first order sensitivities A € IRM of the value functions g(-) with respect
to the risk factors w € RM - the socalled Delta - determines the linear approximation §(-) = A'w
at w = 0. In case that the risk factors w € IRM are distributed according to N (0,%) g(w) € R is
distributed according to N (0, A’>A) which represents a symmetric risk-return pattern. Hence,
the value-at-risk numbers associated with §(w) and <g(w) respectively, are given analytically
by

ot =00 = - A'ZA (3)

and serve as a proxy for the value-at-risk of g and of &y, respectively. The coefficient c,
corresponds to level «, i.e. ¢, = 1.64 for @« = 5%, ¢, = 1.88 for @ = 3%, and ¢, = 2.33 for
a = 1%. Clearly, their goodness depends on the degree of nonlinearity of the risk profile on €.
It should be stressed that the goodness of the linear approximation decreases with increasing
holding period if options are included.

In case the A of a portfolio is close to 0 € RM the portfolio is called Delta-hedged. The value of
a Delta-hedged portfolio remains unchanged for small changes in the risk factor, the value-at-
risk is close to 0. However, it might have severe impact on the portfolio value if w leaves some
neighbourhood of 0.

In case instantaneous first-order sensitivities are used, i.e. the A at w = 0, the numerical effort
is restricted to M evaluations of first order derivatives. In many cases, it is useful to work with
a A that corresponds to the sensitivities of g at some nonzero risk factors w € €2. This makes an
additional evaluation of the portfolio at w # 0 necessary to obtain a linear affine approximation
g = A'w + const. Taking an average of first order sensitivities of g on Q may yield better
linearizations but requires additional effort for selecting a number of distinguished risk factor
values at which the portfolio and its first order sensitivities are evaluated. It is noted that better
linearizations need not necessarily result in better value-at-risk approximations.

Applying the Delta approximation to the ROE warrant yields the risk profile
§(w) = 0.596098w, <828.2664ws .

The variance-covarince matrix of the logarithms of the risk factors is given with X485, The
associated value-at-risk numbers 9%, %0 and 9,°* are listed in Table 2. These results
illustrate that the accuracy is insufficient and the severe asymmetric shape of the true profit-
and-loss distribution is not mapped adequately.



-I—a +,Oé —, —,x
(87 v UA v UA

1% || 378.123 289.425 | 180.683 315.600
3% || 300.441 230.891 | 163.559 251.365
5% || 261.284 199.966 | 151.669 212.613

Table 2: Delta approximation of VaR for the ROE warrant

Delta-Gamma approzimation of the risk profile

To incorporate the nonlinearity of a risk profile second-order information of g on 2 is used.
Substituting the risk profile locally by a quadratic function ¢ helps overcome the difficulty of
implicitly given value functions ¢ and provides additional information on the curvature of g, i.e.
on the sensitivities of A. Normally distributed risk factors allow for deriving the value-at-risk
numbers of ¢ analytically, which serve as proxies for the corresponding value-at-risk numbers of
g. Formally,

J(w)=u', w+ Alw, (4)

where , € RM*M represents the Hessian of ¢ at some point w € €, i.e. the matrix of the
second-order derivatives of g. As above, A represents the M-dimensional vector of first-order
sensitivities. In literature, ¢ is known as the Delta-Gamma approxzimation. Obviously, g is no
longer distributed normally. However, as shown in Rouvinez 1997[27], the distribution Fj of § is
representable as a combination of non-central y?<distributions, whose corresponding quantiles
are given in analytical form.

The numerical effort for determinig quadratic approximations of g increases with order 2 in the
dimension M. This is due to evaluating M items of , . If , represents a kind of average
of Hessian taken locally at various points w € €2 then the effort is a multiple. Again, better
quadratic approximations need not necessarily result in better value-at-risk estimates. Which
Hessian , should be selected, so that the value-at-risk of g serves as sufficient proxy for the
value-at-risk of g, is of practical importance.

JP Morgan [20] has analysed the goodness of its own Delta-Gamma approximation for the pricing
of call and put options. The widely used Black and Scholes formula serves as a benchmark. The
results show that the relative error is dependent on the relation of the spot and strike price
and on the time to maturity. The error increases when the option approaches expiration at-the-
money. An obvious explanation is offered by the nondifferentiability of the risk profile at the
strike price when the option expires.

Applying the Delta-Gamma approximation to the ROE warrant yields a quadratic approxima-
tion g for the risk profile

§(w) = 0.596098w; <828.2664w; <0.5(0.000681w? + 0.06931 18w, wy <>18.02847w?)

The associated value-at-risk numbers 6@, 1%, 7% and 0, are listed in Table 3. These

results illustrate sufficient accuracy and an adequate mapping of the asymmetric profit-and-loss
distribution.



AT v o
1% || 378.123  369.296 | 180.683 195.977
3% || 300.441 293.088 | 163.559 166.341

5% || 261.284 253.719 | 151.669 150.037

« v

Table 3: Delta-Gamma approximation of the VaR for the ROE warrant

Monte Carlo simulation

The probability measure P on the M-dimensional risk factor space (IRM ,B) associated with a
fixed holding period [0, 7] is supposed to be known. The values w' (i = 1,..., N) represent
the risk factor movements up to time 7" and are drawn randomly with size N by a random
number generator, which maps the probability measure P adequately. It is noted that P need
not necessarily be of normal type. The underlying portfolio is priced for each of the N randomly
generated w’, i.e. the value function g is evaluated at each w’. The Monte Carlo simulation
(see [10, 28]) yields an empirical distribution Fy of g and, hence, an approximation of the real
profit-and-loss distribution Fy;. The quantiles of F are proxies for the quantiles of Fy.

The applicability of the Monte-Carlo simulation is limited due to the fact that the mapping of
both the probability measure P and the risk profile g is adequate only for a large sample size N,
say for N > 10'000. On the other hand, the number of portfolio evaluations that can be afforded
lie in the hundreds. Monte-Carlo simulation or modern versions, like the quasi-random Monte
Carlo simulations (see [9, 19]), is therefore used in practice with care. It should be noted, that
the goodness of random number generators impacts the goodness of the value-at-risk numbers.
Numerical tests with using various random number generators (see Hértel [17]) have indicated
that the variability of the quantiles of the empirical distribution F taken with respect to various
generators is between 1<5%. Therefore the variability of the value-at-risk numbers with respect
to different generators may be accepted as negligible, at least at this stage.

Historical simulation

In the historical simulation (see [29, 30]) the portfolio is evaluated with respect to M-dimensional
risk factor movements of the past. This yields an empirical distribution th of the portfolio
changes g which serves as approximation for F,. Evaluating the skewness and kurtosis of the
historical data of each of the M components illustrates whether the normal distribution of the
risk factors is valid. This allows conclusions on the goodness of the Delta approximation and
the Delta-Gamma approximation at least ez-post.

Again, the applicability of the historical simulation is limited by its size N. The length of the
past period considered is a trade-off between the sample size and the representativeness of the
data. It is capturing possible fat tails but also outliers of the distribution. One has to be aware
that the past observations map the future risk factor dynamics. Hence, the goodness of the so
derived value-at-risk numbers depends on how accurate the future risk factor movements obey
the past movements probabilistically.

In practice, the daily returns are often used as an empirical distribution although the underlying
portfolios are modified in the daily business. In this case, the empirical distribution reveals



neither information on the riskiness or on the risk-return pattern of the current portfolios,
nor can this be utilized for improving the risk-return pattern and, hence, for improving the
performance of a portfolio manager. The daily returns do reveal information on the risk attitude
of the portfolio manager if its volatility is benchmarked to that of indices.

4 Test Environment

The quantiles of the profit and loss distribution F' depend on the probability measure P of a
measurable risk factor space (€2, 3) and on the risk profile g : @ € R — IR of the underlying
portfolio. The quantiles of Fj represent the value-at-risk (VaR) with respect to a predefined
level ae. Whether this value-at-risk number reflects the real risk exposure of the portfolio in the
prespecified sense depends on how good P maps the future risk factor movements up to the end
of the holding period, and on how good g maps the market prices. How to model the risk factor
dynamics and the pricing mechanism is of interest for scientists and practitioners. To clarify the
contribution of this work, the issue is the evaluation of the quantiles of F, given the measure P
and the risk profile g. Due to the complexity of the problem the quantiles are to be determined
not analytically but numerically with some level of inaccuracy. An efficient algorithmic procedure
should behave reasonably fast and accurate. The sensitivity of the quantiles with respect to the
parameters of market dynamics is one indicator for the model risk. Key parameters for modelling
the dynamics are the volatility and the correlation structure of the risk factors. Accurate
estimates of these parameters are of capital importance for the goodness of value-at-risk numbers.
For recent works on parameter estimation it is referred to Going ([15, 16]) and the references
therein.

In this section various test environments are specified which help illustrate the sensitivity of
value-at-risk with respect to volatility and correlation in the subsequent section. These environ-
ments are characterized by the probability measure P of the risk factors and an underlying risk
profile g which represents the payoff structure of some underlying portfolio.

Environment 1)

For tutorial purposes one-dimensional quadratic risk profiles ¢°(w),¢" (w) and g~ (w) are con-
sidered with w distributed according to N(0,0 = 1) and N (0,0 = 1.3). It is assumed that
g°(w), 97 (w) and ¢~ (w) are nonnegative for w < 0 and take the value

<25 25
¢°(w) = 25w, g (w)= Tw2 T(w) = ZwZ 50w (5)
for w > 0. The curvature , and slopes A are given for w € [0, 4] according to
<60 50
0 _ - _ +

9’ ) 4 ) 4 ( )

and 50 50
A= &25 AT = T“’ At = T“’ 50. (7)

Note that the Delta of g~ is small and close to 0 for small w > 0, the Delta of g* is close to <50
for small w > 0. The maximum loss of all three profiles subject to w € [<4,4] is equal to 100.

10



The curvature reveals the degree of nonlinearity of the risk profile. The graphics below show
the risk profiles on the loss region w € [0, 4].

Figure 4: Risk profiles g~ and g°

Environment IT

16<and 4<dimensional linear-quadratic risk profiles are considered with the intention to exam-
ine the sensitivity of the value-at-risk with respect to the curvature of a quadratic risk profile
and the correlation structure X!/ of the risk factors. The risk factors are supposed to be nor-
mally distributed according to N (0,%!7). Let the curvature of the risk profile g(w) be given by
the diagonal matrix D. The scattering of this distribution is characterized by the eigenvectors
and eigenvalues of £/, The eigenvalues represent the scale of the scattering in direction of the
corresponding eigenvector (see Figure 5).

The value-at-risk appears to be more sensitive with respect to the curvature in the direction
of the eigenvector the larger the eigenvalue is. In order to make the sensitivities subject to
different degrees of correlation comparable, one has to change the curvature of the price function
in that direction. Hence, the coordinate system is transformed by the matrix of eigenvectors
VT that correspond to an individual correlation structure %!/, Let the diagonal elements of
DT be eigenvalues which represent the desired curvature of a risk-profile along the eigenvectors.
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Transforming D! accordingly yields the Hessian matrix , /7 = V~'DV (see Figure 6) of the

desired quadratic risk profile

gll(w) :wl, IIw—i—w’AII. (8)

Evaluations have been performed for different degrees of correlation and for different Hessian.

In particular, we have considered the uncorrelated case, £/

, a medium correlated case, Eﬁ{ , and

a highly correlated case, E,ILI (see Appendix). The eigenvector matrices V,/!, VIT and VhI I are
accordingly determined. The diagonal matrices D

17 17 17 17 17

trices ) u,a’ ) m,a’’ h,a’d u,b)?’ m,b

and g,{Ib

11

e

o = <41 and Dy, =
and , ! b for the associated risk profiles g2 a,gm a,gh a,gu b,gm b

=o', Tw+o'AT.

@32[ yield Hessian ma—

(9)

Setting Al := 161> offers high and low curvature relative to the slope (see Appendix).

The 4-dimensional profile and its correlation structure is indexed with II. The associated
variance-covariance matrices are given by

IT .
¥,

1.000
0.000
0.000
0.000

1.000
0.049
0.387
0.074

1.000
0.755
0.855
0.811

0.000
1.000
0.000
0.000

0.049
1.000
0.477
0.309

0.755
1.000
0.884
0.957

0.000
0.000
1.000
0.000

0.387
0.477
1.000
0.227

0.855
0.884
1.000
0.911

0.000
0.000
0.000
1.000

0.074
0.309
0.227
1.000

0.811
0.957
0.911
1.000

and represent submatrices of SL1, SII and $IT. The eigenvector matrices VI, VI and V)!T are

determined accordingly. The dlagonal matrices D, = <41 and Db

Ir IT IT IT IT
) u,a’ ) m,a’’ h,a’? u,b)?’ m,b

)

M=, My + AT

<321 yleld Hessian matrices

and , h b for the associated risk profiles gu a gm 0 gh ) gu b gm p and g,I;Ib

Setting AT .= 161 offers high and low curvature relative to the slope.

#I denotes the identity matrix of corresponding dimension

> denotes the vector with all components set to 1

12



Figure 6: Hessian, =V 'DV

In addition to linear-quadratic risk profiles, UBS [2] has motivated to consider trigonometric
profiles, too. We have chosen the 16- and 4-dimensional case:

Girig(w) = 100"000 - sin(IT;% w;). (10)
IT _ ’ . 4 ]
irig(w) = 100°000 - sin(IL;_; w;). (11)
The risk factor w € IR'® is multivariate normally distributed with the above correlation matrices

SIS and BIT

Environment I1I)

UBS has motivated the following lattice representation. Applied to a FX-portfolio with K
foreign currencies, this results in the evaluation of K risk matrices, where each risk matriz (see
Table 4) consists of the value change of the underlying portfolio with respect to one pair of risk

13



Gt exchange rate

volatility || po <30, | po 20, | po 0o, | Po | Po+ 1oy | po + 20, | po + 30y
vy 20, g1,1 91,2 91,3 g1,4 91,5 91,6 91,7
vp & loy, g2,1 g2,2 92,3 92,4 g2,5 92,6 g2,7
Vo gs.1 g3,2 g3,3 g3.4 g3.5 g3.6 gs,7
vy + 1oy, 94,1 94,2 94,3 94,4 94,5 94,6 ga,7
vo + 20, gs,1 g5,2 95,3 g5,4 g5.5 g5.6 gs,7

Table 4: Lattice representation of risk profile

factors; in case of a FX portfolio the risk factors cross-rate and its volatility are used. Of course,
the lattice representation is also applicable to fixed-income or equity portfolios.

The entries g; ; of the matrix G''T represent the value change of the underlying portfolio with
respect to multiple changes in the price &ko, and in the volatility +ko,. 7 cross-rate movements
and 5 volatility movements are considered here. The current price and volatility is given by pg
and vy. It is noted that by construction gs4 = 0 in the above example. Hence, the value of the
portfolio is known for finitely many points. For determining the value change with respect to
different factor movements one has to apply adequate inter- or extrapolation, which provides an
approximation of the real risk profile g.

Observe that the nonseparability of risk profiles with respect to the prices and with respect to
the volatilities is lost when the lattice representation is used in the above way. Only the nonsep-
arability of price and volatility of one underlying currency is taken into account. For measuring
that impact we have taken a FX-portfolio with 8 major currencies whose 16-dimensional risk
profile has been approximated by a linear-quadratic function. We have received both the FX-
portfolio and the quadratic approximation of its risk profile g’’’ : R'® — IR by a financial
institution.

gIII(w) _ wl, IIIw+wIAIII (12)

Unfortunately, the authors have not been authorized to publish the Hessian , /! and the AT
vector. The 7 risk matrices are listed in the Appendix.

Environment IV)

We have received a linear-quadratic risk profile ¢ from a Swiss bank which approximates the
value function of an FX-portfolio with 22 foreign currencies and the SFr as reference currency.
Considering exchange rates and their volatilities as risk factors, the corresponding space is
46<dimensional. Formally, this risk profile ¢'¥ : IR*® — IR is given by

gIV((U) — UJI, IVw—l—w'AIVI (13)

The logarithm of the price changes and the volatility changes are supposed to be distributed
multivariate normal. The associated correlation structure is defined correspondingly with

IV IV
— E}%/ E}%/ c TR16%46
Y51 Xy
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where 21Y incorporates the correlation of exchange rates and volatilities. The variance-covariance
matrix ¥!V is available upon request.

Environment V

A FX portfolio PF) has been constructed which covers 8 exchange rates and which consists
of 200 different call and put options. The portfolio PF) contains 40% of instruments with
maturity 7 days, 40% with maturity 3 months, 10% with maturity 6 months and 10% with
maturity one year. 40% of the derivatives are at-the-money, 20% are each mid in-the-money or
out-of-the-money and 10% are each deep in- or out-of-the-money.

Subsets of the above portfolio are defined according to the following rules: Portfolio PFy
contains in-the-money instruments; portfolio PFy out-of-the-money instruments; portfolio PF)”
in-the-money calls and out-of-the-money puts; portfolio PFY" contains in-the-money puts and
out-of-the-money calls. The maturity structures of all these subportfolios are the same.

The variance-covariance matrix ¥V coincides with the corresponding one in environment II,
ie. ¥V = ¥/ The Black-Scholes approach is used for valuing the portfolio yielding the
corresponding five risk profiles g}, gy , gy, g} and g¥.

The instruments and the variance-covariance matrix are listed in the Appendix.

5 Sensitivity of the Value-at-Risk

The aim is to illustrate the sensitivity of the value-at-risk with respect to changes in the market
parameter and with respect to various levels. This is done for the above outlined environments
independent of the methodology. As mentioned above, the sensitivity of the quantiles with
respect to the key parameters, volatility and correlation structure, is one indicator for the model
risk, one is exposed to within the value-at-risk approach. This will motivate to pay attention to
the slope-curvature relation \LAL:_I along the risk factor components w;, 1 =1,---, M.

In this section we report on the numerical results within the above introduced environments il-
lustrating the sensitivity of value-at-risk with respect to volatility and correlation. This provides
information on the model risk.

Environment I

One-dimensional quadratic risk profiles ¢°(w), gt (w) and g~ (w) are considered with w distributed
according to N(0,0 = 1) and N(0,0 = 1.3). The domain of the risk factor w has been set to
[<4,4] and may be interpreted as confidence region. The probability that the risk factor is
outside that domain is equal to 3 - 10~ for ¢ = 1 and equal to 1073 for o = 1.3. It is recalled
that all these profiles have the same maximum loss, set to 4.

Sensitivity of the value-at-risk with respect to the level a: Given that w ~ N (0, 1), the probability
that w is greater than 1.64, 1.88, 2.33 respectively, is 0.05, 0.03, 0.01 respectively. Below, these
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three different levels, o« = 1%, 3% and 5%, are considered at which the value-at-risk is evaluated
for risk profiles g, ¢° and gT. Clearly, the value-at-risk of the convex risk profile g* is larger
than the value-at-risk of the concave risk profile g~ (see Table 5). This could have been already
expected from the Deltas.

el g & g% |

1% || 33.82 58.16 82.49
3% || 22.11 47.02 71.93
5% || 16.90 41.12 65.30

Table 5: Value-at-risk for different curvatures

Considering the associated relative changes of the value-at-risk with respect to the 5% level, the
corresponding numbers are listed in Table 6.

lallg ¢ g" ]

1% || 200% 141% 126%
3% || 131% 114% 110%
5% || 100% 100% 100%

Table 6: Changes of the value-at-risk relative to the 5% level

The value-at-risk corresponding to the concave risk profile is more sensitive with respect to the
level than the value-at-risk to the convex risk profile. In case of a positive curvature the relative
change is less severe. This has not been expected from the Delta, but could have been from the

curvature-slope relation %. It is noted that for the three profiles we have

- 0 + 1

: = &0 —— =0 : =—. 14

A Yy a7 .
A Delta-hedged portfolio with negative curvature has a large negative curvature-slope relation
which indicates that the value-at-risk number is very sensitive with respect to changes in the
level . The value-at-risk numbers of a portfolio with almost no curvature behave like 1,64 :
1,88 : 2,33 when levels o = 1%, 3% and 5% are chosen. The value-at-risk numbers of a portfolio
with positive curvature behave even below the relation 1,64 : 1,88 : 2, 33.

Sensitivity of the value-at-risk with respect to market volatility o:

Figures 7 and 8 illustrate the value-at-risk curve for 0 = 1 and o = 1.3 as a function of level a.
Table 7 summarizes the associated numbers for the concave, linear and convex risk profile.

In case the volatility increases by 30%, the value-at-risk changes by 69% for the concave risk
profile ¢g—; obviously, the value-at-risk changes by 30% for the linear risk profile, and it changes
by 14%, 18% and respectively 20% for the convex risk profile g*. These sensitivity results are
in line with the curvature-slope relations

— 0 + 1

) _ ) _ ) ——— 1
AT @Y AT (15)

The relative changes of the value-at-risk as a function of o based on an increase of the market
volatility by 30% is illustrated in Figure 9. Clearly, the constant behaviour in the concave case
is caused by the quadratic term of g
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Figure 8: Value-at-risk curve for negative curvature

Summarizing, one may state that the value-at-risk is less sensitive with respect to the volatility
of the risk factors when the risk profile is convex. This indicates less model risk when the
risk exposure of a portfolio is measured. To the contrary, negative curvature in the loss region
of the risk profile should be carefully analyzed. This documents that insufficient estimates of
the volatility can have significant impact on the identified value-at-risk. In particular, a 30%
underestimation of the volatility causes an underestimation of the assessed risk by about 70%
in case the risk profile is concave.

Environment I

16< and 4<dimensional linear-quadratic risk profiles of the form

g (w) =, ,I,,Iw+w'AH (16)

)

are considered.

The value-at-risk numbers and their sensitivity with respect to market volatility are summarized
in the Tables 8 and 9. It is noted that the two curvature-slope relations are

for risk profiles g{g, g{ L. |XZ| =<4 for risk profiles glg , g{ I (17)
2

I
o
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g g gt

« o= o= relative | o= o= relative | o= o= relative
1.0 1.3 change 1.0 1.3 change 1.0 1.3 change
1% || 33.82 57.16 69% 58.16 75.61 30% 82.49 94.04 14%
3% || 22.11 37.36 69% 47.02 61.13 30% 71.93 84.88 18%

5% || 16.90 28.58 69% 41.12  53.46 30% 65.30 78.33 20%

Table 7: Sensitivity of VaR with respect to market volatility

75% T
60% 1 g
45% -+
0
g
30%
15% + .
g
0%

1% 2% 3% 4% 5% 6% 7% 8% 9%  10% a

Figure 9: Sensitivity of VaR with respect to market volatility

The correlation structure of the risk factors plays a significant role for the value-at-risk of both
curvature-slope relations in the negative definite case. The greater the correlation and the
curvature, the higher the value-at-risk. Underestimating the market volatility by 256% yields an
underestimation of the value-at-risk by 28% for a risk profile with a small negative curvature-
slope relation. Overestimating the volatility by 30% yields an overestimation of the value-at-risk
by about 37% for a risk profile with a small negative curvature-slope relation. For risk profiles
with larger curvature the value-at-risk is more sensitive with respect to the market volatility. It
results an underestimation of the VaR by about 40% and an overestimation of VaR by about
60%. The degree of correlation and the dimension of the risk factor space have less impact on
the sensitivity of the value-at-risk with respect to market volatility. It is the curvature of the
risk profile which counts for the sensitivity.

Obviously, in case the risk profile is linear the relative changes of the value-at-risk is determined
by the relative change of the volatility i.e. the value-at-risk changes by <25% for o = 0.75 and
by +30% for o = 1.3.

These results confirm that negative curvature and estimating volatility play a significant role
for the stability of value-at-risk estimates.
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IT

IT

a=1% 9oa 9.p
0.75%17 w1 13 | orsxlT  xIT 1308
251 65.94  92.21 126.61 | 145.47 241.69 394.14
-28.48% 37.31% | -39.81 % 63.07 %
»ir 87.09 122.71 168.65 | 187.99 302.73  475.79
-29.03% 37.44% | -37.90 % 57.17 %
ni 123.83  174.45 241.30 | 271.32 444.32 710.24
-29.02% 38.32% | -38.94% 59.85%
a=3%
»li 52.98 74.32  101.87 | 117.79 195.07 314.52
-28.72% 37.07% | -39.62% 61.23%
»ir 70.17  97.79 133.39 | 143.23 230.04 366.71
-28.25% 36.41% | -37.74% 59.41 %
i 100.70  140.83 193.57 | 206.61 334.46 533.70
-28.50% 37.45% | -38.23% 59.57%
a=5%
»li 46.56  65.43  90.30 | 102.41 170.92 277.02
-28.85% 38.01% | -40.08% 62.08%
»iT 60.77  84.67 115.97 | 122.50 196.55 311.96
-28.23% 36.96% | -37.68 % 58.71 %
e 86.30  120.03 163.88 | 167.23 271.80 429.27
-28.11% 36.53% | -38.47 % 57.94 %

Table 8: Sensitivity of the 1%, 3% and 5% VaR for g’
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a=1% g 9'y
0.750I1  wIT 13%T | o750 ni 1.30x11
it 135.45 191.62 265.91 | 341.66  570.62  922.16
-29.31% 38.77% | -40.13% 61.60%
LAY 323.75  453.30 623.82 | 662.31 1'054.15 1°642.66
-28.58% 37.62% | -37.17% 55.83%
e 508.00 716.53 992.62 | 1’126.59 1'819.94 2’948.40
-29.10% 38.53% | -38.10% 62.01%
a=3%
I 112.36  159.41 223.25 | 292.06  494.00  813.12
-29.52% 40.05% | -40.88% 64.60%
T 257.04 358.72 490.52 | 502.02  798.22  1'252.36
-28.35% 36.74% | -37.11% 56.89%
e 397.48 555.74 762.66 | 1’806.97 1°299.65 2°054.97
-28.48% 37.23% | -39.04% 58.12%
a=5%
it 100.65 142.98 201.12 | 270.64  458.12  751.61
-29.61% 40.66% | -40.92% 64.06%
LAY 223.72 311.81 426.88 | 433.74  690.27 1°083.10
-28.25% 36.90% | -37.16 % 56.91 %
xh 344.76  479.60 654.63 | 668.88 1'074.59 1°703.00
-28.12% 36.49% | -37.75 % 58.48 %

Table 9: Sensitivity of the 1%, 3% and 5% VaR. for gH

20




In addition to linear-quadratic risk profiles, trigonometric risk profiles have been chosen
IT _ ’ . 4 ]
Girig(w) = 100"000 - sin(IT;_, w;), (18)

9t (W) = 100'000 - sin(T1;%, wy), (19)

to identify the sensitivity of the associated value-at-risk numbers with respect to volatility and
correlation. The risk factor w is multivariate normally distributed with the correlation matrices
S ST and 1T

The importance of volatility estimates can be highlighted for trigonometric risk profiles. The
maximum loss is 100’000 due the value range [<1, 1] of sin. The results in Table 10 illustrate,
that an underestimation of the volatility leads to a considerable underestimation of the value-at-
risk: in case of high correlation the estimate is about 10 times smaller as the original estimate for
the 5% value-at-risk. In case of an overestimation of the volatility the value-at-risk approaches
the maximum loss. The results for the 16-dimensional case are even less meaningful.

a=1% gtI;Iz'g gtIrIig
0.75x w139 | 0.75%1 »i 1.3
i 80°027  98°570 99’779 131 14°010 95939
-18.81% 1.23% | -99.07% 584.79%
)3 80’523  98'867 99’771 | 13'413 86433 98’615
-18.55% 0.91% | -84.48% 14.09%
i 94°054 99028 99’432 | 97°619 99'246 99°724
-5.02% 041% | -1.64% 0.48%
a = 3%
i 45’928 86’904 97’623 25 2'617 72’891
-47.15% 12.33% | -99.03% 4°453.84%
)3 46’626 89'905 97’770 392 30’522 86’569
-48.14% 8.75% | -98.72% 183.63%
i 47°958 89571 95’503 | 76°027 92060 97’116
-46.46% 6.62% -17.42% 5.49%
a=5%
i 31218 73214 93°382 | 10.15 1°033.09  47°045.35
-57.36% 27.55% | -99.02% 4°453.84%
)3 30380 75770 93’145 |  63.24 7'275.68  67°559.66
-59.90% 22.93% | -99.13% 828.57%
i 7173 70949 87821 | 41°162.63  807926.52  91°826.81
-89.89% 23.78% | -49.14% 13.47%

Table 10: Sensitivity of the 1%, 3%, 5% VaR for risk profile g{;fig and g{,fig
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Environment II1

A 16-dimensional risk profile of a FX-portfolio has been represented by finitely many points
through 8 risk matrices (see Appendix) with the components cross-rate and volatility for each
of the 8 currencies. These matrices have been used for investigating the impact of separability.

For determining the value change with respect to various factor movements we have applied
bilinear and quadratic interpolation, both of which provide an approximation of the real risk
profile ¢’'7 : R'® — IR. The associated value-at-risk numbers are denoted {);l’a, f)b_il’a and
f);;;g‘, Dgiq in Tables 11 and 12. As mentioned, the nonseparability of risk profiles with respect
to the pairs of risk factors, i.e. with respect to cross-rates and volatilities, is lost. Only the

nonseparability of price and volatility of each underlying currency is taken into account.

gl agll!

o R oy Error e oy Error
1% || 1'142282  2'562’314 124.32% | 2°932’883 989’998 -66.24%
3% 786’830 1°883’783 139.41% | 2'042’163 666’072 -67.38%
5% 634’206 1°539°612 142.80% | 1'646°’894 529’874 -67.80%

Table 11: The impact of separability to the VaR in case of bilinear interpolation

gl gl
o (O Vg Error (e Uina Error
1% || 1'142'282  2’735’524  139.48% | 27932’883  1°003°032 -65.80%
3% 786’830  1’869’457  137.59% | 2°042’163 685'432  -66.44%
5% 634’204 1°539'612 142.76% | 1’646°893 529’875 -67.83%

Table 12: The impact of separability to the 5%-VaR in case of quadratic interpolation
These results demonstrate that working with lattice representations may result in a severe over-

or underestimation of the value-at-risk. Surprisingly, the way the lattice points are interpolated
has less impact. Bilinear and quadratic interpolation yield similiar value-at-risk numbers.

22



Environment IV

The value-at-risk numbers for the risk profile ¢!V : IR* — IR are listed in Table 13. Again,
the curvature-slope relations release information on the sensitivity of VaR with respect to the
market volatility.

a=1% gIV gIV
0.7501V sV 3%V | 75!V wIV 13nlv
long 764911 17142282 1691640 | 543’141 799454 1'173°018
-33.04% 48.09% | -32.06% 46.73%
short 1'726'241  2'932'883  4'814’333 | 3°405°054 5'875'258  9°656'543
_41.14% 64.15% |  -42.04% 64.36%
a=3%
long 535'230 786’830 1°130°642 | 353°086 504’993  735'920
-31.98% 43.70% | -30.08% 45.73%
short 1'219°373  2°042°163  3'342°172 | 2'342°616 4'120°456 6'878'117
-40.29% 63.66% | -43.15% 66.93%
a=5%
long 440°620 634206 906'628 | 266’831 374758 537’814
-30.52% 42.95% | -28.80% 43.51%
short 977594  1°646'894 27695266 | 1°916°609  3'360°034 5615786
-40.64% 63.66% | -42.96% 67.13%

Table 13: Sensitivity of the 1%, 3% and 5% VaR w.r.t. volatility for risk profiles g’ V and gV
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Environment V

In Table 14 the value-at-risk numbers and their sensitivity are listed for the five FX-portfolio
PF) PF) PFY, PF) and PF). The sensitivity of the value-at-risk numbers does not depend
on the weights of out-of-the-money, in-the-money and at-the-money options within the portfolio.

a=1% long (+g") short («g")
0.75%" ¥V o132V | 0.758Y »Voo1.3%V
PFY 222.08 300.83 401.09 | 308.58 430.79 588.69
-26.18% 33.93% | -28.31% 36.65%
PFY 181.12 251.94 345.79 | 267.06 385.08 541.14
-28.11% 37.25% | -30.65% 40.53%
PFY 182.89 253.70 347.56 | 265.29 383.31 539.38
27.91% 37.00% | -30.79% 10.711%
PFEY 280.31 367.41  458.74 | 344.83 465.09 621.60
23.71% 24.86% | -25.86% 33.65%
PFY 187.72 237.66 314.51 | 269.67 367.75 505.13
-21.01% 32.94% | -26.67% 97.96%
a=3%
PFY 186.30 253.44 337.55 | 234.58 331.17 452.22
26.49% 33.19% | -29.16% 86.55%
PFY 147.80 209.19 286.71 | 200.02 293.43 411.65
-29.95% 37.06% | -31.83% 40.29%
PFY 149.56 210.96 288.48 | 198.26 291.66 409.88
-29.10% 36.75% | -32.02% 40.53%
PFEY 235.70 308.59 386.84 | 261.77 366.44 480.06
-23.62% 25.96% | -28.56% 81.01%
PFY 153.76 196.21 259.80 | 213.86 279.80 380.02
-21.65% 32.41% | -23.57% 85.82%
a=5%
PFY 166.16 226.60 301.129 | 198.06 278.59 381.00
26.67% 32.89% | -28.91% 36.76%
PFY 131.48 186.08 257.95 | 169.82 246.58 347.50
-29.34% 38.62% | -31.13% 40.93%
PFY 133.25 187.85  259.71 | 168.06 244.82 345.74
-29.07% 38.95% | -31.95% 41.22%
PFEY 208.04 271.83 343.705 | 222.16 305.13 399.84
28.47% 26.44% | -27.19% 81.04%
PFY 133.77 169.61 228.60 | 186.38 240.09 321.79
-21.13% 34.78% | -22.31% 84.08%

Table 14: 1%, 3% and 5% VaR of FX-portfolios and its sensitivity w.r.t. market volatility
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6 The Barycentric Approximation

The complexity of interaction between time and uncertainty makes practical decision and plan-
ning problems to utmost difficult applications of probability and optimization theory. The
Barycentric Approzimation represents a methodology (see Frauendorfer 1992 [11], 1996 [12])
which has been developed for analysing interaction effects between decision making and uncer-
tainty within stochastic programming (a field of activity within mathematical programming).©

Contrary to stochastic control problems, stochastic programs are solved once per period, taking
into account periodically updated forecasts of the involved stochastic processes with respect to
the future periods. It is today’s optimal policy, which is of importance, adopted with respect
to the current stochastic dynamics of prices, returns, cash-flows, and also with respect to the
optimal policies in future periods, which in turn are adopted with respect to new information
on stochastic dynamics. It is this dynamic planning mechanism that characterizes stochastic
programming and has received increasing attention in finance in the U.S. and in Great Britain
due to the successful and valuable contributions of W.T. Ziemba 1992,1994,1997 [24, 38, 39], M.
Dempster 1995 and 1996 [5, 6], J. Mulvey 1994 and 1997 [23, 39] and S. Zenios 1992 and 1995
(36, 38, 37].

The above mentioned dynamic planning mechanism is solved when integration and optimization
of value functions has been performed with a prescribed level of accuracy. Barycentric approx-
imation helps overcome the difficulties in the multidimensional integration and optimization of
recursively given value functions by sophisticated discretization of the discrete-time stochastic
processes (see [12]). In theory, the convergence of the approximate solutions and the corre-
sponding values are enforced by the weak convergence of the discrete measures. In practice,
its application within stochastic programming has provided promising results when the decision
space is high-dimensional and the probability space is low-dimensional. This has motivated the
investigations of Frauendorfer and Konigsperger 1995 [13], which represent a first step to ap-
plying the barycentric approximation methodology for evaluating profit-and-loss distributions
numerically. In [13] the authors have focused on exploiting structural properties of the value
functions, like the saddle property, which are valid under reasonable assumptions within stochas-
tic programming but, unfortunately, do not hold when the value functions represent the risk
profile of a portfolio with derivatives. Although, convergence of the quantiles is ensured by the
weak convergence of the discrete measures, as proclaimed in [13], first numerical results have
indicated that the approximation of the quantiles of the associated profit-and-loss distribution
are less practical when the portfolio ascertains a reasonable complexity. Even when the level «
is kept fixed, the corresponding quantile is approximated with insufficient accuracy by the algo-
rithm introduced in [13]. This reveals that weak convergence appears to be not strong enough
for evaluating quantiles numerically in a satisfactory way.

The above mentioned experience has motivated the authors to focus on information offered by the
barycentric approximation but still unused in the algorithmic procedure [13]. It has been realized
that the component which represents the dual to the derived discrete probability measure helps
evaluate the quantiles in a better way. Furthermore, the authors learned that working with
simplices instead of a product of simplices leads to better results relative to the underlying

“For recent textbooks on stochastic programming it is referred to Ermoliev and Wets 1988 [7], Prekopa 1996
[26], Kall and Wallace 1994 [21], Birge and Louveaux 1997 [3]
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numerical effort. This gives rise to partition the support of the risk factors into simplices. In
this section, the barycentric approximation technique is outlined with the intention to focus on
this dual viewpoint for simplicial refinement. For details it is referred to Frauendorfer 1992 [11].

Simplicial truncation of the support

The technique outlined below is based on the property that the outcome of the random vector
w is distributed within a simplex Q. In general, the support of w may be an arbitrary subset of
IRM: in most cases it even covers the entire Euclidean space IRM. For applying the following
approach it becomes necessary to approximate the probability space (2, B, P) by (Q,B, ]5),

where Q represents a simplex, B := {B|B = BN, VB € B}, and P(B) = %.

In order that (Q,B, ]5) approximates (2, B, P) sufficiently well, it is required P(fl) > 1<
some positive e sufficiently small. Recalling F;(0) = P{w|g(w) < 0} and Fy(9) = P{w|g(w) < 0}
yields the following relation

Fg(@) e < Fy() SFQ({’)"‘E- (20)
Hence, any sufficient accurate approximate for Fg may be accepted as sufficient accurate for Fj.
For the ease of understanding the simplicial truncation for normally distributed random data is
illustrated. The level sets of an uncorrelated normal density are circles. Choose the correspond-

ing radius so that mass 1 <€ is lying within that circle and a smallest uniform simplex around
that circle (see Figure 10).

Figure 10: Simplicial coverage in the uncorrelated case

It is well known that the radii of the inner circle and the outer circle - the latter is given by
the vertices of the simplex - have a relation of 1 : M. In case that the random components are
correlated we have to determine the Cholesky factorization of the variance-covariance matrix
and to apply the associated transformation to the circle and to the uniform simplex. This yields
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the corresponding ellipsoid surrounded by a regular simplex € for which P(fl) > 1 e (see
Figure 11).

Figure 11: Simplicial coverage in the correlated case

Clearly, the smallest simplex that surrounds the circle is not unique. There are many of these
smallest simplices, three of which are illustrated for both the uncorrelated and correlated case
in Figure 12. Below, it will be discussed whether the numerical results behave sensitive relative
to the choice of the simplex.

So far, it has been the intention to clarify how to realize the simplicial truncation of correlated
random components taking into account a prescribed level of accuracy e. It is stressed that
the methodology described below poses no assumption on the risk factor distribution P and is
applicable for general multivariate or empirical distributions. The technique provides approxi-
mations of both, risk profile and truncated probability measure, on the barycenters of simplicial
refinements and is called barycentric approzimation.

Methodology

A~

Given a continuous risk profile g(w) : Q0 ¢ RM — IR and a probability space (Q,B,P)
with Q being a simplex, we are interested in approximating the distribution function Fg(f)) =
P{w| g(w) < 0}. This will be achieved by deriving two sequences of piecewise linear approxima-
tions {L7},{LJ}; J =1,2,--- that converge pointwise to the risk profile g on Q.

Let © denote the set of those probability measures @ on (2, B) which coincide in the first
moments with those of P; i.e. © consists of those probability measures ) for which

/f2 wd@ = /Q wdP, (21)
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Figure 12: Various illustrations of a simplicial coverage

28



holds. It is well known (e.g., Stoyan 1983 [31]) that a partial ordering <(¢ for the set © may
be defined with respect to the set Cg of continuous convex functions relative to the simplex €

Q2¢>/" w)dQ; = /" g(@)dQs, Yg(-) € Cq. (22)

The set of extremal probability measures of © taken with respect to <(¢) is then defined according
to

mN@:z{@mwm_CQ,VQ@me@L (23)
SUP(C)@ = {Qout|Q < Qouta VQ, Qout € @}a (24)

which represent the solutions of generalized moment problems (in the sense of Krein and Nudel-
man 1977 [22]). It is proven that the sets inf(9© and sup(©© are singletons; let these solutions
be denoted an and Qout and called inner and outer discretization. The support of an is a
singleton, whose element may be viewed as generalized barycenter of the simplex Q. Obviously,
the barycenter is completely determined by the first moments [, wmdP m = 1,..., M which
characterize the set ©. The support of Qout is finite and consists of the vertices of the simplex
Q. Obviously, the probabilities that are assigned to these vertices are the barycentric weights
of the generalized barycenter and, hence, are completely determined by the first moments. For
the corresponding formulas of Qjn, and Qo it is referred to [11].

The dual problems to the generalized moment problems (23, 24) are semiinfinite programs which
are the basis for deriving the desired piecewise linear approximations of the risk profile g.

Let £ denote the set of linear functions L(w) for which L(-) < g(-) on ). Similarly, & denotes
the set of linear functions U(w) for which U(-) > ¢(-) on (2. Hence, L(-) minorizes g(-) and U(:)
majorizes g(-) on {2. Obviously,

ilé}g/ﬁlj(w)dp < /Qg(w)dp, (25)
inf [ L@dP > /Q g(w)dP. (26)

The lefthand side in (25, 26) represents the semiinfinite programs which bound the expectation
of the risk profile g from below and above. The corresponding solutions are denoted with L and
U. L is determined by the first-order derivatives of g(-) at the barycenter. U is given by the
evaluation of the risk profile g at the vertices of Q.

Due to strong duality it is proven for g(-) € C, that

| b@dP = [ g)iQuun, (27)
| 0@dp = [ gw)dQuu. (28)

Further, as the integral of a linear function is determined by the first moments, it also holds

a [
o

bb
Il

dena (29)

q>
|
\ \
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This way one obtains approximations for the value functions g(-) on Q) as well as for the proba-
bility measure P.

These approximations can be improved with refinements of Q. Let P’ bea simplicial partition of
Q; ie. P/ = {QJ j =1,---,J} where the subcells are mutually disjoint, i.e. Subsimplices whose
union equals Q. Applymg the above statements to each of these subcells €} (j=1,---,J) yields
improved piecewise linear approximations L”(-),U”7(-) and an, Aout for the Value functlons
g(-) and for the probability measure p.

Let £7 be the set of functions which are piecewise linear with respect to the partition P, ie.
the elements of £/ are linear on the subcells Q7 of P/, and which minorize the risk profile
g. Analogously, U’ denotes the set of functions which are piecewise linear with respect to the
partition P”7, i.e. the elements of £/ are linear on the subcells Q7 of P/, and which minorize
the risk profile g. Then, the solutions to the semiinfinite programs

Lseuﬁpj/QL(w)dP < /Qg(w)dp, (31)
Juf [ Lw)ap > /Q g(w)dP. (32)

are determined for convex g(w) by their first-order derivatives at the barycenters of the cells
of P’. Again, these semiinfinite programs are duals of the corresponding generalized moment
problems with unique solutions an,Qout In this sense, an, Qout may be viewed as best
discretization of the stochastic risk factors w relative to the partition 7. The support of an
and Qout is finite, whose elements are generalized barycenters of the simplices {7 (j=1,---,J).
The barycenters are determined by the corresponding conditional first moments. Piecewise
linearity of the approximate implies

[ @dP = [ L (w)dQs, (33)
Q Q
/ 07 (w)dP = / 07 (w)dQY,,. (34)
Q Q
and, further, due to strong duality in case of convex g
[ @aP = [ gw)d@},. (3)
O
|0 @ = [ g@)dQ (36)

With the above one may define associate approximate distribution functions with respect to
g(-), L7 (-) and U”’(-) according to

Fylinn(8) = Qinn{wlg(w) < 0}, (37)
Fy ot (0) := Qoui{wlg(w) < 0}, (38)
FL(ﬁ) mn{wlL(w) < 0}, (39)

Fij(0) == Quiw|U(w) < 0}. (40)
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In case the diameters of all subcells tend to 0 for J — oo then pointwise convergence of
L7(:),U”’(-) to g(-) and weak convergence of an, qut to P is ensured. This implies point-
wise convergence of the approximate distribution functions to Fj(0) at o € IR at which F,(-) is
continuous. At these v it holds

lim /. (9) = lim F7

J—o0 DI

(0) = lim F{(0) = lim () = F,(d), (41)

J—00 J—00

Hence, F;mn( 0), FJ out(?), F{ (), F{(t) may be accepted as approximation of F(¢). If, addi-
tionally, g(-) is a functlon with monotone first-order derivatives, then the corresponding error
can be quantified at each cycle J via the bound. In particular, for convex or concave risk profiles

an error bound is given by
[ 07 @)aQu = [ 17 (@)@, (42)
Q Q

It is emphasized, that F. gmn(ﬁ), Is’g‘]’ out(?) and, hence, the error bound becomes available by
evaluating g(-) at the barycenters. If the sequence of partitions represents successive refinements
than the error bound converges monotonously to 0. For nonconvex g the above value may be
accepted as a measure for the current inaccuracy, but the convergence to 0 is not necessarily
monotonous.

For determining a simplicial partition P/+! by means of a refinement of P”, it requires to choose
a subcell in P’ and an adequate edge, subject to which the subcell is split. The experiences
achieved with barycentric approximation for solving stochastic programs ([12, 11]) make one
aware of the fact that the choice of both subcell and edge is one of the key steps for an appealing
speed of convergence. Hence, the numerical effort associated with approximating F(-) : R —
[0, 1] depends heavily on how sophisticated the sequence of partitions is constructed.

However, the experience has demonstrated that practically the weak convergence of an and
Q ut 0 P is not strong enough for accepting the convergence of the quantiles of F () and

Fé{ out(?) to the quantiles of F as adequate, relative to the Delta-Gamma, approximation.

g inn

Obviously, taking the piecewise linear approximations L7 and U’ offers more information. In
addition to the barycenters and their associated probabilities, which characterize Qg inm and
Qg,out, we obtain with L7 and U’ first-order type approximations of the risk profile ¢ with
respect to the subsimplices QJ. To be more precisely, L7 represents the Delta-approximation
of g with respect to the subsimplices, and with U” a kind of averaged delta approximation on
the subsimplices. Due to the fact that the radii of the inner-circle and the outer-circle of a
uniform M-dimensional simplex have a relation of 1 : M, the goodness of U’ decreases with
M more severe than the goodness of L7 when the number of refinements are kept fixed. For
this reason the authors have concentrated on working with L7 and its associated distribution
FJ as approximations for +¢ and F. The corresponding VaR-estimate f)—;f‘ with respect to

level « is given by FY (o7 J, ) = a and will be benchmarked by the VaR-estimate 9%_|. of the
Delta-Gamma approximation of g.

Graphical illustration

The support of the risk factor distribution is truncated by a simplex with sufficiently large
probability and refined subsequently. In Figure 13 the results of ten refinements are illustrated
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yielding ten subsimplices with corresponding barycenters, i.e. J = 10. The associated piecewise
linear approximation L” is given by the value of g on the barycenters and by the A of g at these.
The associated discretization Q;—’nn is the inner discretization. With the information of the delta
at each barycenter we have implicitly the information of its sensitivity and hence a second-order
information of risk profile +¢ on .

Figure 13: Inner discretization

Figure 14: Outer discretization

The piecewise linear approximation U’ of g is given by the value of ¢ at the vertices of the
subsimplices © j = 1,...,10 and its linear interpolation. The associated discretization Q2
of the risk factor space is the outer discretization whose outcomes are illustrated in Figure
14. The evaluation of the risk profile at the vertices of the multi-dimensional simplex provides
simplicial stress scemarios, which finally provide additional information on the sensitivity of
VaR. However, one has to be aware of the sensitivity of U’ with respect to the choice of the
simplex due to the relation 1 : M of the radii. Empirically, it has been verified that the piecewise
linear approximation L7 is insensitive to different choices of the smallest simplex surrounding
the ellipsoid with a prescribed confidence level 1 <e.

Surrogate discrete probability measures

As stated above, the methodology ensures convergence of the discrete distributions to the risk
factor distribution. The inner and the outer discretizations coincide in the first moments condi-
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tioned on the subsimplices with those of the risk factor distribution at any cycle of refinement.
The higher moments of the discretized distribution will not coincide with those of the risk factors
distribution. This certainly is of practical importance.

Suppose that a random component of the risk factor space is normally distributed with standard
deviation o set to 1, the associated kurtosis is 3. The graphics in Figures 15 and 16 show the
evolution of standard deviation o and the kurtosis of the discretized distributions of that random
component.

o
13 1
127 \«\ - - - inner approx.

\ — - outer approx
11 T N, —theoretical

N,
~ T
P R T bk PP
09 T
0.8 t + + + t + % refir
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Figure 15: Evolution of the standard deviation subject to refinements
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Figure 16: Evolution of the kurtosis subject to refinements

Due to the construction, it happens that the inner approximation Q7 . likely underestimates o

and kurtosis while the outer approximation Q7,,, likely overestimates these moments. Illustrating
the inner and outer discretizations (that correspond to various refinement schemes) by these two
moments would result in Figure 17. In section 5 the sensitivity of VaR has been evaluated with
respect to a 0.75 decrease and an 1.3 increase of the market volatility o. Below, the goodness of
the VaR-approximations obtained by employing the inner discretization should be seen relative
to the documented sensitivity of VaR with respect to the various o. Clearly, with increasing
refinements and with the diameters of the subsimplices converging to 0 the associated sequence
of standard deviations tends to 1 while the associated sequence of kurtoses tends to 3. However,
the critical point is the number of refinements that can be afforded.

Figure 18 illustrates the goodness of the distribution Is’g‘] inn () corresponding to the inner dis-
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Figure 17: Illustrative representation of the inner and outer discretizations by moments

cretization Q7 and the goodness of the distribution Is’g‘] out(?) corresponding to the outer dis-

cretization Q7 relative to the real profit-and-loss distribution Fg of some two-dimensional risk
profile. Even in the low-dimensional case the outer discretization proves to be not applicable.
On the other hand, up to now the authors have not been successful in carrying over the illus-
trated goodness for the inner approximation with respect to a higher dimensional risk factor

space.

! 5%

4%

3%

2%

Figure 18: Goodness of the distributions Fé]mn() and F'g‘{out(-)

The sensitivity of VaR with respect to over- and underestimation of the market volatility reveals
information on the riskiness of the underlying portfolio. One concludes that, nevertheless, a

significant difference between the VaR of the outer and the inner approximation is an indicator

for high risk exposure. While the inner approximation yields a better discretization of the

profit-and-loss distribution, the outer approximation can be considered as proxy for profit-and-
loss distributions that correspond to risk factor distributions with “ fat tails 7. Clearly, for
assessing the practical importance of these statements further investigations are required which

are postponed to the future.

Convergence of the barycentric approximation

As mentioned, the goodness of the inner and outer discretization depends on the way the refine-
ment schemes are performed. The refinement scheme may be designed with focus on approx-
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imating the risk factor distribution or with focus on both the risk profile and the risk factor
distribution. Figures 19 and 20 illustrate the convergence beaviour of the 5% VaR corresponding
to an one-dimensional risk profile with positive curvature and a normally distributed risk factor.

loss loss

1 1 21 31 41 1 1 21 31 41
-60 + + + + # refinements -60 4 4 + + # refi
80k w0t %P AL

00 4 —VaR (5% 00 1 VaR (5%

20 L 120 ¥

Figure 19: Convergence behavior in case a Figure 20: Convergence behavior in case b

Figure 19 illustrates the approximate distribution Fg{ inn(*) (curve 1 in Figure 21) associated with
a refinement scheme that focus on the riks factor distribution (case a). Figure 20 illustrates the
approximate distribution Fg{ inn(*) (curve 2 in Figure 21) associated with a refinement scheme
that focus on both the risk factor distribution and on the risk profile (case b). Figure 21 reveals
the goodness of these approximate distributions (curves 1 and 2) subject to the real distribution

F, (curve 3) relative to a fixed number of refinements for levels between 0.5% and 5%.

Figure 21: Goodness of real and approximate distributions

Above figures indicate that even in the low-dimensional case it is important to consider the risk
factor distribution as well as the risk profile within the refinement scheme.
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7 Benchmarking the Barycentric Approximation

In the following, the barycentric approximation is benchmarked by the Delta-Gamma approx-
imation for quadratic and trigonometric risk profiles, for the FX-portfolios and for the ROE
warrant on the ABB stock.

Quadratic risk profiles

In environment II, 4<and 16<dimensional linear-quadratic risk profiles are considerd. The cor-
responding value-at-risk for the long position v™>® and for the short position v—>* are listed with
their approximations v;f‘. and vg.’j in Tables 15-16 v;f‘. andvg.f‘. are obtained by applying

the barycentric approximations after J = 200 refinements.

It is observed that the VaR v™® and v—® and the accuracy of the barycentric approximation
increases with the degree of correlation at each level a = 1%, 3%, 5%. Further, the risk profiles
9., and g, differ in the curvature-slope relations, i.e. for g, the curvature-slope relation is
0.25, for g, the curvature-slope relation is <4. It is known from section 5 that the sensitivity
of the VaR with respect to the market volatility o increases with decreasing curvature-slope
relation. Having in mind the characteristic features of the barycentric approximation it is not
surprising that the accuracy of the barycentric approximation decreases with the curvature-slope
relation. Also, the accuracy of the barycentric approximation is insensitive with respect to the
level « for fixed variance-covariance matrix. Finally, it is stressed that with v™% and v=% for
levels o = 1%, 3%, 5% the asymmetry of the profit-and-loss distribution is revealed.

o=1% g4’ 9

vg.’i v Error UE’X v Error

I 85.16  92.21  -7.64% | 171.08 241.69 -29.22%
ST 11713 122,71 -4.55% | 231.63  302.73  -23.49%
sIT | 170.80  174.45  -2.09% | 373.66 444.32 -15.90%

o= 3%

nI 68.80  74.32 -7.43% | 136.74 195.07 -29.90%
i 93.15  97.79 -4.74% | 178.94 230.04 -22.21%
SIT | 138.82 140.83 -1.43% | 273.59 334.46 -18.20%

=y 60.14 6543 -8.09% | 119.97 170.92 -29.81%
i 80.53  84.67 -4.89% | 152.33 196.55 -22.50%
sIf || 117.01 120.03 -2.52% | 218.23 271.80 -19.71%

Table 15: Barycentric approximation for risk profiles g,f I
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o =1% 94" 9’

v;’j pHo Error UJ,;’Z v Error

»iI 156.53 191.62 -18.31% | 266.89 570.62 -53.23%
»iI 430.62 453.30 -5.00% | 893.22 1°054.15 -15.27%
»it 708.69 716.53 -1.09% | 1’770.61 1’819.94 -2.71%

»IT 130.76 159.41 -17.97% | 222.62  494.00 -54.94%
zg 337.32 358.72 -5.97% | 640.52  798.22 -19.76%
»! 552.36  555.74 -0.61% | 1'262.74 1'299.65 -2.84%

z:éf 116.84 142.98 -18.28% | 201.49 458.12  -56.02%
zﬁ 293.00 311.81 -6.03% | 540.08  690.27 -21.76%
! 477.03  479.60 -0.54% | 1°038.98 1°074.59 -3.31%

Table 16: Barycentric approximation for risk profiles g/’
Considering the trigonometric risk profile gtIrIZ g» it is observed that the accuracy of the barycentric

approximation is reasonable for level a = 1% due to the fact that the VaR is bounded by 100’000.
For levels a = 3%, 5% the inaccuracy is the largest for the medium correlated case.

a=1% g,{,fig
’U;’z UREL Error
E{If 97’519 98570 -1.08%
25{ 99’798 98867  0.93%

I 97553 99028 -1.51%
a = 3%
I |1 78904 867904  -10.14%

Yy
25{ 72’340 89’905 -24.28%
it 91’094 89’571  1.67%

a = 5%
uIf | 67630 73214 -8.26%

2711{ 52’669 75’771 -43.86%
it 76’710 70’430  8.19%

IT

Table 17: Barycentric approximation for risk profile g;,;,
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FX-portfolios

In environment V, five FX portfolio PF), PFY , PFy , PF) and PF) have been constructed
which cover 8 exchange rates and which consist of 200 different call and put options. The Black-
Scholes approach is used for valuing the portfolio yielding the corresponding five risk profiles
9193 95,91 and g3

The corresponding value-at-risk for the long position v ™% and for the short position v~
listed with their approximations v};'% ,v5'% ,v0% and v % in Tables 18 and 19. v} and

vy’ are obtained by applying the barycentric approximations after J = 200 refinements, vz’f‘r

@ are

and v'“ correspond to the linear-quadratic approximation of the risk-profiles.

We recognize that the barycentric and the linear-quadratic approximation yield comparable
results (Table 20). The accuracy of both approximations is insensitive with respect to the level
«. Again, we realize the asymmetry of the profit-and-loss distribution from v™% v™% or from
their approximate values for levels o = 1%, 3%, 5%.

a=1% long short

Underlying v—g.ﬁ. p e Error vg,.’j. v Error

PFY 355.147 300.829 18.06% | 374.252 430.789 -13.12%
PFy 299.920 251.936 19.05% | 322.736 385.077 -16.19%
PFy 301.755  253.699 18.94% | 320.973 383.313 -16.26%
PF) 410.064 367.410 11.61% | 415.169 465.090 -10.73%
PFY 276.775 237.659 16.46% | 297.099 367.749 -19.21%

a=3%

PFY 295.974 253.442 16.78% | 285.059 331.165 -13.92%
PFY 249.528 209.193 19.28% | 240.130 293.427 -18.16%
PFy 251.292  210.956 19.12% | 238.366 291.663 -18.27%
PEY 349.411 308.587 13.23% | 313.450 366.440 -14.46%
PFY 233.872  196.208 19.20% | 223.441 279.803 -20.14%

[0}

oa=5%
PFIV 266.019 226.598 17.40% | 240.784 278.591 -13.57%
PFZV 222.55 186.084 19.60% | 198.591 246.583 -19.46%

PFy 224.313 187.848 19.41% | 196.827  244.82 -19.60%
PF} 308.974 271.828 13.67% | 266.019 305.127 -12.82%
PFY 210.067 169.613 23.85% | 189.731 240.087 -20.97%

Table 18: Barycentric approximation for risk profiles g’
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a=1% long short

Underlying UXf‘F phe Error U;fér p @ Error

PFY 273.306 300.829  -9.15% | 496.877 430.789 15.34%
PFy 225.923 251.936 -10.33% | 447.961 385.077 16.33%
PFy 225.923 253.699 -10.95% | 447.961 383.313 16.87%
PF} 342.914 367.410  -6.67% | 523.187 465.090 12.49%
PFY 206.227 237.659 -13.23% | 413.502 367.749 12.44%

a=3%

PFY 222.202 253.442 -12.33% | 391.006 331.165 18.07%
PFY 180.696 209.193 -13.62% | 346.502 293.427 18.09%

PF3V 180.696 210.956 -14.34% | 346.502 291.663 18.80%

PF4V 273.824 308.587 -11.27% | 424.043 366.440 15.72%

PFEY 164.299 196.208 -16.26% | 327.417 279.803 17.02%
oa=5%

PFIV 194.263 226.598 -14.27% | 335.929 278.591 20.58%

PFZV 156.650 186.084 -15.82% | 298.214 246.583 20.94%

PFy 156.650 187.848 -16.61% | 298.214 244.820 21.81%
PF} 239.155 271.828 -12.02% | 359.393 305.127 17.78%
PFY 141.764 169.613 -16.42% | 284.927 240.087 18.68%

Table 19: Delta-Gamma approximation for risk profiles g"

Error a=1% a=3% a=5%
Underlying || wp  ox% | opf  waSh [ wph ol
PFIV 18.06%  -9.15% | 16.78% -12.33% | 17.40% -14.27%
PFQV 19.06% -10.33% | 19.28% -13.62% | 19.60% -15.82%
PF3V 18.94% -10.95% | 19.12%  14.34% | 19.41% -16.61%
PF4V 11.61% -6.67% | 13.23% -11.27% | 13.67% -12.02%
PF5V 16.46% -13.23% | 19.20% 16.26% | 23.85% -16.42%
Underlying | vph  wx®p | woph  wih | owph o v
PFIV -13.12%  15.34% | -13.92%  18.07% | -13.57%  20.58%
PFQV -16.19%  16.33% | -18.16%  18.09% | -19.46%  20.94%
PF3V -16.26% 16.87% | -18.27%  18.80% | -19.60% 21.81%
PF4V -10.73%  12.49% | -14.46%  15.72% | -12.82%  17.78%
PF5V -19.21%  12.44% | -20.14%  17.02% | -20.97%  18.68%

Table 20: Error of the barycentric and the Delta-Gamma approximations for risk profiles g"’
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ROE warrant

The value-at-risk associated with ROE warrant on the ABB stock is listed with respect to vari-
ous stock prices in Tables 21 and 22. vg.’j. and vy’ are obtained by applying the barycentric
approximations for J = 100 refinements, vif} and v}’ correspond to the linear-quadratic
approximation of the risk-profiles. The accuracy of the Delta-Gamma approximation is within
the range [<4.52%,8.47%)] for levels o = 1%, 3%, 5%, that of the barycentric approximation is
within [<2.95%, 3.60%)] (see Table 23). Again, it is realized how the asymmetry of the profit-
and-loss distribution changes with respect to different prices of the underlying ABB stock.

a=1% long short
Underlying v;’ﬁ pHe Error V5" v '*  FError
1800 402.275 407.056 -1.17% | 295.152 291.349 1.31%
1900 397.223  403.917 -1.66% | 262.858 257.826 1.95%
2000 388.211 396.749 -2.15% | 229.661 223.997 2.53%
2100 374.691 382.426 -2.02% | 196.281 190.697 2.93%
2130 370.074 378.123 -2.13% | 185.945 180.683 2.91%
2200 360.637 371.608 -2.95% | 163.709 158.717 3.15%
a=3%
1800 329.088 330.313 -0.37% | 255.870 248.882 2.81%
1900 324.292  325.225 -0.29% | 231.170 224.033 3.19%

2000 316.261 318.154 -0.59% | 205.086 197.950 3.60%
2100 303.502 304.709 -0.40% | 176.377 171.595 2.79%

2130 298.672 300.441 -0.59% | 168.904 163.559 3.27%

2200 285.573 290.241 -1.61% | 149.869 145.687 2.87%
o = 5%

1800 293.890 293.811 -0.03% | 226.890 221.746 2.32%

1900 287.328 288.333 -0.35% | 207.383 201.917 2.71%

2000 277.895 279.054 -0.42% | 184.834 179.951 2.71%
2100 264.019 265.605 -0.60% | 161.336 158.470 1.81%
2130 259.508 261.284 -0.68% | 154.558 151.669 1.90%
2200 249.626 250.410 -0.31% | 138.152 136.166 1.46%

Table 21: Barycentric approximation for the ROE warrant

On the whole, it is recognized that the barycentric is competitive with the Delta-Gamma ap-
proximation. The accuracy of both approximations is insensitive with respect to the level a.
The asymmetry of the profit-and-loss distribution is realized from the value-at-risk proxies at
various levels. Having in mind that the barycentric approximation is applicable for general mul-
tivariate distributions, for which the variance-covariance matrix exists, makes this methodology
a promising tool for developing and improving risk assessment systems for both trading and
management.
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a=1% long short
Underlying vZf‘F p e Error v&’f‘r v Error
1800 418.560 407.056  2.83% | 302.531 291.349 3.84%
1900 409.234 403.917  1.32% | 272.693 257.826  5.77%
2000 389.240 396.749 -1.89% | 239.327 223.997  6.84%
2100 377.615 382.426 -1.26% | 205.527 190.697  7.78%
2130 369.296 378.123 -2.33% | 195.977 180.683  8.46%
2200 354.800 371.608 -4.52% | 172.167 158.717  8.47%
a=3%
1800 334.473 330.313  1.26% | 247.144 248.882 -0.70%
1900 325.085 325.225 -0.04% | 224.860 224.033 0.37%
2000 312.928 318.154 -1.64% | 199.744 197.950 0.91%
2100 296.848 304.709 -2.58% | 174.399 171.595 1.63%
2130 293.088 300.441 -2.45% | 166.341 163.559  1.70%
2200 283.806 290.241 -2.22% | 149.365 145.687  2.52%
a=5%
1800 295.990 293.811 0.74% | 217.352 221.746 -1.98%
1900 285.413 288.333 -1.01% | 198.393 201.917 -1.75%
2000 271.974 279.054 -2.54% | 177.008 179.951 -1.64%
2100 258.168 265.605 -2.80% | 156.616 158.470 -1.17%
2130 253.719 261.284 -2.90% | 150.037 151.669 -1.08%
2200 241.574 250.410 -3.53% | 134.090 136.166 -1.52%

Table 22: Delta-Gamma approximation for the ROE warrant

Error a=1% a = 3% a=5%
Underlying v UAST v UAST v oA
1800 117%  2.83% | -0.37 % 1.26% | -0.03%  0.74%
1900 -1.66% 1.32% | -0.29% -0.04% | -0.35% -1.01%
2000 -2.15% -1.89% | -0.59% -1.64% | -0.42% -2.54%
2100 -2.02% -1.26% | -0.40% -2.58% | -0.60% -2.80%
2130 -2.13%  -2.33% | -0.59% -2.45% | -0.68% -2.90%
2200 -2.95% -4.52% | -1.61% -2.22% | -0.31% -3.53%
Underlying “Jg.ﬁ. “gfr “Jg.ﬁ. “gfr 1’1_3'.’3. ”Zilr
1800 1.31% 3.84% | 2.81% -0.70% | 2.32% -1.98%
1900 1.95% 5.77% | 3.19% 037% | 2.711% -1.75%
2000 2.53% 6.84% | 3.60% 0.91% | 2.71% -1.64%
2100 293% 7.78% | 2.79% 1.63% 1.81% -1.17%
2130 291% 8.46% | 3.27% 1.70% | 1.90% -1.08%
2200 3.15%  847% | 2.8T% 2.52% | 1.46% -1.52%
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Table 23: Error of the barycentric and the Delta-Gamma, approximations for the ROE warrant




8 Conclusions and Outlook

We have started with assessing the sensitivity of the value-at-risk with respect to market volatil-
ity. The curvature-slope relation of a risk profile evaluated at the current market situation
reveals information on that sensitivity, and, hence, on the model risk, one is exposed to when
the parameter volatility is over- or underestimated.

Based on the experience that weak convergence of the probability measures is not strong enough
to receive adequate approximates of the value-at-risk with a reasonable numerical effort, we have
focused on the dual view of the barycentric approximation. It is the piecewise linearization of
the risk profile over a simplicial partition of the risk factor space, which provides an appealing
approximation of the profit-and-loss distribution. The generalized barycenters of the subsim-
plices may be viewed as distinguished market scenarios subject to which the portfolio has to
be evaluated. The approach is also applicable to nonnormally distributed risk factors for which
the variance-covariance matrix exists. This matrix helps design the simplicial truncation of the
support so that a mass 1 < is considered with e being sufficiently small with respect to the level
«. The refinement scheme is of importance for achieving a convergence behaviour of the approx-
imate risk-return patterns which is of practical usage. As learned from the low-dimensional case
already, both risk factor space and risk profile have to be taken into account to fulfill the needs
for applicability in the high-dimensional case. The accuracy of the barycentric approximation
correlates with the sensitivity of the VaR due to its characteristic features and has proven to be
competitive with the Delta-Gamma approximation.

In the above, the barycentric approximation has been applied to a ROE warrant on the ABB
stock and has been benchmarked by the Delta-Gamma approximation for various risk profiles.
The numerical results have illustrated the risk-return pattern of the ROE warrant and the
various risk profiles. The asymmetry of the risk-return pattern reveals the risk attitude of the
investors which proclaim those risk profiles.

This work is seen as one step towards controling and managing market risk with the value-at-risk
approach. The key for being efficient lies in an adequate mapping of the risk-return pattern that
corresponds to the underlying portfolio. Based on the current developments and the achieved
experiences the focus of future research activities is therefore posed on various issues. The
way the refinement process of the simplicial partition is designed is still judged as rather crude
by the authors. The information on the variability of the slope and the curvature, which is
available locally at the barycenters and the vertices of the subsimplices, reveals the goodness of
the piecewise linearization. This information is still unused although it appears to be of major
importance to the authors, not only for assessing the model risk but also for improving the
convergence behaviour of the approximate risk-return pattern.

As mentioned, the barycenters represent market scenarios subject to which the portfolio has
to be analyzed. These portfolio values and their sensitivities provide the basis for evaluating
and implementing optimized hedging activities. This requires that the value-at-risk approach
becomes embedded into a stochastic optimization problem. The challenge of these future activ-
ities lies in determining the dynamic of its risk-return pattern and how this can be incorporated
in an active portfolio management.
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Appendix

Environment I)

The one-dimensional risk profiles are considered

25
=5 w2

25

go(w) = 25w, g (w) gt (w) = i 50w

with w ~ N(0,0 = 1) and N (0,0 = 1.3)

Environment IT)

4-dimensional linear-quadratic risk profiles of the form
gH(w) = w, Hw + w'AfI

are considered with A/ := 16 -1 (1. € ]R4). The Hessian matrices , {L’Ia,, {,{ﬂ,, {L’Ia,, i{bw {,{7,)
and , }Ilfb are given through , {I = [VI=I1DHVI where D!! represents D! = <41, Dgl =
&161, (I € R¥4) and V,{,I represent the matrix of eigenvectors V,//, V,.II V,IT corresponding to

the variance-covariance matrices X1, SI1 w211,

1.000 0.049 0.387 0.074 1.000 0.755 0.855 0.811
0.049 1.000 0.477 0.309 ST 0.755 1.000 0.884 0.957
0.387 0.477 1.000 0.227 h "1 0.855 0.884 1.000 0.911
0.074 0.309 0.227 1.000 0.811 0.957 0.911 1.000

=1  xll=

16-dimensional linear-quadratic risk profiles of the form

g (W) = w, Hw + ' AT

)

are considered with Al := 16 -1 (1 € ]RIG). The Hessian matrices , ga,, ﬁl[’a,, ila,, ilb,, é{b
and , I -are given through , H = [V DIV where D! represents DI := <4l DI .=

&161, (I € R*%) and V,fl represent the matrix of eigenvectors V,/1, VI V,IT corresponding to

Y 'm )

the variance-covariance matrices X1, SI1 21T,
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ni.—

m
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0.370
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0.510
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(z{,{u) :
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Environment IIT)

The risk profile of a FX-portfolio which consists of 7 foreign currencies and one home-curreny
is given by a linear-quadratic approximation of the form

The authors have not been authorized to publish the Hessian |,

gIII(w) :wl, IIIw—{—w’AIII

11

I and the sensitivity vector

AT The 8 x 8 variance-covariance matrix Y/ := (EIH(I) : EHI(Q)> is given below. The risk

profile g/’ is evaluated at lattice points. The corresponding values are given in 7 risk matrices.

GHI exchange rate

vola || 0.58729393 | 0.68429077 | 0.78128761 | 0.87828444 | 0.97528128 | 1.07227812 | 1.16927496
0.640 || 242346.879 | 124717.674 | 58269.413 | 43002.095 | 78915.721 | 166010.290 | 304285.803
0.840 || 220845.831 | 103216.627 | 36768.365 | 21501.048 | 57414.673 | 144509.242 | 282784.755
1.102 || 199344.783 | 81715.579 | 15267.318 0.000 35913.626 | 123008.195 | 261283.707
1.446 || 177843.736 | 60214.531 | -6233.730 | -21501.048 | 14412.578 | 101507.147 | 239782.660
1.898 || 156342.688 | 38713.483 | -27734.778 | -43002.095 | - 7088.470 | 80006.099 | 218281.612
gL exchange rate

vola || 0.72484985 | 0.75524300 | 0.78563615 | 0.81602930 | 0.84642245 | 0.87681560 | 0.90720875
0.945 || -293650.71 | -143538.75 | -46284.95 -1889.33 -10351.88 | -71672.60 | -185851.50
0.987 || -292706.05 | -142594.08 | -45340.29 -944.66 -9407.21 -70727.94 | -184906.83
1.031 || -291761.39 | -141649.42 | -44395.62 0.00 -8462.55 -69783.28 | -183962.17
1.077 || -290816.72 | -140704.76 | -43450.96 944.66 -7517.89 -68838.61 | -183017.51
1.125 || -289872.06 | -139760.09 | -42506.30 1889.33 -6573.22 -67893.95 | -182072.84
gLt exchange rate

vola || 0.21275973 | 0.22207817 | 0.23139660 | 0.24071504 | 0.25003347 | 0.25935191 | 0.26867034
0.903 || 155612.00 | 128330.74 | 90762.02 42905.83 -15237.81 | -83668.92 | -162387.50
0.955 || 134159.08 | 106877.82 | 69309.10 21452.92 -36690.73 | -105121.84 | -183840.42
1.009 || 112706.16 | 85424.90 47856.18 0.00 -58143.65 | -126574.76 | -205293.33
1.067 || 91253.24 63971.99 26403.27 | -21452.92 | -79596.56 | -148027.68 | -226746.25
1.128 || 69800.33 42519.07 4950.35 -42905.83 | -101049.48 | -169480.59 | -248199.17
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111
Gy

exchange rate

vola | 1.34460898 | 1.52286058 | 1.70111218 | 1.87936379 | 2.05761539 | 2.23586700 | 2.41411860
0.801 || 3372872.6 | 1360580.3 187728.8 -145681.9 360348.2 1705819.1 | 3890730.9
0.978 || 3445713.5 | 1433421.2 260569.8 -72840.9 433189.2 1778660.1 | 3963571.8
1.195 || 3518554.5 | 1506262.2 333410.7 0.0 506030.1 1851501.0 | 4036412.8
1.460 || 3591395.4 | 1579103.1 406251.6 72840.9 578871.1 1924342.0 | 4109253.7
1.783 || 3664236.3 | 1651944.0 | 479092.6 145681.9 651712.0 1997182.9 | 4182094.6
gL exchange rate

vola | 0.00062862 | 0.00068458 | 0.00074055 | 0.00079652 | 0.00085248 | 0.00090845 | 0.00096442
0.878 || 44237.090 | 44264.447 | 44291.719 | 44318.906 | 44346.007 | 44373.023 | 44399.954
0.937 || 22077.637 | 22104.994 | 22132.266 | 22159.453 | 22186.554 | 22213.570 | 22240.501
1.000 -81.816 -54.459 -27.187 0.000 27.101 54.118 81.049
1.067 || -22241.269 | -22213.911 | -22186.640 | -22159.453 | -22132.351 | -22105.335 | -22078.404
1.139 || -44400.721 | -44373.364 | -44346.092 | -44318.906 | -44291.804 | -44264.788 | -44237.857
GHT exchange rate

vola | 0.00849952 | 0.00938254 | 0.01026557 | 0.01114859 | 0.01203161 | 0.01291463 | 0.01379765
0.819 || -1161.595 -1173.152 -1184.617 -1195.989 -1207.269 -1218.457 -1229.552
0.906 || -563.600 -575.158 -586.622 -597.995 -609.275 -620.462 -631.557
1.001 34.394 22.837 11.372 0.000 -11.280 -22.467 -33.562
1.106 632.389 620.832 609.367 597.995 586.715 575.527 564.432
1.223 1230.384 1218.826 1207.362 1195.989 1184.709 1173.522 1162.427
G exchange rate

vola | 0.83574806 | 0.95933177 | 1.08291549 | 1.20649920 | 1.33008292 | 1.45366664 | 1.57725035
0.670 || -4412041.9 | -1584570.1 -67.7 341465.4 -559970.8 | -2704376.3 | -6091751.1
0.871 || -4582774.6 | -1755302.8 | -170800.4 170732.7 -730703.5 | -2875109.0 | -6262483.9
1.132 || -4753507.2 | -1926035.5 | -341533.1 0.0 -901436.2 | -3045841.7 | -6433216.6
1.470 || -4924239.9 | -2096768.2 | -512265.8 | -170732.7 | -1072168.9 | -3216574.4 | -6603949.2
1.910 || -5094972.6 | -2267500.9 | -682998.5 | -341465.4 | -1242901.6 | -3387307.1 | -6774681.9

50




9.40839F <3
0.00000E + 0
2.07260F <3
7.30798E <4
1.48116F <2
4.25605E <6
6.93523F <5
1.15292F &2
2.17830F <2
0.00000E + 0
2.98084F <3
3.93784F <3
1.58546F <2
4.45107E <3
7.74265F <3
2.10292F <2

2.17830F <2
0.00000E + 0
4.61752F <3
1.70295F <3
3.50482F <2
7.57144F <6
1.61194F <4
2.83638E <2
7.39196 E <2
0.00000E + 0
9.77800F <3
1.38763F <2
5.28698F <2
1.36384F <2
2.55393EF <2
7.09405F <2

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

2.07260F <3
0.00000E + 0
9.23744F <4
2.71820F <4
4.05768E <3
1.10062EF <6
1.43007E <5
2.78224F <3
4.61752EF <3
0.00000E + 0
7.54805F <4
8.99363F <4
3.50816F <3
1.15017E <3
1.45165F <3
4.49132F <3

2.98084F <3
0.00000E + 0
7.54805F <4
2.54977E <4
5.04428F <3
1.06366F <6
2.13606E <5
3.98052F <3
9.77800F <3
0.00000E + 0
1.89784EF <3
2.31367E <3
7.22954F <3
1.94745F <3
3.21934F <3
9.43676F <3

7.30798E <4
0.00000E + 0
2.71820F <4
8.68332F <5
1.35651EF <3
3.74751E <7
4.98385E <6
9.67013F <4
1.70295F <3
0.00000E + 0
2.54977E <4
3.19347F <4
1.27116F <3
3.78895F <4
5.58066 F <4
1.65468E <3

3.93784F <3
0.00000E + 0
8.99363F <4
3.19347F <4
6.48908FE <3
1.33384F <6
2.87406 E <5
0.22457F <3
1.38763EF <2
0.00000E + 0
2.31367E <3
3.06933F <3
1.01138EF <2
2.62059F <3
4.64699EF <3
1.33759EF <2

»HI1) =

1.48116F <2
0.00000E + 0
4.05768E <3
1.35651F <3
3.17736F <2
7.87192F <6
1.00724FE <4
1.95008EF <2
3.50482F <2
0.00000E + 0
5.04428F <3
6.48908E <3
2.7T7425F <2
9.14281F <3
1.23132F <2
3.37994F <2

£ (2) =

1.58546F <2
0.00000E + 0
3.50816F <3
1.27116F <3
2.7T7425F <2
6.17867E <6
1.11982F <4
2.06606 F <2
5.28698F <2
0.00000E + 0
7.22954F <3
1.01138EF <2
4.00026E <2
1.08520F <2
1.82480F <2
0.08983F <2

ol

4.25605E <6
0.00000E + 0
1.10062F <6
3.74751E &7
7.87192F <6
3.13222F <9
3.19452F <8
5.077T75E <6
7.57144F <6
0.00000E + 0
1.06366 F <6
1.33384F <6
6.17867E <6
2.38666F <6
2.62607E <6
7.38097F <6

4.45107E <3
0.00000E + 0
1.15017E <3
3.78895F <4
9.14281F <3
2.38666F <6
3.11205F <5
9.89115F <3
1.36384F <2
0.00000E + 0
1.94745F <3
2.62059EF <3
1.08520F <2
4.24756F <3
4.54948E <3
1.32111F <2

6.93523F <5
0.00000E + 0
1.43007FE <5
4.98385E <6
1.00724F <4
3.19452F <8
1.79727TE &7
8.63521F <5
1.61194F <4
0.00000E + 0
2.13606E <5
2.87406E <5
1.11982F <4
3.11205F <5
5.62159F <5
1.53227TFE <4

7.74265F <3
0.00000E + 0
1.45165F <3
9.58066F <4
1.23132F <2
2.62607E <6
0.62159F <5
1.00909F <2
2.55393F <2
0.00000E + 0
3.21934F <3
4.64699E <3
1.82480F <2
4.54948EF <3
1.00026 F <2
245396 F <2

1.15292F <2
0.00000E + 0
2.78224F <3
9.67013F <4
1.95008EF <2
0.07T7T75E <6
8.63521F <5
1.52729F <2
2.83638E <2
0.00000E + 0
3.98052F <3
5.22457F <3
2.06606 F <2
9.89115F <3
1.00909F <2
2.72949F <2

2.10292F <2
0.00000E + 0
4.49132F <3
1.65468EF <3
3.37994F <2
7.38097F <6
1.53227TFE <4
2.72949F <2
7.09405F <2
0.00000E + 0
9.43676F <3
1.33759F <2
5.08983FE <2
1.32111F <2
245396 F <2
6.85050F <2




Environment IV)

The risk profile of a FX-portfolio which consists of 22 foreign currencies is given by a linear-
quadratic approximation of the form

gIV(w) :wl, IVw—l—w’AIV
I

The authors have not been authorized to publish the Hessian , IV and the sensitivity vector
AV, The 46 x 46 variance-covariance matrix X!V is available upon request.

Environment V)

Below, the various instruments of the five FX-porfolios PFY | PFy , PFy', PF) , PFY are listed.
8 Currencies are considered with currency 2 representing the home currency. The 8 variance-

covariance matrix XV is taken from environment III, i.e. ¥V := S//1,

52



Environment V)

Portfolio : PF1 Currency : 1
Number of Type Price Strike Interest Volatility = Maturity
FX-Contracts rate

200 Call 0.87828444 0.87301474 10% 11.043898% one week
400 Call 0.87828444 0.87564959 10% 11.043898% one week
800 Call 0.87828444 (.87828444 10% 11.043898%  one week
400 Call 0.87828444 0.88091930 10% 11.043898% one week
200 Call 0.87828444 0.88355415 10% 11.043898%  one week
200 Call 0.87828444 0.81241311 10% 11.043898% 3 months
400 Call 0.87828444 0.84534878 10% 11.043898% 3 months
800 Call 0.87828444 (0.87828444 10% 11.043898% 3 months
400 Call 0.87828444 0.91122011 10% 11.043898% 3 months
200 Call 0.87828444 0.94415578 10% 11.043898% 3 months
50 Call 0.87828444 (.74654178 10% 11.043898% 6 months
100 Call 0.87828444 0.81241311 10% 11.043898% 6 months
200 Call 0.87828444 0.87828444 10% 11.043898% 6 months
100 Call 0.87828444 0.94415578 10% 11.043898% 6 months
50 Call 0.87828444 1.01002711 10% 11.043898% 6 months
50 Call 0.87828444 0.61479911 10% 11.043898%  one year
100  Call 0.87828444 0.74654178 10% 11.043898%  one year
200 Call 0.87828444 0.87828444 10% 11.043898%  one year
100  Call 0.87828444 1.01002711 10% 11.043898%  one year
50 Call 0.87828444 1.14176978 10% 11.043898%  one year
200 Put 0.87828444 0.87301474 10% 11.043898% one week
400 Put 0.87828444 0.87564959 10% 11.043898% one week
800 Put 0.87828444 (.87828444 10% 11.043898% one week
400 Put 0.87828444 0.88091930 10% 11.043898% one week
200 Put 0.87828444 (0.88355415 10% 11.043898%  one week
200 Put 0.87828444 0.81241311 10% 11.043898% 3 months
400 Put 0.87828444 0.84534878 10% 11.043898% 3 months
800 Put 0.87828444 (0.87828444 10% 11.043898% 3 months
400 Put 0.87828444 0.91122011 10% 11.043898% 3 months
200 Put 0.87828444 0.94415578 10% 11.043898% 3 months
50 Put 0.87828444 (.74654178 10% 11.043898% 6 months
100 Put 0.87828444 0.81241311 10% 11.043898% 6 months
200 Put 0.87828444 (0.87828444 10% 11.043898% 6 months
100 Put 0.87828444 0.94415578 10% 11.043898% 6 months
50 Put 0.87828444 1.01002711 10% 11.043898% 6 months
50 Put 0.87828444 0.61479911 10% 11.043898%  one year
100 Put 0.87828444 0.74654178 10% 11.043898%  one year
200 Put 0.87828444 (0.87828444 10% 11.043898%  one year
100  Put 0.87828444 1.01002711 10% 11.043898%  one year
50 Put 0.87828444 1.14176978 10% 11.043898%  one year
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Portfolio : PF2 Home currency: No FX Contracts
Portfolio: PF1 Currency : 3
Number of Type Price Strike Interest Volatility = Maturity
FX-Contracts rate
200 Call 0.81602930 0.81113312 10% 3.724517%  one week
400 Call 0.81602930 0.81358121 10% 3.724517%  one week
800 Call 0.81602930 0.81602930 10% 3.724517%  one week
400 Call 0.81602930 0.81847738 10% 3.724517%  one week
200 Call 0.81602930 0.82092547 10% 3.724517%  one week
200 Call 0.81602930 0.75482710 10% 3.724517% 3 months
400 Call 0.81602930 0.78542820 10% 3.724517% 3 months
800 Call 0.81602930 0.81602930 10% 3.724517% 3 months
400 Call 0.81602930 0.84663039 10% 3.724517% 3 months
200 Call 0.81602930 0.87723149 10% 3.724517% 3 months
50 Call 0.81602930 0.69362490 10% 3.724517% 6 months
100 Call  0.81602930 0.75482710 10% 3.724517% 6 months
200 Call 0.81602930 0.81602930 10% 3.724517% 6 months
100 Call  0.81602930 0.87723149 10% 3.724517% 6 months
50 Call  0.81602930 0.93843369 10% 3.724517% 6 months
50 Call 0.81602930 0.57122051 10% 3.724517%  one year
100 Call  0.81602930 0.69362490 10% 3.724517%  one year
200 Call 0.81602930 0.81602930 10% 3.724517%  one year
100 Call  0.81602930 0.93843369 10% 3.724517%  one year
50 Call  0.81602930 1.06083808 10% 3.724517%  one year
200 Put 0.81602930 0.81113312 10% 3.724517%  one week
400 Put 0.81602930 0.81358121 10% 3.724517%  one week
800 Put 0.81602930 0.81602930 10% 3.724517%  one week
400 Put 0.81602930 0.81847738 10% 3.724517%  one week
200 Put 0.81602930 0.82092547 10% 3.724517%  one week
200 Put 0.81602930 0.75482710 10% 3.724517% 3 months
400 Put 0.81602930 0.78542820 10% 3.724517% 3 months
800 Put 0.81602930 0.81602930 10% 3.724517% 3 months
400 Put 0.81602930 0.84663039 10% 3.724517% 3 months
200 Put 0.81602930 0.87723149 10% 3.724517% 3 months
50 Put 0.81602930 0.69362490 10% 3.724517% 6 months
100  Put  0.81602930 0.75482710 10% 3.724517% 6 months
200 Put 0.81602930 0.81602930 10% 3.724517% 6 months
100  Put  0.81602930 0.87723149 10% 3.724517% 6 months
50 Put  0.81602930 0.93843369 10% 3.724517% 6 months
50 Put  0.81602930 0.57122051 10% 3.724517%  one year
100  Put  0.81602930 0.69362490 10% 3.724517%  one year
200 Put 0.81602930 0.81602930 10% 3.724517%  one year
100  Put  0.81602930 0.93843369 10% 3.724517%  one year
50 Put 0.81602930 1.06083808 10% 3.724517%  one year
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Portfolio : PF1 Currency : 4
Number of Type Price Strike Interest Volatility = Maturity
FX-Contracts rate

200 Call 0.24071504 0.23927075 10% 3.871148% one week
400 Call  0.24071504 0.23999289 10% 3.871148% one week
800 Call 0.24071504 0.24071504 10% 3.871148% one week
400 Call 0.24071504 0.24143718 10% 3.871148% one week
200 Call 0.24071504 0.24215933 10% 3.871148% one week
200 Call 0.24071504 0.22266141 10% 3.871148% 3 months
400 Call 0.24071504 0.23168822 10% 3.871148% 3 months
800 Call 0.24071504 0.24071504 10% 3.871148% 3 months
400 Call 0.24071504 0.24974185 10% 3.871148% 3 months
200 Call 0.24071504 0.25876867 10% 3.871148% 3 months
50 Call 0.24071504 0.20460778 10% 3.871148% 6 months
100  Call 0.24071504 0.22266141 10% 3.871148% 6 months
200 Call 0.24071504 0.24071504 10% 3.871148% 6 months
100  Call 0.24071504 0.25876867 10% 3.871148% 6 months
50 Call 0.24071504 0.27682229 10% 3.871148% 6 months
50 Call 0.24071504 0.16850053 10% 3.871148%  one year
100 Call 0.24071504 0.20460778 10% 3.871148%  ome year
200 Call 0.24071504 0.24071504 10% 3.871148%  one year
100 Call 0.24071504 0.27682229 10% 3.871148%  ome year
50 Call 0.24071504 0.31292955 10% 3.871148%  one year
200 Put 0.24071504 0.23927075 10% 3.871148% one week
400 Put  0.24071504 0.23999289 10% 3.871148% one week
800 Put 0.24071504 0.24071504 10% 3.871148% one week
400 Put  0.24071504 0.24143718 10% 3.871148% one week
200 Put 0.24071504 0.24215933 10% 3.871148% one week
200 Put 0.24071504 0.22266141 10% 3.871148% 3 months
400 Put  0.24071504 0.23168822 10% 3.871148% 3 months
800 Put 0.24071504 0.24071504 10% 3.871148% 3 months
400 Put  0.24071504 0.24974185 10% 3.871148% 3 months
200 Put 0.24071504 0.25876867 10% 3.871148% 3 months
50 Put 0.24071504 0.20460778 10% 3.871148% 6 months
100 Put 0.24071504 0.22266141 10% 3.871148% 6 months
200 Put 0.24071504 0.24071504 10% 3.871148% 6 months
100 Put 0.24071504 0.25876867 10% 3.871148% 6 months
50 Put 0.24071504 0.27682229 10% 3.871148% 6 months
50 Put 0.24071504 0.16850053 10% 3.871148%  one year
100 Put 0.24071504 0.20460778 10% 3.871148%  ome year
200 Put 0.24071504 0.24071504 10% 3.871148%  one year
100 Put 0.24071504 0.27682229 10% 3.871148%  ome year
50 Put 0.24071504 0.31292955 10% 3.871148%  one year
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Portfolio : PF1 Currency : 5
Number of Type Price Strike Interest Volatility = Maturity
FX-Contracts rate

200 Call 1.87936379 1.86808761 10% 9.484678%  one week
400 Call 1.87936379 1.87372570 10% 9.484678%  one week
800 Call 1.87936379 1.87936379 10% 9.484678%  one week
400 Call 1.87936379 1.88500188 10% 9.484678%  one week
200 Call 1.87936379 1.89063997 10% 9.484678%  one week
200 Call 1.87936379 1.73841150 10% 9.484678% 3 months
400 Call 1.87936379 1.80888765 10% 9.484678% 3 months
800 Call 1.87936379 1.87936379 10% 9.484678% 3 months
400 Call 1.87936379 1.94983993 10% 9.484678% 3 months
200 Call 1.87936379 2.02031607 10% 9.484678% 3 months
50 Call 1.87936379 1.59745922 10% 9.484678% 6 months
100  Call 1.87936379 1.73841150 10% 9.484678% 6 months
200 Call 1.87936379 1.87936379 10% 9.484678% 6 months
100 Call 1.87936379 2.02031607 10% 9.484678% 6 months
50 Call 1.87936379 2.16126836 10% 9.484678% 6 months
50 Call 1.87936379 1.31555465 10% 9.484678%  one year
100 Call 1.87936379 1.59745922 10% 9.484678%  one year
200 Call 1.87936379 1.87936379 10% 9.484678%  one year
100 Call 1.87936379 2.16126836 10% 9.484678%  one year
50 Call 1.87936379 2.44317293 10% 9.484678%  one year
200 Put 1.87936379 1.86808761 10% 9.484678%  one week
400 Put 1.87936379 1.87372570 10% 9.484678% one week
800 Put 1.87936379 1.87936379 10% 9.484678%  one week
400 Put 1.87936379 1.88500188 10% 9.484678% one week
200 Put 1.87936379 1.89063997 10% 9.484678%  one week
200 Put 1.87936379 1.73841150 10% 9.484678% 3 months
400 Put 1.87936379 1.80888765 10% 9.484678% 3 months
800 Put 1.87936379 1.87936379 10% 9.484678% 3 months
400 Put 1.87936379 1.94983993 10% 9.484678% 3 months
200 Put 1.87936379 2.02031607 10% 9.484678% 3 months
50 Put 1.87936379 1.59745922 10% 9.484678% 6 months
100 Put 1.87936379 1.73841150 10% 9.484678% 6 months
200 Put 1.87936379 1.87936379 10% 9.484678% 6 months
100 Put 1.87936379 2.02031607 10% 9.484678% 6 months
50 Put 1.87936379 2.16126836 10% 9.484678% 6 months
50 Put 1.87936379 1.31555465 10% 9.484678%  one year
100 Put 1.87936379 1.59745922 10% 9.484678%  one year
200 Put 1.87936379 1.87936379 10% 9.484678%  one year
100 Put 1.87936379 2.16126836 10% 9.484678%  one year
50 Put 1.87936379 2.44317293 10% 9.484678%  one year
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Portfolio : PF1 Currency : 6
Number of Type Price Strike Interest Volatility = Maturity
FX-Contracts rate

200 Call 0.00079652 0.00079174 10% 7.026373%  one week
400 Call  0.00079652 0.00079413 10% 7.026373% one week
800 Call 0.00079652 0.00079652 10% 7.026373%  one week
400 Call  0.00079652 0.00079891 10% 7.026373% one week
200 Call 0.00079652 0.00080130 10% 7.026373% one week
200 Call 0.00079652 0.00073678 10% 7.026373% 3 months
400 Call 0.00079652 0.00076665 10% 7.026373% 3 months
800 Call 0.00079652 0.00079652 10% 7.026373% 3 months
400 Call 0.00079652 0.00082639 10% 7.026373% 3 months
200 Call 0.00079652 0.00085626 10% 7.026373% 3 months
50 Call 0.00079652 0.00067704 10% 7.026373% 6 months
100  Call  0.00079652 0.00073678 10% 7.026373% 6 months
200 Call 0.00079652 0.00079652 10% 7.026373% 6 months
100  Call  0.00079652 0.00085626 10% 7.026373% 6 months
50 Call 0.00079652 0.00091599 10% 7.026373% 6 months
50 Call 0.00079652 0.00055756 10% 7.026373%  one year
100 Call  0.00079652 0.00067704 10% 7.026373%  one year
200 Call 0.00079652 0.00079652 10% 7.026373%  one year
100 Call  0.00079652 0.00091599 10% 7.026373%  one year
50 Call 0.00079652 0.00103547 10% 7.026373%  one year
200 Put 0.00079652 0.00079174 10% 7.026373% one week
400  Put  0.00079652 0.00079413 10% 7.026373% one week
800 Put 0.00079652 0.00079652 10% 7.026373% one week
400  Put  0.00079652 0.00079891 10% 7.026373% one week
200 Put 0.00079652 0.00080130 10% 7.026373%  one week
200  Put 0.00079652 0.00073678 10% 7.026373% 3 months
400 Put  0.00079652 0.00076665 10% 7.026373% 3 months
800 Put 0.00079652 0.00079652 10% 7.026373% 3 months
400 Put  0.00079652 0.00082639 10% 7.026373% 3 months
200  Put 0.00079652 0.00085626 10% 7.026373% 3 months
50 Put 0.00079652 0.00067704 10% 7.026373% 6 months
100 Put  0.00079652 0.00073678 10% 7.026373% 6 months
200 Put 0.00079652 0.00079652 10% 7.026373% 6 months
100 Put  0.00079652 0.00085626 10% 7.026373% 6 months
50 Put  0.00079652 0.00091599 10% 7.026373% 6 months
50 Put 0.00079652 0.00055756 10% 7.026373%  one year
100 Put  0.00079652 0.00067704 10% 7.026373%  one year
200 Put 0.00079652 0.00079652 10% 7.026373%  one year
100 Put  0.00079652 0.00091599 10% 7.026373%  one year
50 Put 0.00079652 0.00103547 10% 7.026373%  one year
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Portfolio : PF1 Currency : 7
Number of Type Price Strike Interest Volatility = Maturity
FX-Contracts rate

200 Call 0.01114859 0.01108170 10% 7.920480% one week
400 Call 0.01114859 0.01111514 10% 7.920480% one week
800 Call 0.01114859 0.01114859 10% 7.920480% one week
400 Call 0.01114859 0.01118203 10% 7.920480% one week
200 Call 0.01114859 0.01121548 10% 7.920480% one week
200 Call 0.01114859 0.01031244 10% 7.920480% 3 months
400 Call 0.01114859 0.01073052 10% 7.920480% 3 months
800 Call 0.01114859 0.01114859 10% 7.920480% 3 months
400 Call 0.01114859 0.01156666 10% 7.920480% 3 months
200 Call 0.01114859 0.01198473 10% 7.920480% 3 months
50 Call 0.01114859 0.00947630 10% 7.920480% 6 months
100 Call 0.01114859 0.01031244 10% 7.920480% 6 months
200 Call 0.01114859 0.01114859 10% 7.920480% 6 months
100  Call 0.01114859 0.01198473 10% 7.920480% 6 months
50 Call 0.01114859 0.01282088 10% 7.920480% 6 months
50 Call 0.01114859 0.00780401 10% 7.920480%  one year
100 Call  0.01114859 0.00947630 10% 7.920480%  one year
200 Call 0.01114859 0.01114859 10% 7.920480%  one year
100 Call 0.01114859 0.01282088 10% 7.920480%  one year
50 Call 0.01114859 0.01449316 10% 7.920480%  one year
200 Put 0.01114859 0.01108170 10% 7.920480% one week
400 Put 0.01114859 0.01111514 10% 7.920480% one week
800 Put 0.01114859 0.01114859 10% 7.920480% one week
400 Put 0.01114859 0.01118203 10% 7.920480% one week
200 Put 0.01114859 0.01121548 10% 7.920480% one week
200 Put 0.01114859 0.01031244 10% 7.920480% 3 months
400 Put 0.01114859 0.01073052 10% 7.920480% 3 months
800 Put 0.01114859 0.01114859 10% 7.920480% 3 months
400 Put 0.01114859 0.01156666 10% 7.920480% 3 months
200 Put 0.01114859 0.01198473 10% 7.920480% 3 months
50 Put 0.01114859 0.00947630 10% 7.920480% 6 months
100  Put 0.01114859 0.01031244 10% 7.920480% 6 months
200 Put 0.01114859 0.01114859 10% 7.920480% 6 months
100 Put 0.01114859 0.01198473 10% 7.920480% 6 months
50 Put 0.01114859 0.01282088 10% 7.920480% 6 months
50 Put 0.01114859 0.00780401 10% 7.920480%  one year
100 Put  0.01114859 0.00947630 10% 7.920480%  one year
200 Put 0.01114859 0.01114859 10% 7.920480%  one year
100 Put 0.01114859 0.01282088 10% 7.920480%  one year
50 Put 0.01114859 0.01449316 10% 7.920480%  one year
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Portfolio : PF1 Currency : 8
Number of Type Price Strike Interest Volatility =~ Maturity
FX-Contracts rate

200 Call 1.20649920 1.19926021 10% 10.243166% one week
400 Call 1.20649920 1.20287971 10% 10.243166% one week
800 Call 1.20649920 1.20649920 10% 10.243166% one week
400 Call 1.20649920 1.21011870 10% 10.243166% one week
200 Call 1.20649920 1.21373820 10% 10.243166% one week
200 Call 1.20649920 1.11601176 10% 10.243166% 3 months
400 Call 1.20649920 1.16125548 10% 10.243166% 3 months
800 Call 1.20649920 1.20649920 10% 10.243166% 3 months
400 Call 1.20649920 1.25174292 10% 10.243166% 3 months
200 Call 1.20649920 1.29698664 10% 10.243166% 3 months
50 Call 1.20649920 1.02552432 10% 10.243166% 6 months
100  Call 1.20649920 1.11601176 10% 10.243166% 6 months
200 Call 1.20649920 1.20649920 10% 10.243166% 6 months
100  Call  1.20649920 1.29698664 10% 10.243166% 6 months
50 Call 1.20649920 1.38747408 10% 10.243166% 6 months
50 Call 1.20649920 0.84454944 10% 10.243166%  one year
100 Call  1.20649920 1.02552432 10% 10.243166%  one year
200 Call 1.20649920 1.20649920 10% 10.243166%  one year
100 Call  1.20649920 1.38747408 10% 10.243166%  one year
50 Call 1.20649920 1.56844896 10% 10.243166%  one year
200 Put 1.20649920 1.19926021 10% 10.243166% one week
400 Put 1.20649920 1.20287971 10% 10.243166% one week
800 Put 1.20649920 1.20649920 10% 10.243166% one week
400 Put 1.20649920 1.21011870 10% 10.243166% one week
200 Put 1.20649920 1.21373820 10% 10.243166% one week
200 Put 1.20649920 1.11601176 10% 10.243166% 3 months
400 Put 1.20649920 1.16125548 10% 10.243166% 3 months
800 Put 1.20649920 1.20649920 10% 10.243166% 3 months
400 Put 1.20649920 1.25174292 10% 10.243166% 3 months
200 Put 1.20649920 1.29698664 10% 10.243166% 3 months
50 Put  1.20649920 1.02552432 10% 10.243166% 6 months
100 Put 1.20649920 1.11601176 10% 10.243166% 6 months
200 Put 1.20649920 1.20649920 10% 10.243166% 6 months
100 Put  1.20649920 1.29698664 10% 10.243166% 6 months
50 Put  1.20649920 1.38747408 10% 10.243166% 6 months
50 Put  1.20649920 0.84454944 10% 10.243166%  one year
100 Put  1.20649920 1.02552432 10% 10.243166%  one year
200 Put 1.20649920 1.20649920 10% 10.243166%  one year
100 Put  1.20649920 1.38747408 10% 10.243166%  one year
50 Put  1.20649920 1.56844896 10% 10.243166%  one year

99




Portfolio : PF2 Currencies : 1-4
Number of Type Price Strike Interest Volatility Maturity
FX-Contracts rate
2000 Call 0.87828444 0.87301474 10% 11.043898%  one week
2000 Call 0.87828444 0.81241311 10% 11.043898% 3 months
500 Call 0.87828444 0.74654178 10% 11.043898% 6 months
500 Call 0.87828444 0.61479911 10% 11.043898%  one year
2000 Put 0.87828444 0.88355415 10% 11.043898%  one week
2000 Put 0.87828444 0.94415578 10% 11.043898% 3 months
500  Put 0.87828444 1.01002711 10% 11.043898% 6 months
500 Put 0.87828444 1.14176978 10% 11.043898%  one year
Home currency: No FX Contracts
2000 Call 0.81602930 0.81113312 10% 3.724517%  one week
2000 Call  0.81602930 0.75482710 10% 3.724517% 3 months
500 Call 0.81602930 0.69362490 10% 3.724517% 6 months
500 Call 0.81602930 0.57122051 10% 3.724517%  one year
2000 Put 0.81602930 0.82092547 10% 3.724517%  one week
2000 Put 0.81602930 0.87723149 10% 3.724517% 3 months
500  Put 0.81602930 0.93843369 10% 3.724517% 6 months
500 Put 0.81602930 1.06083808 10% 3.724517%  one year
2000 Call 0.24071504 0.23927075 10% 3.871148%  one week
2000 Call  0.24071504 0.22266141 10% 3.871148% 3 months
500 Call 0.24071504 0.20460778 10% 3.871148% 6 months
500 Call 0.24071504 0.16850053 10% 3.871148%  one year
2000 Put 0.24071504 0.24215933 10% 3.871148%  one week
2000 Put 0.24071504 0.25876867 10% 3.871148% 3 months
500 Put 0.24071504 0.27682229 10% 3.871148% 6 months
500 Put 0.24071504 0.31292955 10% 3.871148%  one year
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Portfolio : PF2 Currencies : 5-8
Number of Type Price Strike Interest Volatility =~ Maturity
FX-Contracts rate

2000 Call 1.87936379 1.86808761 10% 9.484678%  one week
2000 Call 1.87936379 1.73841150 10% 9.484678% 3 months
500 Call 1.87936379 1.59745922 10% 9.484678% 6 months
500 Call 1.87936379 1.31555465 10% 9.484678%  one year
2000 Put 1.87936379 1.89063997 10% 9.484678%  one week
2000  Put 1.87936379 2.02031607 10% 9.484678% 3 months
500 Put 1.87936379 2.16126836 10% 9.484678% 6 months
500 Put 1.87936379 2.44317293 10% 9.484678%  one year
2000 Call  0.00079652 0.00079174 10% 7.026373% one week
2000 Call 0.00079652 0.00073678 10% 7.026373% 3 months
500 Call 0.00079652 0.00067704 10% 7.026373% 6 months
500 Call 0.00079652 0.00055756 10% 7.026373%  one year
2000  Put  0.00079652 0.00080130 10% 7.026373% one week
2000  Put  0.00079652 0.00085626 10% 7.026373% 3 months
500 Put 0.00079652 0.00091599 10% 7.026373% 6 months
500 Put 0.00079652 0.00103547 10% 7.026373%  one year
2000 Call 0.01114859 0.01108170 10% 7.920480% one week
2000 Call 0.01114859 0.01031244 10% 7.920480% 3 months
500 Call 0.01114859 0.00947630 10% 7.920480% 6 months
500 Call 0.01114859 0.00780401 10% 7.920480%  one year
2000  Put 0.01114859 0.01121548 10% 7.920480% one week
2000  Put 0.01114859 0.01198473 10% 7.920480% 3 months
500 Put 0.01114859 0.01282088 10% 7.920480% 6 months
500 Put 0.01114859 0.01449316 10% 7.920480%  one year
2000 Call  1.20649920 1.19926021 10% 10.243166% one week
2000 Call 1.20649920 1.11601176 10% 10.243166% 3 months
500 Call 1.20649920 1.02552432 10% 10.243166% 6 months
500 Call 1.20649920 0.84454944 10% 10.243166%  one year
2000  Put  1.20649920 1.21373820 10% 10.243166% one week
2000  Put 1.20649920 1.29698664 10% 10.243166% 3 months
500 Put 1.20649920 1.38747408 10% 10.243166% 6 months
500 Put 1.20649920 1.56844896 10% 10.243166%  one year
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Portfolio : PF3 Currencies : 1-4
Number of Type Price Strike Interest Volatility Maturity
FX-Contracts rate
2000 Call 0.87828444 0.88355415 10% 11.043898%  one week
2000 Call 0.87828444 0.94415578 10% 11.043898% 3 months
500 Call 0.87828444 1.01002711 10% 11.043898% 6 months
500 Call 0.87828444 1.14176978 10% 11.043898%  one year
2000 Put 0.87828444 0.87301474 10% 11.043898%  one week
2000 Put 0.87828444 0.81241311 10% 11.043898% 3 months
500 Put 0.87828444 0.74654178 10% 11.043898% 6 months
500 Put 0.87828444 0.61479911 10% 11.043898%  one year
Home currency: No FX Contracts
2000 Call  0.81602930 0.82092547 10% 3.724517%  one week
2000 Call 0.81602930 0.87723149 10% 3.724517% 3 months
500 Call 0.81602930 0.93843369 10% 3.724517% 6 months
500 Call 0.81602930 1.06083808 10% 3.724517%  one year
2000 Put 0.81602930 0.81113312 10% 3.724517%  one week
2000 Put 0.81602930 0.75482710 10% 3.724517% 3 months
500  Put 0.81602930 0.69362490 10% 3.724517% 6 months
500 Put 0.81602930 0.57122051 10% 3.724517%  one year
2000 Call 0.24071504 0.24215933 10% 3.871148%  one week
2000 Call 0.24071504 0.25876867 10% 3.871148% 3 months
500 Call 0.24071504 0.27682229 10% 3.871148% 6 months
500 Call 0.24071504 0.31292955 10% 3.871148%  one year
2000 Put 0.24071504 0.23927075 10% 3.871148%  one week
2000 Put 0.24071504 0.22266141 10% 3.871148% 3 months
500 Put 0.24071504 0.20460778 10% 3.871148% 6 months
500 Put 0.24071504 0.16850053 10% 3.871148%  one year
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Portfolio : PF3 Currencies : 5-8
Number of Type Price Strike Interest Volatility =~ Maturity
FX-Contracts rate

2000 Call 1.87936379 1.89063997 10% 9.484678%  one week
2000 Call 1.87936379 2.02031607 10% 9.484678% 3 months
500 Call 1.87936379 2.16126836 10% 9.484678% 6 months
500 Call 1.87936379 2.44317293 10% 9.484678%  one year
2000 Put 1.87936379 1.86808761 10% 9.484678%  one week
2000  Put 1.87936379 1.73841150 10% 9.484678% 3 months
500 Put 1.87936379 1.59745922 10% 9.484678% 6 months
500 Put 1.87936379 1.31555465 10% 9.484678%  one year
2000 Call  0.00079652 0.00080130 10% 7.026373% one week
2000 Call 0.00079652 0.00085626 10% 7.026373% 3 months
500 Call 0.00079652 0.00091599 10% 7.026373% 6 months
500 Call 0.00079652 0.00103547 10% 7.026373%  one year
2000  Put 0.00079652 0.00079174 10% 7.026373% one week
2000  Put  0.00079652 0.00073678 10% 7.026373% 3 months
500 Put 0.00079652 0.00067704 10% 7.026373% 6 months
500 Put 0.00079652 0.00055756 10% 7.026373%  one year
2000 Call 0.01114859 0.01121548 10% 7.920480% one week
2000 Call 0.01114859 0.01198473 10% 7.920480% 3 months
500 Call 0.01114859 0.01282088 10% 7.920480% 6 months
500 Call 0.01114859 0.01449316 10% 7.920480%  one year
2000  Put 0.01114859 0.01108170 10% 7.920480% one week
2000 Put 0.01114859 0.01031244 10% 7.920480% 3 months
500 Put 0.01114859 0.00947630 10% 7.920480% 6 months
500 Put 0.01114859 0.00780401 10% 7.920480%  one year
2000 Call 1.20649920 1.21373820 10% 10.243166% one week
2000 Call 1.20649920 1.29698664 10% 10.243166% 3 months
500 Call 1.20649920 1.38747408 10% 10.243166% 6 months
500 Call 1.20649920 1.56844896 10% 10.243166%  one year
2000  Put 1.20649920 1.19926021 10% 10.243166% one week
2000 Put 1.20649920 1.11601176 10% 10.243166% 3 months
500 Put 1.20649920 1.02552432 10% 10.243166% 6 months
500 Put 1.20649920 0.84454944 10% 10.243166%  one year
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Portfolio : PF4 Currencies : 1-4
Number of Type Price Strike Interest Volatility Maturity
FX-Contracts rate
2000 Call 0.87828444 0.87301474 10% 11.043898%  one week
2000 Call 0.87828444 0.81241311 10% 11.043898% 3 months
500 Call 0.87828444 0.74654178 10% 11.043898% 6 months
500 Call 0.87828444 0.61479911 10% 11.043898%  one year
2000 Put 0.87828444 0.87301474 10% 11.043898%  one week
2000 Put 0.87828444 0.81241311 10% 11.043898% 3 months
500 Put 0.87828444 0.74654178 10% 11.043898% 6 months
500 Put 0.87828444 0.61479911 10% 11.043898%  one year
Home currency: No FX Contracts
2000 Call 0.81602930 0.81113312 10% 3.724517%  one week
2000 Call 0.81602930 0.75482710 10% 3.724517% 3 months
500 Call 0.81602930 0.69362490 10% 3.724517% 6 months
500 Call 0.81602930 0.57122051 10% 3.724517%  one year
2000 Put 0.81602930 0.81113312 10% 3.724517%  one week
2000 Put 0.81602930 0.75482710 10% 3.724517% 3 months
500 Put 0.81602930 0.69362490 10% 3.724517% 6 months
500  Put 0.81602930 0.57122051 10% 3.724517%  one year
2000 Call 0.24071504 0.23927075 10% 3.871148%  one week
2000 Call 0.24071504 0.22266141 10% 3.871148% 3 months
500 Call 0.24071504 0.20460778 10% 3.871148% 6 months
500 Call 0.24071504 0.16850053 10% 3.871148%  one year
2000 Put 0.24071504 0.23927075 10% 3.871148%  one week
2000 Put 0.24071504 0.22266141 10% 3.871148% 3 months
500  Put 0.24071504 0.20460778 10% 3.871148% 6 months
500 Put 0.24071504 0.16850053 10% 3.871148%  one year
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Portfolio : PF4 Currencies : 5-8
Number of Type Price Strike Interest Volatility =~ Maturity
FX-Contracts rate

2000 Call 1.87936379 1.86808761 10% 9.484678%  one week
2000 Call 1.87936379 1.73841150 10% 9.484678% 3 months
500 Call 1.87936379 1.59745922 10% 9.484678% 6 months
500 Call 1.87936379 1.31555465 10% 9.484678%  one year
2000 Put 1.87936379 1.86808761 10% 9.484678%  one week
2000  Put 1.87936379 1.73841150 10% 9.484678% 3 months
500 Put 1.87936379 1.59745922 10% 9.484678% 6 months
500 Put 1.87936379 1.31555465 10% 9.484678%  one year
2000 Call  0.00079652 0.00079174 10% 7.026373% one week
2000 Call 0.00079652 0.00073678 10% 7.026373% 3 months
500 Call 0.00079652 0.00067704 10% 7.026373% 6 months
500 Call 0.00079652 0.00055756 10% 7.026373%  one year
2000  Put 0.00079652 0.00079174 10% 7.026373% one week
2000  Put  0.00079652 0.00073678 10% 7.026373% 3 months
500 Put 0.00079652 0.00067704 10% 7.026373% 6 months
500 Put 0.00079652 0.00055756 10% 7.026373%  one year
2000 Call 0.01114859 0.01108170 10% 7.920480% one week
2000 Call 0.01114859 0.01031244 10% 7.920480% 3 months
500 Call 0.01114859 0.00947630 10% 7.920480% 6 months
500 Call 0.01114859 0.00780401 10% 7.920480%  one year
2000  Put 0.01114859 0.01108170 10% 7.920480% one week
2000 Put 0.01114859 0.01031244 10% 7.920480% 3 months
500 Put 0.01114859 0.00947630 10% 7.920480% 6 months
500 Put 0.01114859 0.00780401 10% 7.920480%  one year
2000 Call  1.20649920 1.19926021 10% 10.243166% one week
2000 Call 1.20649920 1.11601176 10% 10.243166% 3 months
500 Call 1.20649920 1.02552432 10% 10.243166% 6 months
500 Call 1.20649920 0.84454944 10% 10.243166%  one year
2000  Put 1.20649920 1.19926021 10% 10.243166% one week
2000 Put 1.20649920 1.11601176 10% 10.243166% 3 months
500 Put 1.20649920 1.02552432 10% 10.243166% 6 months
500 Put 1.20649920 0.84454944 10% 10.243166%  one year
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Portfolio : PF5 Currencies : 1-4
Number of Type Price Strike Interest Volatility Maturity
FX-Contracts rate
2000 Call 0.87828444 0.88355415 10% 11.043898%  one week
2000 Call 0.87828444 0.94415578 10% 11.043898% 3 months
500 Call 0.87828444 1.01002711 10% 11.043898% 6 months
500 Call 0.87828444 1.14176978 10% 11.043898%  one year
2000 Put 0.87828444 0.88355415 10% 11.043898%  one week
2000 Put 0.87828444 0.94415578 10% 11.043898% 3 months
500  Put 0.87828444 1.01002711 10% 11.043898% 6 months
500 Put 0.87828444 1.14176978 10% 11.043898%  one year
Home currency: No FX Contracts
2000 Call  0.81602930 0.82092547 10% 3.724517%  one week
2000 Call 0.81602930 0.87723149 10% 3.724517% 3 months
500 Call 0.81602930 0.93843369 10% 3.724517% 6 months
500 Call 0.81602930 1.06083808 10% 3.724517%  one year
2000 Put 0.81602930 0.82092547 10% 3.724517%  one week
2000 Put 0.81602930 0.87723149 10% 3.724517% 3 months
500  Put 0.81602930 0.93843369 10% 3.724517% 6 months
500 Put 0.81602930 1.06083808 10% 3.724517%  one year
2000 Call 0.24071504 0.24215933 10% 3.871148%  one week
2000 Call 0.24071504 0.25876867 10% 3.871148% 3 months
500 Call 0.24071504 0.27682229 10% 3.871148% 6 months
500 Call 0.24071504 0.31292955 10% 3.871148%  one year
2000 Put 0.24071504 0.24215933 10% 3.871148%  one week
2000 Put 0.24071504 0.25876867 10% 3.871148% 3 months
500 Put 0.24071504 0.27682229 10% 3.871148% 6 months
500 Put 0.24071504 0.31292955 10% 3.871148%  one year
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Portfolio : PF5 Currencies : 5-8
Number of Type Price Strike Interest Volatility =~ Maturity
FX-Contracts rate

2000 Call 1.87936379 1.89063997 10% 9.484678% one week
2000 Call 1.87936379 2.02031607 10% 9.484678% 3 months
500 Call 1.87936379 2.16126836 10% 9.484678% 6 months
500 Call 1.87936379 2.44317293 10% 9.484678%  one year
2000 Put 1.87936379 1.89063997 10% 9.484678%  one week
2000  Put 1.87936379 2.02031607 10% 9.484678% 3 months
500 Put 1.87936379 2.16126836 10% 9.484678% 6 months
500 Put 1.87936379 2.44317293 10% 9.484678%  one year
2000 Call  0.00079652 0.00080130 10% 7.026373% one week
2000 Call 0.00079652 0.00085626 10% 7.026373% 3 months
500 Call 0.00079652 0.00091599 10% 7.026373% 6 months
500 Call 0.00079652 0.00103547 10% 7.026373%  one year
2000  Put  0.00079652 0.00080130 10% 7.026373% one week
2000  Put 0.00079652 0.00085626 10% 7.026373% 3 months
500 Put 0.00079652 0.00091599 10% 7.026373% 6 months
500 Put 0.00079652 0.00103547 10% 7.026373%  one year
2000 Call 0.01114859 0.01121548 10% 7.920480% one week
2000 Call 0.01114859 0.01198473 10% 7.920480% 3 months
500 Call 0.01114859 0.01282088 10% 7.920480% 6 months
500 Call 0.01114859 0.01449316 10% 7.920480%  one year
2000  Put 0.01114859 0.01121548 10% 7.920480% one week
2000 Put 0.01114859 0.01198473 10% 7.920480% 3 months
500 Put 0.01114859 0.01282088 10% 7.920480% 6 months
500 Put 0.01114859 0.01449316 10% 7.920480%  one year
2000 Call 1.20649920 1.21373820 10% 10.243166% one week
2000 Call 1.20649920 1.29698664 10% 10.243166% 3 months
500 Call 1.20649920 1.38747408 10% 10.243166% 6 months
500 Call 1.20649920 1.56844896 10% 10.243166%  one year
2000  Put  1.20649920 1.21373820 10% 10.243166% one week
2000  Put  1.20649920 1.29698664 10% 10.243166% 3 months
500 Put 1.20649920 1.38747408 10% 10.243166% 6 months
500 Put 1.20649920 1.56844896 10% 10.243166%  one year
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