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Abstract

An infinite series expansion is given for the bivariate normal cumulative

distribution function. This expansion converges as a series of powers of 1 2− ρd i ,

where ρ  is the correlation coefficient, and thus represents a good alternative to

the tetrachoric series when ρ  is large in absolute value.
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Introduction

The cumulative normal distribution function

N n dx u u
x

a f a f=
−∞
z

with

n u ua f a f d i= −−2 2π ½ exp ½

appears frequently in modern finance: Essentially all explicit equations of options pricing,
starting with the Black/Scholes formula, involve the function in one form or another.
Increasingly, however, there is also a need for the bivariate cumulative normal distribution
function
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where the bivariate normal density is given by
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This need arises in at least the following areas:

1. Pricing exotic options. Option with payout depending on the prices of two lognormally
distributed assets, or two normally distributed factors, involve the bivariate normal
distribution function in the pricing formula. Examples include the so-called rainbow
options (such as calls on maximum or minimum of two assets), extendible options,
spread and cross-country swaps, etc.

2. Correlation of derivatives. While the instantaneous correlation of two derivatives is the
same as the correlation of the underlying assets, calculation of the correlation over non-
infinitesimal intervals often requires the bivariate normal function.

3. Loan loss correlation. If a loan default occurs when the borrower's assets fall below a
certain point, the covariance of defaults on two loans is given by a bivariate normal
formula. This covariance is needed when evaluating the variance of loan portfolio losses.

A standard procedure for calculating the bivariate normal distribution function is the
tetrachoric series,
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are the Hermite polynomials. For a comprehensive review of the literature, see Gupta (1963).

The tetrachoric series (3) converges only slightly faster than a geometric series with quotient ρ ,
and it is therefore not very practical to use when ρ  is large in absolute value. In this note, we
give an alternative series that converges approximately as a geometric series with quotient
1 2− ρd i .

The Expansion

The starting point of this note is the formula

d
d

N n
ρ

ρ ρ2 2x y x y, , , ,b g b g= (4)

proven in the appendix.

Because of the identity

N N sign N sign
if
if2 2 2 2 2 2 2

0
2

0
2

0 0
0

x y x
x y

x xy y
x y

y x

x xy y
y

xy
xy

, , , , , ,
½

ρ
ρ

ρ

ρ

ρ
b g = −

− +

F
H
GG

I
K
JJ +

−

− +

F
H
GG

I
K
JJ −

>
<

L
NM

O
QP

for xy ≠ 0 , we can limit ourselves to calculation of N2 0x, ,ρb g . Suppose first that ρ > 0 . Then by
integrating equation (4) with y = 0  from ρ  to 1 we get

N N2 0x x Q, , min ,½ρb g a fb g= − (5)
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To evaluate the integral, substitute
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to obtain
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Using the expansion
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for k s> ≤ ≤ −0 0 1 2, ρ , the series in equation (7) converges uniformly in the interval 0 1 2, − ρ
and can be integrated term by term. It can be easily established that
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for k ≥ 0 . Substitution into (7) then gives
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Equations (5), (9) and (10) give an infinite series expansion for N2 0 0x, , ,ρ ρb g > . When ρ < 0 ,
integration of equation (4) from -1 to ρ  yields

N N2 0 0x x Q, , max ½,ρa f a fb g= − +
(11)

with Q still given by (9) and (10).

A convenient procedure for computing the terms in the expansion (9) is using the recursive
relationships
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To determine the speed of convergence of (9), integrate the first half of inequality (8) from 0 to
1 2− ρ . This results in the bound
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for k > 0 , and therefore the series (9) converges approximately as 1 2−∑ ρd ik k . As the

tetrachoric series for N2 0x, ,ρb g
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converges approximately as ρ2k k∑ , a reasonable method for calculating N2 0x, ,ρb g  is to use

the tetrachoric series (12) when ρ2 ≤ ½  and the expressions (5) and (11) with the series (9) when
ρ2 > ½ .

The error in the calculation of N2 0x, ,ρb g  resulting from using m  terms in the expansion (9) is
bound in absolute value by
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Numerical Results

A comparison of the convergence of the tetrachoric series (12) and the alternative calculation (5)
or (11) with the series (9) in calculating N2 0x, ,ρb g  for high values of the correlation coefficient is
given in the following tables:

Table 1 Partial sums of the tetrachoric and alternative series

x = − =1 95, .ρ x = − =1 99, .ρ

Number of terms Tetrachoric    Alternative Tetrachoric   Alternative

1

2

3

5

10

20

30

50

100

200

300

.171033        .158632

.171033        .158631

.167298        .158631

.161764        .158631

.157961        .158631

.158466        .158631

.158660        .158631

.158632        .158631

.158631        .158631

.158631        .158631

.158631        .158631

.174894        .158655

.174894        .158655

.170304        .158655

.162651        .158655

.156068        .158655

.158068        .158655

.159374        .158655

.158599        .158655

.158711        .158655

.158657        .158655

.158654        .158655

Exact .158631 .158655
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Table 2 Number of terms necessary for precision 10-4

ρ = .8 .9 .95 .99

Tetrachoric series

x=0 8 16 30 121

x=±1 7 14 22 75

x=±2 6 11 18 42

Alternative series

x=0 4 3 2 1

x=±1 3 1 1 1

x=±2 1 1 1 1
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Appendix

We prove equation (4) by stating a slightly more general result. Let

n p
pξξξξ ξξξξ ξξξξ, exp ½ '½S S Sb g a f d i= −− − −2 2 1π

N n dp pξξξξ υυυυ υυυυ
ξξξξ

, ,S Sb g a f=
−∞
z

be the p-variate normal density function and cumulative distribution function, respectively,

where ξξξξ = x x xp1 2, , ,�d i ′ is a p × 1  vector and S = σ σ σ11 12, , ,� ppn s  is a p p×  symmetric

positive definite matrix. We prove the following lemma:

Lemma. Let p ≥ 2 . Then for i j≠ ,
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Here ξξξξ 1a f d i= x xi j, ’ is the 2 1×  vector of x xi j, , ξξξξ 2a f  is the p − ×2 1b g  vector of the remaining

components of ξξξξ , and S 11a f , S 12a f , S 21a f , S 22a f  is the 2 2× , 2 2× −pb g , p − ×2 2b g , and p p− × −2 2b g b g
decomposition of S  into the i -th and j -th row and column and the remaining rows and columns.
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Define ςςςς = v v vpp11 12, , ,�n s  by ςςςς = −S 1  and put ψψψψ = y y yp1 2, , ,�d i ’=Vx. Since for i j≠
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where ΕΕΕΕ ij  is the matrix having unity for the ij -th element and zeros elsewhere, we get on
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On the other hand,
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∂
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x x
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px x
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2

Integrating with respect to ξξξξ  and exchanging the order of integration and differentiation yields
the first equality of the lemma. The second equality follows from the factorization

n n np p xξξξξ ξξξξ ξξξξ, , ,S S S S S S S Sb g e j e ja f a f a f a f a f a f a f a f a f a f= − −−
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