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A Series Expansion for the Bivariate Normal Integral

Abstract

An infinite series expansion is given for the bivariate normal cumulative

distribution function. This expansion converges as a series of powers of (1 - p2) ,

where p is the correlation coefficient, and thus represents a good alternative to

the tetrachoric series when p is large in absolute value.
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A Series Expansion for the Bivariate Normal Integral

Introduction

The cumulative normal distribution function
N(x)= In(u)du

with
n(u)=(2r)" exp(—l/zuz)

appears frequently in modern finance: Essentially all explicit equations of options pricing,
starting with the Black/Scholes formula, involve the function in one form or another.
Increasingly, however, there is also a need for the bivariate cumulative normal distribution
function

x Y

N, (x,y,p)= | [ny(u,0,p)dudo (1)

—00 —oo

where the bivariate normal density is given by

= —h u® —2puv + v’
n2(urvlp)=(2n-) 1(1_p2) exp(_l&#} (2)
This need arises in at least the following areas:
1. Pricing exotic options. Option with payout depending on the prices of two lognormally

distributed assets, or two normally distributed factors, involve the bivariate normal
distribution function in the pricing formula. Examples include the so-called rainbow
options (such as calls on maximum or minimum of two assets), extendible options,
spread and cross-country swaps, etc.

2. Correlation of derivatives. While the instantaneous correlation of two derivatives is the
same as the correlation of the underlying assets, calculation of the correlation over non-
infinitesimal intervals often requires the bivariate normal function.

3. Loan loss correlation. If a loan default occurs when the borrower's assets fall below a
certain point, the covariance of defaults on two loans is given by a bivariate normal
formula. This covariance is needed when evaluating the variance of loan portfolio losses.

A standard procedure for calculating the bivariate normal distribution function is the
tetrachoric series,
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N, (x,y,p)=N(x)N(y) + n(x)n(y)g T il)! He, (x)He, (y)p""! o)
where
(2] S
He,(x)= go'—i!(k—Zi)!(_l) 27 x

are the Hermite polynomials. For a comprehensive review of the literature, see Gupta (1963).

The tetrachoric series (3) converges only slightly faster than a geometric series with quotient p,
and it is therefore not very practical to use when p is large in absolute value. In this note, we
give an alternative series that converges approximately as a geometric series with quotient

(1-p%)-

The Expansion

The starting point of this note is the formula

d
$Nz(x,y,p) =n,(x,y,p) (4)

proven in the appendix.

Because of the identity

px—y _ py —x , 0 ifxy>0}
N,(x,v,p)=N,| x,0, sienx |+ N,| v,0, si —{ .
AP Jx*=2pxy+y° ’ ] {y 3 =2pxy+y? gny] 72 iy <0

for xy #0, we can limit ourselves to calculation of N,(x,0,p). Suppose first that p>0. Then by
integrating equation (4) with y =0 from p to 1 we get

N,(x,0,p)=min(N(x),%2)-Q (5)

where
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A Series Expansion for the Bivariate Normal Integral

To evaluate the integral, substitute

r=41-s
to obtain
1 -’ 1 xz
Q=%(2r)" J(l —5) s exp( 1/2—]ds (6)
s
0

Using the expansion

Z(Zk)' -2k k
(kY
we get
1*P2 oo | 2
Q="1%(2n)" I > 2k)2. 2 2kgh exp(—l/zx_)ds 7)
o k=0 (k") s
Because
(Zk)' =2k k= X’ kv 2\k-"%
*ex / <s 2 <(1- 8
e Pl (1-p) ®)

for k>0,0<s<1-p?, the series in equation (7) converges uniformly in the interval [0,1 - pz]

and can be integrated term by term. It can be easily established that

jsk ex 1/2£d s (-1)°2 2y |2k+l
) P 2k+1)!

o 5 B O oy e —amy (-

for k>=0. Substitution into (7) then gives

=§0Ak ©)

where
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1 1 k =k |2k+1
A =——(-1)27"|x
¢ k!2k+1( )27

x2 k (21 i 2ic1 i+1h 1 x (10)
!(271')1 exp(_l/zﬁlgo%(_l)lz_l|x| i~ (1—/32) —(ZE)ZN[— | ]]

J1-p?

Equations (5), (9) and (10) give an infinite series expansion for N,(x,0,p), p>0. When p <0,

integration of equation (4) from -1 to p yields

N, (x,0, p) = max(N(x)-¥2,0)+Q (11)

with Q still given by (9) and (10).

A convenient procedure for computing the terms in the expansion (9) is using the recursive
relationships

%-1

A=l 2p 4B

ET kK1) T
(k-1° -

B =~ —0) (1_p)B

k 2k(2k+1)( P B

with

B, =(27)™ (1 - pz)l/2 exp| -2 x
0 1-p°

1 X|
Ay =—(27)”" |x|N{—|—J +B,
J1-p?

To determine the speed of convergence of (9), integrate the first half of inequality (8) from 0 to
1— p?. This results in the bound

0<A, <vh2m) ' ——(1-p?)"

k+1¥

for k>0, and therefore the series (9) converges approximately as 2(1 -p? )k / k. As the

tetrachoric series for N, (x,0,p)

1 =1 01 ka
N, (x,0, p) = VaN(x) + (27) — (-Df2*H 2k+1 12
»(x,0,p) = aN(x) +(27) n(x)kzok!ZkH( ) ey (X)p (12)
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converges approximately as Y, pzk / k , a reasonable method for calculating Nz(x,O, p) is to use
the tetrachoric series (12) when p”> <% and the expressions (5) and (11) with the series (9) when

p>>1h.

The error in the calculation of N,(x,0,p) resulting from using m terms in the expansion (9) is

bound in absolute value by

oo

XA

k=m

1 (1 _ p2 )m+1/2

<(21)" ——T: p_

Numerical Results

A comparison of the convergence of the tetrachoric series (12) and the alternative calculation (5)
or (11) with the series (9) in calculating N, (x,0,p) for high values of the correlation coefficient is

given in the following tables:

Table 1 Partial sums of the tetrachoric and alternative series

x=-1,p=95 x=-1,p=99
Number of terms Tetrachoric Alternative Tetrachoric Alternative

1 171033 158632 174894 158655

2 171033 158631 174894 158655

3 167298 158631 170304 158655

5 161764 158631 162651 158655
10 157961 158631 156068 158655
20 158466 158631 158068 158655
30 158660 158631 159374 .158655
50 158632 158631 158599 158655
100 158631 158631 158711 .158655
200 158631 158631 158657 158655
300 158631 158631 158654 158655
Exact 158631 158655
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Table 2 Number of terms necessary for precision 10+

p= .8 9 .95 .99
Tetrachoric series

x=0 16 30 121
x=+1 7 14 22 75
x=12 11 18 42
Alternative series

x=0 4 3 2 1

x=+1 1 1

x=12 1 1 1 1
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Appendix

We prove equation (4) by stating a slightly more general result. Let

n,(£,8)=(2m) 8| exp(-12E'S'E)

:
N, (&,8)= [n,(v,5)dv

be the p-variate normal density function and cumulative distribution function, respectively,

where F,:(xl,xz,...,xp)’isa px1 vector and Sz{all,olz,...,app} isa pxp symmetric

positive definite matrix. We prove the following lemma:
Lemma. Let p>2. Then for i+ j,

a2
~ Ox,0x j

— -1 -1
=0, (gm S )NH (‘3(2) ~SenSun8a) Ser) 5(21>5<11)S(12))

-—N,(9) N,(&9)

Here § ;) = (xi,xj) "is the 2x1 vector of x;,x;, §, is the (p—2)x1 vector of the remaining
components of &, and Sy, S1), Senys Spaa 18 the 2x2, 2x(p=2), (p—2)x2, and (p-2)x(p-2)

decomposition of S into the i-th and j-th row and column and the remaining rows and columns.

Proof. We have

0 1 4 0§ ec-1 95 o4 n
a—np(§,8)=[—/ztr(5 £}+ /€S S &] ,(&).

ij 90

ij
Define gz{vn,vu,...,vpp} by ¢=S" and put wz(yl,yz,...,yp)’=Vx. Since for i # j

dS
g = Ei]' +Eji
Y

where E; is the matrix having unity for the ij -th element and zeros elsewhere, we get on

substitution

d

—n
do;

p(é’s) = (_Uij + ]/iyj)np (&5)
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On the other hand,

p(&'s) = _yjnp(&ﬂs)

—n
ax}.

82
0x;0x;

n,(8,8)=(~v; +yy;)n,(&9)

and therefore

2 2
2 S)=
30, &)=,

Y

n, (&)

Integrating with respect to & and exchanging the order of integration and differentiation yields
the first equality of the lemma. The second equality follows from the factorization

- A
n, (§,S) =N, (g(l) rS(n) )np72(§(2) - 5(21)5(11)x(1) /S(zz) - 5(21)5(11)5(12))
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