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Abstract

We propose a general framework for efficient pricing via a Partial Differential Equation (PDE) approach of

cross-currency interest rate derivatives under the Hull-White model. In particular, we focus on pricing long-

dated foreign exchange (FX) interest rate hybrids, namely Power Reverse Dual Currency (PRDC) swaps with

Bermudan cancelable features. We formulate the problem in terms of three correlated processes that incor-

porate FX skew via a local volatility function. This formulation results in a time-dependent parabolic PDE

in three spatial dimensions. Finite difference methods on uniform grids are used for the spatial discretiza-

tion of the PDE. The Crank-Nicolson (CN) method and the Alternating Direction Implicit (ADI) method are

considered for the time discretization. In the former case, the preconditioned Generalized Minimal Resid-

ual (GMRES) method is employed for the solution of the resulting block banded linear system at each time

step, with the preconditioner solved by Fast Fourier Transform (FFT) techniques. Numerical results indicate

that the numerical methods considered are second-order convergent, and, asymptotically, as the discretization

granularity increases, almost optimal, with the ADI method being modestly more efficient than CN-GMRES-

FFT. An analysis of the impact of the FX volatility skew on the PRDC swaps’ prices is presented, showing

that the FX volatility skew results in lower prices (i.e. profits) for the payer of PRDC coupons.

Keywords: Power Reverse Dual Currency (PRDC) swaps, Bermudan cancelable, Partial Differential

Equation (PDE), Alternating Direction Implicit (ADI), Generalized Minimal Residual (GMRES), Fast

Fourier Transform (FFT)

1. Introduction

We investigate the modeling and numerical valuation of cross-currency interest rate derivatives with strong

emphasis on long-dated foreign exchange (FX) interest rate hybrids, namely Power Reverse Dual Currency

(PRDC) swaps with Bermudan cancelable features using a partial differential equation (PDE) approach. The

motivation for this work is that, although cross-currency interest rate derivatives in general, and FX interest

rate hybrids in particular, are of enormous current practical importance, the valuation of these derivatives via

a PDE approach is not well-developed in the literature. More specifically, the pricing of PRDC swaps has

been a subject of great interest in practice, especially among financial institutions, yet PDE methods for doing

so are not well-developed in the public domain. The popular choice for pricing PRDC swaps is Monte-Carlo

(MC) simulation, but this approach has several major disadvantages, such as slow convergence and difficulty

in computing hedging parameters.

Foreign exchange (FX) interest rate hybrids, such as PRDC swaps, are exposed to moves in both the spot

FX rate and the interest rates in both currencies. The current standard modeling of such products consists

of two one-factor Gaussian models for the term structures and a one-factor log-normal model for the spot
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FX rate [1]. These choices provide the benefits of (i) keeping the number of factors to the minimum (a

total of three) and (ii) using very efficient, essentially closed-form, calibration for the spot FX rate model.

However, FX options, especially long-dated ones, exhibit a significant skew, which cannot be well captured

by the log-normal distribution. In addition, cross-currency interest rate derivatives with exotic features, such

as Bermudan cancelable PRDC swaps, are particularly sensitive to the FX volatility smile/skew. As a result,

the assumption of log-normality of spot FX rates is questionable in the modeling of such derivatives. One way

to rectify this deficiency is to incorporate FX volatility smiles into the model via a local volatility function,

as first suggested in [2]. By using a local volatility model, this approach avoids introducing more stochastic

factors into the model. Hence it keeps the number of factors to the minimum, while providing better modeling

for the skewness of the FX rate. Under a three-factor model, cross-currency interest rate derivatives are

dependent on three stochastic state variables and thus the PDE which their value function must satisfy has

three state variables in addition to the time variable. Furthermore, these products have additional complexity

due to multiple cash flow dates and exotic features, such as Bermudan cancelability. As a result, pricing such

derivatives via a PDE approach is computationally challenging.

The remainder of this paper is organized as follows. In Section 2, we present a three-factor cross-currency

pricing model with FX skew and two short rates which follow the one-factor Hull-White model [3] and

then derive the PDE for pricing cross-currency derivatives. Section 3 discusses discretization schemes for

the pricing PDE and two numerical methods for solving the discretized problem. The first scheme employs

Crank-Nicolson for the time discretization while the solution of the linear system at each timestep is handled

by the preconditioned Generalized Minimal Residual (GMRES) method with a preconditioner solved by

Fast Fourier Transform (FFT) techniques. The second scheme uses the Alternating-Direction Implicit (ADI)

method. The pricing of PRDC swaps with Bermudan cancelable features is discussed in Section 4. Numerical

results are provided in Section 5. Section 6 concludes the paper and outlines possible future work.

2. The model and the associated PDE

We consider an economy with two currencies, “domestic” (d) and “foreign” (f ). We denote by s(t)
the spot FX rate, the number of units of domestic currency per one unit of foreign currency. Let ri(t), i =
d, f, denote the domestic and foreign short rates respectively. Under the domestic risk-neutral measure, the

dynamics of s(t), rd(t), rf (t) are described by [2]

ds(t)

s(t)
= (rd(t)− rf (t))dt+ γ(t, s(t))dWs(t),

drd(t) = (θd(t)− κd(t)rd(t))dt+ σd(t)dWd(t),

drf (t) = (θf (t)− κf (t)rf (t)− ρfs(t)σf (t)γ(t, s(t)))dt + σf (t)dWf (t),

(1)

where Wd(t),Wf (t), and Ws(t) are correlated Brownian motions with dWd(t)dWs(t) = ρdsdt, dWf (t)dWs(t) =
ρfsdt, and dWd(t)dWf (t) = ρdfdt. The short rates follow the mean-reverting Hull-White model with the

mean reversion rate and the volatility functions respectively denoted by κi(t) and σi(t), for i = d, f , while

θi(t), i = d, f , captures the current term structures. The “quanto” drift adjustment, −ρfs(t)σf (t)γ(t, s(t)),
for drf (t) comes from changing the measure from the foreign risk-neutral measure to the domestic risk neutral

one. The functions κi(t), σi(t), θi(t), i = d, f, are all deterministic. The local volatility function γ(t, s(t))
for the spot FX rate has the functional form [2]

γ(t, s(t)) = ξ(t)
( s(t)

L(t)

)ς(t)−1
, (2)

where ξ(t) is the relative volatility function, ς(t) is the time-dependent constant elasticity of variance (CEV)

parameter and L(t) is a time-dependent scaling constant which is usually set to the forward FX rate with

expiry t, denoted by F (0, t), for convenience in calibration.
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Before any model can be used, calibration of the model parameters to specific market data is required. The

parameters defining the volatility structures of interest rates in both currencies, i.e. the functions σi(t), κi(t), i =
d, f , can be bootstrapped from European swaption market values for the respective currencies, while θi(t), i =
d, f , are determined by the current term structures of bond prices in the respective currency. Correlation pa-

rameters are typically chosen based on historical estimations. The calibration of the local volatility function

can be done via forward FX options, as suggested in [2].

We now give a PDE that the price of any security whose payoff is a function of the domestic and foreign

interest rates and the exchange rate must satisfy.

Theorem 1: Let u ≡ u(s, rd, rf , t) denote the domestic value function of a security with a terminal payoff

measurable with respect to the σ-algebra at maturity time Tend and without intermediate payments. Further-

more, assume that u ∈ C2,1 on R
3
+ × [Tstart, Tend), i.e. u is at least twice differentiable with respect to the

space variables and differentiable with respect to the time variable. Then on R
3
+ × [Tstart, Tend), u satisfies

the PDE

∂u

∂t
+Lu≡

∂u

∂t
+(rd−rf )s

∂u

∂s
+
(
θd(t)−κd(t)rd

)∂u
∂rd

+
(
θf (t)−κf (t)rf−ρfsσf (t)γ(t,s(t))

)∂u
∂rf

+
1

2
γ2(t,s(t))s2

∂2u

∂s2
+

1

2
σ2
d(t)

∂2u

∂r2d
+

1

2
σ2
f (t)

∂2u

∂r2f
+ ρdsσd(t)γ(t,s(t))s

∂2u

∂s∂rd

+ ρfsσf (t)γ(t,s(t))s
∂2u

∂s∂rf
+ ρdfσd(t)σf (t)

∂2u

∂rd∂rf
− rdu = 0

(3)

Proof: Under the domestic risk-neutral measure, the normalized price process of any security is a martingale.

Since it is an Itô process, it must have zero drift. Calculating the drift term using Itô’s formula and setting it

to zero gives us the PDE (3). �

Since payoffs and fund flows are deal-specific, we defer specifying the terminal conditions until a later

section. The difficulty with choosing boundary conditions is that, for an arbitrary payoff, they are not known.

A detailed analysis of the boundary conditions is certainly beyond the scope of this short paper, and is a topic

of future research. For this project, we only impose general approximate boundary conditions. We choose

Dirichlet-type “stopped process” boundary conditions where we stop the processes s(t), rf (t), rd(t) when

any of the three hits the boundary. Thus, the value on the boundary is simply the discounted payoff for the

current values of the state variables [4].

Note that the PDE (3) is in terms of forward time, but, since we solve the PDE backward in time, the

change of variable τ = Tend − t is used. Under this change of variable, the PDE (3) becomes ∂u
∂τ

= Lu.

The pricing of cross-currency interest rate derivatives is defined in an unbounded domain {(s, rd, rf , τ)|s ≥
0, rd ≥ 0, rf ≥ 0, τ ∈ [0, T ]}, where T = Tend − Tstart. In order to use Finite Difference (FD) ap-

proximations for space variables, we truncate the unbounded domain into a finite-sized computational one

{(s, rd, rf , τ) ∈ [0, S]× [0, Rd]× [0, Rf ]× [0, T ]} ≡ Ω× [0, T ], where S,Rf , Rd are sufficiently large [5].

3. Discretization of the PDE

Let the number of subintervals be n + 1, p + 1, q + 1 and l + 1 in the s-, rd-, rf -, and τ -directions,

respectively. The uniform grid stepsizes in the respective directions are denoted by ∆s = S
n+1 , ∆rd =

Rd

p+1 , ∆rf =
Rf

q+1 , and ∆τ = T
l+1 . The grid point values of a FD approximation are denoted by umi,j,k ≈

u(si, rdj , rfk, τm) = u(i∆s, j∆rd, k∆rf ,m∆τ), where i = 1 . . . , n, j = 1 . . . , p, k = 1 . . . , q, m =
1 . . . , l+ 1. Second-order FD approximations to the first and second partial derivatives of the space variables

in (3) are obtained by central schemes, while the cross-derivatives are approximated by a four-point FD

stencil. For example, at the reference point (si, rdj , rfk, τm), the first and second derivatives with respect to
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the spot FX rate s, i.e. ∂u
∂s

and ∂2u
∂s2

, are approximated by

∂u

∂s
≈

umi+1,j,k − umi−1,j,k

2∆s
,

∂2u

∂s2
≈

umi+1,j,k − 2umi,j,k + umi−1,j,k

(∆s)2
, (4)

while the cross-derivative ∂2u
∂s∂rd

is approximated by

∂2u

∂s∂rd
≈

umi+1,j+1,k + umi−1,j−1,k − umi−1,j+1,k − umi+1,j−1,k

4∆s∆rd
. (5)

Similar approximations can be obtained for the remaining spatial derivatives. For brevity, we omit the deriva-

tions of (4) and (5), but, using Taylor expansions, it can be verified that each of these formulas has a second-

order truncation error, provided that the function u is sufficiently smooth. The FD discretization of the spatial

differential operator L of (3) is performed as follows. At the spatial grid Ω, each spatial derivative appearing

in the operator L is replaced by its corresponding FD scheme (as in (4) and (5)). We denote by Lumi,j,k the FD

discretization of L at (si, rdj , rfk, τm).

3.1. The Crank-Nicolson scheme

To step from time τm−1 to τm, we apply the Crank-Nicolson scheme

umi,j,k − um−1
i,j,k

∆τ
=

1

2
Lumi,j,k +

1

2
Lum−1

i,j,k ,

where i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , q. Unless otherwise stated, assume that the mesh points are

ordered in the s-, rd- , then rf - directions. Let um denote the vector of values at time τm on the mesh Ω that

approximates the exact solution um = u(s, rd, rf , τm). The Crank-Nicolson method defines approximations

um successively for m = 1, 2, . . . , l + 1, by

(I−
1

2
∆τAm)um = (I+

1

2
∆τAm−1)um−1 +

1

2
∆τ(gm + gm−1), (6)

where I denotes the npq × npq identity matrix and Am is the matrix of the same size as I arising from the

FD discretization of the differential operator L. For brevity, we omit the explicit formula for Am. However,

it can be written in a compact format using tensor products, similar to (7). The vectors gm−1 and gm are

obtained from the boundary conditions. Applying direct methods, such as LU factorization, to solve this

linear system can be very computationally expensive for several reasons: (i) the matrix I− 1
2∆τAm possesses

a bandwidth proportional to min{np, nq, pq}, depending on the ordering of the grid points, (ii) sparse solvers

suffer considerable fill-in when solving systems derived from PDEs of the form (3), and (iii) this matrix needs

to be factored at each timestep because of its dependence on the timestep index m of the local volatility

function.

3.1.1. GMRES with a preconditioner solved by FFT techniques

To avoid the high computational cost of direct methods, we choose to apply an iterative method to solve

(6), namely GMRES. We choose GMRES because I − 1
2∆τAm is neither symmetric nor positive (semi-)

definite in general. Thus, commonly used iterative schemes, such as the conjugate gradient method, designed

primarily for symmetric positive-definite systems, are not likely to converge. A detailed description of the

GMRES method, and the “restarted” version of the method, can be found in [6]. In our implementation, the

initial guess for GMRES is based on linear extrapolation of the numerical solution from the two previous

timesteps, except for the first timestep. It is important to mention that, due to the use of this initial guess and

the use of a preconditioner which is described below, only a few iterations (usually 5 or 6 ) are required for

the GMRES method to converge, hence no restarting is needed.
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We use the matrix P arising from the discretization of

∂2u

∂s2
+

∂2u

∂r2d
+

∂2u

∂r2f
+ u

as the preconditioner. In the rest of the subsection, we describe an efficient algorithm for solving linear

systems of the form Pv = b. The matrix P can be written in the following form using tensor products:

P =
1

(∆s)2
(Iq ⊗ Ip ⊗Tn) +

1

(∆rd)2
(Iq ⊗Tp ⊗ In) +

1

(∆rf )2
(Tq ⊗ Ip ⊗ In) + I. (7)

Here, In denotes the identity matrix of size n × n and Tn denotes the tridiagonal matrix representation of

the classic second-order difference operator on n points. Note that the matrix Tn is a tridiagonal matrix with

entries {1,−2, 1} on each row except the first and last rows, which are {−2, 1} and {1,−2}, respectively,

due to Dirichlet boundary conditions. Matrices Tp and Tq are similar to Tn but of size p × p and q × q,

respectively. It is known [7] that, if we let Vn be the matrix of normalized eigenvectors of Tn and Fn be the

Discrete Sine Transform (DST) matrix of order n, then we have V−1
n = Fn. Matrices Vp and Vq are similar

to Vn, and matrices Fp and Fq are similar to Fn. A useful observation is that P can be block-diagonalized

via
B = (V−1

q ⊗V−1
p ⊗ In)P(Vq ⊗Vp ⊗ In)

=
1

(∆s)2
(Iq ⊗ Ip ⊗Tn) +

1

(∆rd)2
(Iq ⊗Λp ⊗ In) +

1

(∆rf )2
(Λq ⊗ Ip ⊗ In) + I,

(8)

where Λn = V−1
n TnVn is a diagonal matrix with the eigenvalues of Tn on its diagonal. The matrix B has pq

blocks, each of size n×n. These observations give rise to the following fast solver for the preconditioner using

FFT techniques, more specifically, using Fast Sine Transforms (FSTs). (Note that the main computational

requirement of an FST is that of an FFT.) Consider the linear system Pv = b. Note that b ∈ R
npq and for

the sake of presentation, denote by bq×pn the q × pn matrix with entries being the components of b laid out

in q rows and pn columns, column by column. Taking (8) into account, the solution v to the system Pv = b

can be written as

v = P−1b = (Vq ⊗Vp ⊗ In)B
−1(V−1

q ⊗V−1
p ⊗ In)b = (F−1

q ⊗ F−1
p ⊗ In)B

−1(Fq ⊗ Fp ⊗ In)b. (9)

The FST algorithm for performing the computation in (9) consists of the following steps:

1. Perform the FST on each of the pn columns of (bpn×q)
T to obtain (b(1))q×pn = Fq(bpn×q)

T .

2. Perform the FST on each of the qn columns of ((b(1))qn×p)
T to obtain (b(2))p×qn = Fp(b

(1)
qn×p)

T , or,

equivalently b(2) = (Fq ⊗Fp ⊗ In)b.

3. Solve the block-diagonal system Bb(3) = b(2).

4. Perform the inverse FST on each of the pn columns of ((b(3))pn×q)
T to obtain (b(4))q×pn = F−1

q ((b(3))pn×q)
T .

5. Perform the inverse FST on each of the qn columns of (b
(4)
qn×p)

T to obtain vp×qn = F−1
p (b

(4)
qn×p)

T , or

equivalently v = (F−1
q ⊗ F−1

p ⊗ In)B
−1(Fq ⊗ Fp ⊗ In)b.

The above five steps form an FFT technique for solving the linear system Pv = b. Clearly, the five steps

involve O(npq log(npq)) flops.

3.2. The ADI scheme

We decompose the matrix Am into four submatrices: Am =
∑3

i=0A
m
i . Here, we choose the matrix

Am
0 as the part of A that comes from the FD discretization of the mixed derivative terms in (3), while the

matrices Am
1 , Am

2 and Am
3 are the three parts of Am that correspond to the spatial derivatives in the s-

, rd-, and rf -directions, respectively. The term rdu in (3) is distributed evenly over Am
1 , Am

2 and Am
3 .

The FD discretization for the spatial variable described in (4) implies that if the grid points are ordered
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appropriately, then Am
1 , Am

2 and Am
3 are tridiagonal. (There is a different ordering for each of Am

1 , Am
2 and

Am
3 .) The following splitting scheme based on the Hundsdorfer and Verwer (HV) approach [8] generates an

approximation um to the exact solution um successively for m = 1, 2, . . . , l + 1:1





v0 = um−1 +∆τ(Am−1um−1 + gm−1),

(I −
1

2
∆τAm

i )vi = vi−1 −
1

2
∆τAm−1

i um−1 +
1

2
∆τ(gm

i − gm−1
i ), i = 1, 2, 3,

ṽ0 = v0 +
1

2
∆τ(Amv3 −Am−1um−1) +

1

2
∆τ(gm − gm−1),

(I −
1

2
∆τAm

i )ṽi = ṽi−1 −
1

2
∆τAm

i v3, i = 1, 2, 3,

um = ṽ3.

Here, the vector gm is given by gm =
∑3

i=0 g
m
i where gm

i are obtained from boundary conditions cor-

responding to the respective derivative terms. The above splitting scheme treats the mixed derivative part

Am
0 in a fully explicit way while the Am

i parts, i = 1, 2, 3, are treated implicitly. Since the matrices Am
i ,

i = 1, 2, 3 are tridiagonal, the number of floating point operations per time step is directly proportional to

npq, which yields a big reduction in computational cost compared to solving (6) by a direct method. The HV

scheme has been proved to be unconditionally stable for arbitrary spatial dimensions [8].

4. Pricing PRDC swaps

For the past few years, PRDC swaps have been one of the most widely traded and liquid cross-currency

exotics. Readers are referred to [1] for a detailed discussion on the dynamics of PRDC swaps. PRDC swaps

are essentially long-dated (usually 30 years or more) swaps which pay FX-linked coupons in exchange for

LIBOR floating-rate payments. We investigate PRDC swaps from the perspective of the payer of PRDC

coupons (the receiver of the floating-rate payments).2 The other party of the deal is the investor (the receiver

of the PRDC coupons). The floating-rate payments are termed the funding leg. Both the coupon rate and the

floating rate are applied on the domestic currency principal Nd. More specifically, suppose that we have the

following tenor structure:

T0 = 0 < T1 < · · · < Tβ−1 < Tβ = T, να = ν(Tα−1, Tα) = Tα − Tα−1, α = 1, 2, . . . , β − 1.

Here, να represents the year fraction between Tα−1 and Tα using the Actual/365 day counting convention.

The PRDC coupon rate Cα of the coupon amount ναCαNd issued at time Tα for the period [Tα, Tα+1],
α = 1, 2, . . . , β − 1, has the following structure:

Cα = min
(
max

(
cf

s(Tα)

fα
− cd, bf

)
, bc

)
, α = 1, . . . , β − 1. (10)

Here, s(Tα) is the spot FX rate at time Tα; cd and cf are domestic and foreign coupon rates; bf and bc are

the floor and cap of the payoff. The scaling factor fα usually is set to the forward FX rate F (T0,Tα). All

parameters can vary from coupon to coupon (i.e. they may depend on Tα, α = 1, . . . , β − 1). In the standard

structure, in which bf = 0 and bc = ∞, by letting hα =
cf
fα

and kα = fαcd
cf

, the coupon rate Cα can be viewed

as a call option on spot FX rates, since

Cα = hα max(s(Tα)− kα, 0). (11)

1This is the scheme (1.4) in [8] with θ = µ =
1

2
.

2Usually, the payer of PRDC coupons is a bank.
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In (11), the option notional hα determines the overall level of the coupon payment, while the strike kα
determines the likelihood of the positiveness of the coupon. It is important to emphasize that, if the strike kα
is low, the coupon has a relatively high chance of paying a positive amount. However, in this case, the option

notional hα is typically chosen to be low and thus the overall level of a coupon payment is small. This is a

low-leverage situation. On the other hand, if both kα and hα are high, then we have a high-leverage situation.

The funding leg pays the amount ναLd(Tα−1,Tα)Nd at time {Tα}
β−1
α=1 for the period [Tα−1, Tα], where

Ld(Tα−1,Tα) denotes the domestic LIBOR rates for the period [Tα−1, Tα], as observed at time Tα−1. Note

that Ld(Tα−1, Tα) is set at time Tα−1, but the actual floating leg payment for the period [Tα−1, Tα] does not

occur until time Tα, i.e. “in arrears”. There is an initial fixed-rate coupon paid to the investor that is not

included in the above definition as its valuation is straightforward.

Since a “vanilla” PRDC swap can be seen as a collection of simple FX options with different maturities

(see (11)), its valuation is relatively simple. Let ucα(t) and u
f
α(t) be the value at time t of all PRDC coupons

and floating payments, respectively, of the “vanilla” PRDC swap scheduled on or after Tα+1. The value u
f
α(t)

can be obtained using the “fixed notional” method and not by solving the PDE. The payoff of the coupon part

at each {Tα}
β−2
α=1 is

ucα(Tα) + ναCαNd. (12)

The value of the payoff (12) at time Tα−1 can be obtained by solving backward in time the PDE (3) from Tα

to Tα−1, with terminal condition (12). The time iteration for the coupon part starts at the time Tβ−1 with

ucβ−1(Tβ−1) = νβ−1Cβ−1Nd,

and by progressing backward in time to T0, we obtain uc0(T0). The value of the “vanilla” PRDC swap is

u
f
0(T0)− uc0(T0).

It is important to emphasize that variations of PRDC swaps with exotic features, such as Bermudan cance-

lable (or cancelable for short), are much more popular than “vanilla” PRDC swaps. Cancelable PRDC swaps

give the payer of the coupons the right to cancel the swap at any of the dates {Tα}
β−1
α=1. 3 Such features are

designed to limit the downside risk arising from excessive movements in spot FX rate for the payer.

The key observation in valuing cancelable swaps is that terminating a swap is the same as (i) continuing

the original swap and (ii) entering into the offsetting swap. Since the payer has the option to cancel the PRDC

swap on any of the dates {Tα}
β−1
α=1, we can regard a cancelable PRDC swap as a “vanilla” PRDC swap with

the same tenor structure, referred to as the underlying swap, plus a long position in a Bermudan swaption,

the underlying swap of which is a “vanilla” swap with the same tenor structure, but involves coupons being

received and domestic floating payments being paid. We refer to this Bermudan swaption and its underlying

swap as the offsetting Bermudan swaption and the offsetting swap, respectively. Denote ueα(t) the value at

time t of all fund flows in the offsetting swap scheduled on or after Tα+1. Let uhα(t) be the value at time

t of the offsetting Bermudan swaption that has only the dates {Tα+1, . . . , Tβ−1} as exercise opportunities.

Assume optimal exercise at each of {Tα}
β−1
α=1, i.e. the coupon payer will exercise the offsetting Bermudan

swaption at Tα if and only if the value ueα(Tα) (the “exercise value”) exceeds the value uhα(Tα) (the “hold

value”) of the option. Thus the payoff of the offsetting Bermudan swaption at each Tα is

max(uhα(Tα), u
e
α(Tα)).

We can progress backward in time in the same fashion as described above for a “vanilla” PRDC swap, starting

with

uhβ−1(Tβ−1) = ueβ−1(Tβ−1) = 0.

3Another popular exotic feature is the knock-out provision, which stipulates that the swap terminates if the FX rate on any of the

dates {Tα}
β−1

α=1
exceeds a specified level.
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Note that the value ueα(Tα) can be computed by ueα(Tα) = −(ufα(Tα)−ucα(Tα)). The value of the cancelable

PRDC swap is uh0(T0) + (uf0 (T0)− uc0(T0)).

5. Numerical results

We consider the same short rate models, correlation parameters, and local volatility function for the spot

FX rate as given in [2]. In this cross-currency example, the Japanese yen (JPY) and the U.S. dollar (USD) are

the domestic and foreign currencies, respectively. Their interest rate curves given by Pd(0, T ) = exp(−0.02×
T ) and Pf (0, T ) = exp(−0.05 × T ), where Pd(0, T ) and Pf (0, T ) denote the current market values in

domestic and foreign currency of a bond with maturity T , respectively. The volatility parameters for the short

rates and correlations are given by σd(t) = 0.7%, κd(t) = 0.0%, σf (t) = 1.2%, κf (t) = 5.0%, ρdf = 25.0%,

ρds = −15.0%, ρfs = −15.0%. The initial spot FX rate is set to s(0) = 105.00. The parameters ξ(t) and

ς(t) of the local volatility function are assumed to be piecewise constant and given in the following table.

period period

(years) (ξ(t)) (ς(t)) (years) (ξ(t)) (ς(t))

(0 0.5] 9.03% -200% (7 10] 13.30% -24%

(0.5 1] 8.87% -172% (10 15] 18.18% 10%

(1 3] 8.42% -115% (15 20] 16.73% 38%

(3 5] 8.99% -65% (20 25] 13.51% 38%

(5 7] 10.18% -50% (25 30] 13.51% 38%

Note the parameters θi(t), i = d, f , associated the domestic and foreign short rates are fully determined by

the above information [9]. We consider a PRDC swap that has following features:

- Tenor structure: να = Tα − Tα−1 = 1 (year), α = 1, . . . , β − 1 and β = 30 (years).

- Pay annual PRDC coupons and receive annual domestic LIBOR payments.

- Standard structure, i.e. bf = 0, bc = +∞. The scaling factor {fα}
β−1
α=1 is set to F (0, Tα).

- Bermudan cancelable, which allows the payer to cancel the swap on each of {Tα}
β−1
α=1.

- The domestic and foreign coupons are chosen to provide different levels of leverage: low (cd =
2.25%, cf = 4.50%), medium (cd = 4.36%, cf = 6.25%), high (cd = 8.1%, cf = 9.00%).

Note that the forward FX rate F (0, Tα) can be obtained from the domestic and foreign interest rate curves

via the well-known formula

F (0, Tα) =
Pf (0, Tα)

Pd(0, Tα)
s(0),

which follows from no-arbitrage arguments. The domestic LIBOR rate Ld(Tα−1, Tα), as observed at time

Tα−1 for the maturity Tα, can be computed by

Ld(Tα−1, Tα) =
1− Pd(Tα−1, Tα)

ν(Tα−1, Tα)Pd(Tα−1, Tα)
.

The truncated computational domain Ω is defined by setting S = 3s(0) = 315, Rd = 3rd(0) = 0.06,

and Rf = 3rf (0) = 0.15. For the GMRES method, the tolerance is 10−5. Selected numerical results are

presented in Table 1. Grid sizes indicated in Table 1 are for each period [Tα−1, Tα], α = 1, . . . , β − 1.

The values of swaps are expressed as a percentage of the notional Nd. In terms of accuracy, both the ADI

and the preconditioned GMRES methods give identical prices to four digits of accuracy for the underlying

PRDC swap and the cancelable PRDC swap. (Hence, we do not present prices obtained by the two methods

separately to save space in the table.) As expected from the discretization methods, second-order accuracy is

obtained. Since for different leverage levels, the computation times of the methods considered are virtually

the same, we report only the selected computation statistics for the low leverage case in the last three columns

of Table 1 obtained from pricing the underlying PRDC swap. We note that, asymptotically, for each doubling
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underlying swap cancelable swap performance

leverage m n p q ADI – GMRES ADI GMRES

value (%) change ratio value(%) change ratio time (s) time (s) avg. iter.

4 12 6 6 -11.41 11.39 0.78 1.19 5

low 8 24 12 12 -11.16 2.5e-3 11.30 8.6e-4 8.59 12.27 6

16 48 24 24 -11.11 5.0e-4 5.0 11.28 1.7e-4 5.0 166.28 253.35 6

32 96 48 48 -11.10 1.0e-4 5.0 11.28 4.1e-5 4.1 3174.20 4882.46 6

4 12 6 6 -13.87 13.42

medium 8 24 12 12 -12.94 9.3e-3 13.76 3.3e-3

16 48 24 24 -12.75 1.9e-3 4.7 13.85 9.5e-4 3.5

32 96 48 48 -12.70 5.0e-4 3.9 13.88 2.6e-4 3.6

4 12 6 6 -13.39 18.50

high 8 24 12 12 -11.54 1.8e-2 19.31 8.1e-3

16 48 24 24 -11.19 3.5e-3 5.2 19.56 2.5e-3 3.2

32 96 48 48 -11.12 8.0e-4 4.3 19.62 5.4e-4 4.6

Table 1: Values of the underlying PRDC swap and cancelable PRDC swap with FX skew for various leverage levels; “change” is

the difference in the solution from the coarser grid; “ratio” is the ratio of the changes on successive grids; “avg. iter.” is the average

number of iterations.

of the number of timesteps and gridpoints in all directions, both the ADI and GMRES computation times

increase by a factor of about 19, which is close to the optimal factor of 16. It is also evident the ADI method

is modestly more efficient than the GMRES method, in absolute terms. It is worth noting that the average

number of iterations required by the GMRES method per timestep is quite small, and more importantly, is

independent of the size of discretized problem. These results show the combined effect of using an effective

preconditioner and a good initial guess based on linear extrapolation.

To investigate the effects of the FX skew, we compare our numerical results with those obtained under

the log-normal model, where the local volatility function is a deterministic function of only the time variable.

To this end, we used the parametrization as in (2) but independent of s(t) for the log-normal local volatility

function, and calibrated it to the same at-the-money FX option data (Table A of [2]) that was used for the cal-

ibration of the skew model. Our experiments show that the values under the log-normal model corresponding

to the finest mesh in Table 1 for the three leverage levels are −9.01, −9.67, and −9.85, respectively, for the

underlying PRDC swap; for the cancelable PRDC swap, the values are 13.31, 16.89, and 22.95, respectively.

First, we consider the effect of the FX skew on the underlying PRDC swap. Negative values of the underlying

swap indicate the price that the investor has to pay to the coupon payer to enter into a “vanilla” PRDC swap.

It is important to emphasize that due to the rate differential between JPY and USD, the forward FX curve

is strongly downward sloping, hence in (11), fα is considerably smaller than s(Tα). Thus the coupon payer

essentially shorts a collection of FX call options with low strikes. (For the low, medium, and high leverage

cases, the strike kα is set to 50%, 70% and 90% of fα, respectively.) The numerical results indicate that the

prices of the underlying swap under the skew model are more negative than the prices under the log-normal

model (for example, −11.10 versus −9.01). These results are expected, since, in a skew model, the implied

volatility increases for low-strike options, resulting in higher prices for the options and hence pushes down

the value of the underlying swap for the payer. However, the effect of the skew is not uniform across the

leverage levels. The effect seems most pronounced for the medium-leverage swaps. An explanation for this

observation is that the total effect is a combination of the change in implied volatility and the sensitivities

(the Vega) of the options’ prices to that change. Due to the skew, the lower the strikes are, the higher the

implied volatility changes are. Thus, among the three leverage levels, the volatilities change the most for the

low-leverage swaps, since the strikes of the coupon rates are the lowest in this case. However, it is important
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to note that the Vega of an option is an increasing function of the strike [10]. Thus, the Vega of low-leverage

options is the smallest, since the strikes for coupon rates are the lowest. As a result, the combined effect is

limited. The situation is reversed for high-leverage swaps, while the combined effect is the most pronounced

for medium-leverage swaps. For cancelable PRDC swaps, the impact of the FX skew is increasing across

the leverage levels. The positive values of the cancelable swap indicate the level of the initial fixed coupon

that the payer is willing to pay to the investor to enter the cancelable PRDC swap. Under both skew and

log-normal models, a high-leverage cancelable PRDC swap provides more attractive initial coupons to the

investor.

It is important to note that the prices of the underlying PRDC swap and the cancelable PRDC swap are

pushed down under the FX skew model as compared to those obtained by the log-normal model. These

changes in values are quite significant and are considered as profits for the payer when a FX skew is incorpo-

rated. In other words, not accounting for the FX skew can result in a loss, a fact that indicates the importance

of having a proper skew model for pricing and risk managing PRDC swaps.

6. Summary and future work

We have proposed a general PDE pricing framework for exotic cross-currency interest rate derivatives

under a FX skew model, with strong emphasis on Bermudan cancelable PRDC swaps. Over each period of

the tenor structure, we partition the pricing of Bermudan cancelable PRDC swaps into two entirely indepen-

dent pricing subproblems: (i) the pricing of the underlying PRDC swap and (ii) the pricing of an associated

Bermudan swaption, each of which can be solved efficiently. We consider two numerical methods for the so-

lution of each of the subproblems. Both methods are built upon second-order central FD on uniform grids for

the discretization of the space variables and differ primarily in the temporal discretization, with one method

using the Crank-Nicolson discretization and the other using the level-splitting ADI method. In the former

case, the GMRES method is employed for the solution of the resulting block banded linear system at each

time step, with the preconditioner solved by FFT techniques. Experimental results verify that our methods

are second-order, and that ADI scheme is modestly faster than the other method. Preliminary analysis shows

that cancelable PRDC swaps are very sensitive to the FX volatility skew, which highlights the importance of

having a realistic FX skew model for pricing and risk managing PRDC swaps.

A possible extension of this work is to use non-uniform meshes refined around the initial FX and the

initial short rates to improve the performance of the numerical methods. In this case, a different fast solver for

the preconditioner needs to be developed and the stability of the ADI method on a non-uniform mesh needs

to be studied.

From a modeling perspective, due to the sensitivity to the FX volatility skew of the PRDC swaps with

exotic features, it is highly desirable to have a mechanism that more accurately approximates the observed FX

volatility skew. This could possibly be achieved by incorporating stochastic volatility into the spot FX rate

model so that the market-observed FX volatility smiles are more accurately simulated. This enrichment to the

current model leads to a time-dependent PDE in four state variables — the spot FX rate, domestic and foreign

short rates, and volatility. In such a application, numerical methods presented in this paper could be easily

extended to cope with an extra spatial dimension, but the computational work required to solve the extended

problem would likely rise significantly. Possibly an effective parallel numerical method could be developed

to solve the extended problem in an acceptable amount of time.
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