Efficient analytic price approximation for American Options. Discrete time-dependent parameters

Yuriy Shkolnikov

yshkolnikov@numerix.com

Modeling High Frequency Data in Finance 3
Stevens Institute of Technology
July 28-31, 2011
Outline

1. The Pricing Problem
 - Definitions
 - The DVM extension

2. Pricing Highlights
 - General formulas and proportional dividends
 - Discrete dividends – Strike convention

3. Testing
 - Proportional dividends
 - Discrete dividends

4. The Inverse Problem
 - BS underlying
 - General underlying, UV
 - General underlying, IV

5. Conclusion

6. References
The problem formulation

Given

- risk-neutral probability measure \mathbb{P};
- discrete set of times t_0, \ldots, t_{n+1} with $t_0 = 0, t_{n+1} = T$;
- interest rate $r(t) = r_i, t_i \leq t < t_{i+1}$;
- fixed strike $K > 0$.

For a stochastic underlying S_t at $t = t_0$ find an approximation for the American Option price

$$V_A = \max_{\tau \in T(t,T)} \mathbb{E}_\mathbb{P} \left(R(t, \tau) \max (\phi (U_\tau - K), 0) \right), \quad (1)$$

where τ is a stopping time with values in $[t, T]$, $\phi = \pm 1$ for a call or put, $R(s, t) = \exp \left(- \int_s^t r(u) \, du \right)$.
The underlying process

Time-dependent parameters.

1. **Proportional dividends**, \(U_t = S_t \) with \(S_t \) being a BS log-normal diffusion

\[
dS_t = S_t \left[(r(t) - d(t)) \, dt + \sigma(t) \, dw_t \right],
\]
\[
\sigma(t) = \sigma_i > 0, \quad d(t) = d_i \geq 0, \quad t_i \leq t \leq t_{i+1}.
\]

2. **Discrete dividends** – Strike convention, see [1]

\(U_t = S_t - D(t) \) with \(S_t \) same as in (2) and

\[
D(t) = \sum_{t_j < t} \frac{D_j}{R(t_j, t)}.
\]

\(D_j > 0 \) at some \(0 < j < n + 1 \). Usually all \(d_i = 0 \).

For Comparison, the conventional standard setting is

\(U_t = S_t, \ \sigma(t) = \text{const}, \ r(t) = \text{const}, \ d(t) = \text{const}, \ D_i = 0. \)
The Pricing Problem

The early exercise representation

The price definition (1) implies, with \(\text{par} = \{r, \sigma, d, D\} \),

\[
V_A(t, U_t) = \begin{cases}
\phi(S_t - K(t)) , \phi(S^*_t - K(t)) \geq 0 , \\
V_{AI\text{ Intr}}(t, T, S_t, \text{par}) , \text{otherwise},
\end{cases}
\]

where \(V_{AI\text{ Intr}}(t, T, S_t, \text{par}) \) is the intrinsic value and

- \(K(t) = K \), proportional dividends;
- \(K(t) = K + D(t) \), discrete dividends – Strike convention.

If spot and settlement adjustments are required, \(r, d, D \) are modified and \(\phi(S_t - K(t)) \) from (3) is multiplied by \(\beta > 0 \).

The optimal exercise boundary \(S^*_t \) is the value of \(S_t \) for which \(\phi(S_t - K(t)) = V_{AI\text{ Intr}}(t, T, S_t, \text{par}) \) and, as follows from the no arbitrage condition, \(\phi = \frac{\partial}{\partial S_t} V_{AI\text{ Intr}}(t, T, S_t, \text{par}) \).
The intrinsic value decomposition

Definition (1) can be reformulated to

$$\max_{\tau \in T(t,T)} \left[\mathbb{E}_P \left(R(t,\tau) (\phi(S_\tau - K))_+ \right) , \mathbb{E}_P \left(R(t,T) (\phi(S_\tau - K))_+ \right) \right]$$

which leads to

$$V_{AIntr}(t,T,S_t,\text{par}) = V_{E,[t,T]} + V_t,$$ \hspace{1cm} (5)

where

- $V_{E,[t,T]}(S_t,\text{par})$ is a European contract with strike $K(T)$ maturing at time T and priced using the BS formula;
- $V_t(t,T,S_t,\text{par})$ is the early exercise premium (EEP) to be approximated.
DVM=Decoupled Volatility Method

For a non-BS underlying U_t decomposition (4) is viewed as a sum of

- $V_t(t, T, S_t, \text{par})$, a function of a log-normal diffusion S_t with parameters par satisfying the BS equation;
- $V_{E,[t,T]}(S_t, \widehat{\text{par}})$, a black box European option price function of S_t, returning Greeks, possibly with a different parameter set $\widehat{\text{par}}$, see [4].

Following the practice of quoting the European implied volatility at fixed strikes $K_k, k = 0, \ldots, m - 1$, it is possible to view $\widehat{\text{par}}$ as $\{r, \{\widehat{\sigma}_k\}, \text{d}, \text{D}\}$, where each $\widehat{\sigma}_k$ is a vector of implied volatilities $\widehat{\sigma}_{k,i}$ of a chain of European options at strike K_k maturing at times t_i. In case of BS, $\widehat{\text{par}} = \text{par}$.
DVM pros

The DVM approach

- allows for efficient approximation of $V_t(t, T, S_t, \text{par})$;
- for given vectors σ and $\hat{\sigma}_k$ allows for very fast pricing OTC and repricing listed American options with integrated stable Δ, Γ, Θ;
- works with discrete dividends;
- allows for efficient extraction of underlying volatility (UV) σ and surface of untraded European implied volatilities (IV) $\hat{\sigma}_k$ from listed American options;
- provides vectors of extracted IV $\hat{\sigma}_k$ for models expecting European input for calibration;
- can be applied on its own for pricing European/American vanillas at unlisted strikes or OTC options using just-in-time market correction (Vanna-Volga, etc.).
DVM contras

The major disadvantages of DVM are

- it is not a consistent underlying model, for $\hat{\sigma}_k \neq \sigma$ a stochastic process U_t does not exist;
- the extracted European prices are not uniquely determined.

It should be noted however that more advanced local and multi-factor models (Local Volatility, Heston, Local Stochastic Volatility) do not presently offer

- fast algorithmic solutions, returning reliable price and Greeks, for American options;
- accurate calibration directly from American options on a timely basis.
The stepping expression

The option is priced backwards at times $t_{n-j}, j = 0, \ldots, n$. At $t = t_{n-j}, S_t = S_{n-j}$,

$$V_{AI\text{Intr},n-j}(T, S_{n-j}, \text{par}, \hat{\text{par}}) = V_{E,n-j}(T, S_{n-j}, \text{par}, \hat{\text{par}}) + V_{n-j}(T, S_{n-j}, \text{par})$$ (6)

where, see [5],

- the **forward start option**

$$V_{E,n-j} = R(t_{n-j}, t_{n-j+1}) \mathbb{E}(V_{A,n-j+1}(T, S_{n-j+1}) | S_{n-j})$$ (7)

is a European type option (not vanilla) on $[t_{n-j}, t_{n-j+1}]$ with payoff $V_{AI\text{Intr},n-j+1}(T, S_{n-j+1}, \text{par}, \hat{\text{par}})$

- V_{n-j} is the EEP on $[t_{n-j}, t_{n-j+1}]$, expressed according to the Ju–Zhong approximation, [3]
Expanding $V_{A,n-j+1}$ following (3), we get

$$V_{E,n-j} = R(t_{n-j}, t_{n-j+1}) \mathbb{E}(V_{E,n-j+1} | S_{n-j}) + \frac{R(t_{n-j}, t_{n-j+1}) \mathbb{E}(F_{n-j+1} - G_{n-j+1} | S_{n-j})}{(8)}$$

where,

$$F_{n-j+1} = \phi(S_{n-j+1} - K_{n-j+1}) \mathbb{I}_{n-j+1} + V_{n-j+1} (1 - \mathbb{I}_{n-j+1})$$
$$G_{n-j+1} = V_{E,n-j+1} \mathbb{I}_{n-j+1}$$
$$\mathbb{I}_{n-j+1} = \mathbb{I}_{\phi(S_{n-j+1} - K_{n-j+1}) \geq 0}.$$

Then (3) can be applied again to $V_{E,n-j+1}$. The expression for $V_{E,n-j+1}$ can be unwound to $j = 0$.

The price formula, **parallelizable**

Making use of the martingale property we end up with

\[
V_{AI\text{Intr},n-j} = V_{n-j} + V_{E,[t_{n-j},T]} + \sum_{k=n-j+1}^{n} R(t_{n-j}, t_k) E \left(F_k - G_k | S_{n-j} \right),
\]

in which,

- \(V_{E,[t_{n-j},T]} \) is computed by the BS formula as a function of \(S_{n-j} \) and \(\hat{\text{par}} \), according to DVM;
- \(E \left(F_k | S_{n-j} \right) = I_{\text{ex}} + I_c \) with \(I_{\text{ex}} \) expressed in a closed form, \(I_c \) computed efficiently, using quadratures.
Expressible in a closed form
1 and 2 steps

Case \(j = n \). The last step for \(n > 0 \), the only step for \(n = 0 \).
With \(F_{n-j+1} = 0, G_{n-j+1} = 0 \) we get

\[
V_{AIntr,n-j} (T, S_{n-j}) = V_E, [t_{n-j}, T] (S_{n-j}, \hat{\sigma}_{n-j}) + V_{n-j} (T, S_{n-j}, \sigma_{n-j}),
\]

epressed in the closed form, equivalent to

\[
\sigma (t) = \text{const}, \hat{\sigma} (t) = \text{const}, r (t) = \text{const}, d (t) = \text{const}.
\]

Case \(j = n - 1 \), the 2-step option. \(\mathbb{E} (G_{n-j+1} | S_{n-j}) \) is expressed in a closed form, using \(N_1, N_2 \).
Approximated by expressible in a closed form
3 or more steps, general settings

Case $n \geq 2$. $V_{AIntr,n-j+2}$ is approximated by

$$V_{AIntr,n-j+2} = V_{E,[t_{n-j+2},T]} \left(S_{n-j+2}, \hat{\text{par}} \right) + V_{MBAW,[t_{n-j+2},T]} \left(S_{n-j+2}, \text{par} \right),$$

where $V_{MBAW,[t_{n-j+2},T]} \left(S_{n-j+2}, \text{par} \right)$ is constructed using the inverse MBAW interpolation, [3], with following settings:

- single curve, faster, appropriate most of times;
- multiple curve segments, slower, more precise.

$\tilde{G}_{n-j+1} = \mathbb{E} \left(V_{AIntr,n-j+2} \mid S_{n-j+1} \right) \mathbb{I}_{n-j+1}$ is used to approximate G_{n-j+1}. Finally, $\mathbb{E} \left(G_{n-j+1} \mid S_{n-j} \right)$ is replaced with $\mathbb{E} \left(\tilde{G}_{n-j+1} \mid S_{n-j} \right)$, expressible in a closed form in terms of N_1, N_2, N_3, see [5]. Available efficient algorithms for $N_m, m > 3$ would increase the maximal number of steps computed in a closed form from 2 to m.
The Optimal Exercise Boundary

The Optimal Exercise Boundary \(S^*_{n-j} \) is computed at every time \(t_{n-j} \). In case of proportional dividends it is positive and finite and can be computed iteratively, except for cases of \(r = 0 \) for puts or \(d = 0 \) for calls.

In case of discrete dividends, see below, it is possible to have no exercise at some \(t_{n-j} \). Every no-exercise time point \(t_{n-j} \) can be omitted with pricing continued on \([t_{n-j-1}, t_{n-j+1}]\) with discount \(R(t_{n-j-1}, t_{n-j+1}) \) and

\[
\begin{align*}
\tilde{D}_{[t_{n-j-1},t_{n-j+1}]} &= D_{n-j-1} + D_{n-j}; \\
\hat{\sigma}_{[t_{n-j-1},t_{n-j+1}]}^2 (t_{n-j-1}, t_{n-j+1}) &= \\
\sigma_{n-j-1}^2 \Delta t_{n-j-1} + \sigma_{n-j}^2 \Delta t_{n-j}, \\
\hat{\sigma}_{[t_{n-j-1},t_{n-j+1}]}^2 (t_{n-j-1}, t_{n-j+1}) &= \\
\hat{\sigma}_{n-j-1}^2 \Delta t_{n-j-1} + \hat{\sigma}_{n-j}^2 \Delta t_{n-j}.
\end{align*}
\]
Assumptions.

In order to consistently account for possible discontinuities in $K(t)$ at times t_{n-j}, the priced option, without losing the generality, will be considered on $[t_0+, t_{n+1}-]$ (post-dividend start, pre-dividend end).

The present approximation makes a simplifying assumption of discrete accrual of interest on dividends. With $D_j r_i \Delta t_i \leq \epsilon_r K$, $\epsilon_r << 1$, strikes $K(t)$ can be assumed changing discretely, $K_{n-j} = K(t_{n-j})$ at $[t_{n-j}+, t_{n-j+1}-], j = 0, \ldots, n$. Inserting more points t_{n-j} leads into longer inter-dividend intervals Δt to a finer time partition, better supporting this assumption.

Another typical (but not necessary) simplifying assumption is $d = 0$.
Pricing calls.

A call can be exercised only at times t_{n-j}— in the Bermudan style if

$$K_{n-j} < K_{n-j+1} R(t_{n-j}, t_{n-j+1}),$$

(10)

with $S_{n-j} - K_{n-j+1} R(t_{n-j}, t_{n-j+1})$ being the asymptote for $V_{E,n-j+1} (t_{n-j+1}, T, S_{n-j+1})$. With (10),

- if true, the early exercise boundary S_{n-j}^* exists and can be computed, pricing follows (2) with $V_{n-j} = 0$;
- otherwise, the exercise does not happen and time t_{n-j} can be omitted.
(10) false means the put can be exercised at \(t_{n-j} \), the regular case, same EEP term \(V_{n-j} \).

(10) true means no exercise in \([t_{n-j} - \delta t_{n-j,n-j}, t_{n-j}]\) with

\[
\delta t_{n-j,l} = \frac{1}{r_{l-1}} \ln \frac{K_{n-j+1} R(t_l, t_{n-j+1})}{K_l}.
\]

If \(\delta t_{n-j,n-j} \ll \Delta t_{n-j-1} \), the \(\delta t_{n-j} \) can be ignored and \(V_{n-j-1} \) considered over \([t_{n-j-1}, t_{n-j}]\) in a regular way.

If \(\delta t_{n-j,n-j} \leq \Delta t_{n-j-1} \), a new point \(\tilde{t}_{n-j} = t_{n-j} - \delta t_{n-j} \) is inserted with exercise in \([t_{n-j-1}, \tilde{t}_{n-j}]\) (with the EEP term \(V_{n-j-1} \)) and no exercise in \([\tilde{t}_{n-j}, t_{n-j}]\) (no EEP term).

If \(\delta t_{n-j,n-j} > \Delta t_{n-j-1} \), the no-exercise iteratively expands left into \([t_{n-j-k-1}, t_{n-j-k}]\), \(k > 1 \), with \(\delta t_{n-j,n-j-k} \) considered.
Description.

Selected results of comparison of computed American option prices, their Greeks and computational times, using the approximation and 10000-node trinomial tree, for calls and puts at various strikes are shown below. The underlying S is log normal, proportional and discrete dividends – strike convention are considered. The columns of output tables show the Strike (K), Price, Delta (Δ), Gamma (Γ), computed using the approximation. Last three column show relative difference with the tree:

$$RelPrice = \left| 1 - \frac{Price_T}{Price_A} \right|,\ Rel\Delta = \left| 1 - \frac{\Delta_T}{\Delta_A} \right|,\ Rel\Gamma = \left| 1 - \frac{\Gamma_T}{\Gamma_A} \right|.$$

A permutation in a volatility vector was chosen intentionally to show the inapplicability of quadratic averaging and differencing in volatility to American options versus European ones.
Calls, \(S_0 = 100 \)

\[\sigma = (0.08, 0.06, 0.04, 0.05), \quad t = (0, 0.02, 0.1, 0.27, 0.52),\]
\[d = (0.03, 0.03, 0.03, 0.03), \quad r = (0.035, 0.04, 0.045, 0.05)\]

Calls, speed up factor range 5600-7500

<table>
<thead>
<tr>
<th>K</th>
<th>Price</th>
<th>(\Delta)</th>
<th>(\Gamma)</th>
<th>RelPrice</th>
<th>Rel(\Delta)</th>
<th>Rel(\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>25.233</td>
<td>0.985</td>
<td>8.4e-9</td>
<td>4.5e-7</td>
<td>5.3e-7</td>
<td>1.8e+3</td>
</tr>
<tr>
<td>80</td>
<td>20.352</td>
<td>0.985</td>
<td>2.9e-10</td>
<td>4.2e-7</td>
<td>5.1e-7</td>
<td>1.0</td>
</tr>
<tr>
<td>85</td>
<td>15.471</td>
<td>0.985</td>
<td>1.5e-6</td>
<td>3.9e-7</td>
<td>5.5e-7</td>
<td>1.4e-2</td>
</tr>
<tr>
<td>90</td>
<td>10.590</td>
<td>0.984</td>
<td>7.5e-4</td>
<td>3.4e-7</td>
<td>1.1e-5</td>
<td>5.0e-3</td>
</tr>
<tr>
<td>95</td>
<td>5.780</td>
<td>0.937</td>
<td>2.7e-2</td>
<td>9.2e-7</td>
<td>2.2e-4</td>
<td>1.3e-3</td>
</tr>
<tr>
<td>100</td>
<td>1.870</td>
<td>0.590</td>
<td>0.1</td>
<td>2.4e-7</td>
<td>1.7e-4</td>
<td>8.9e-4</td>
</tr>
<tr>
<td>105</td>
<td>0.244</td>
<td>0.135</td>
<td>5.9e-2</td>
<td>4.1e-5</td>
<td>2.2e-3</td>
<td>2.4e-3</td>
</tr>
<tr>
<td>110</td>
<td>0.010</td>
<td>8.6e-3</td>
<td>6.4e-3</td>
<td>1.1e-4</td>
<td>8.1e-3</td>
<td>2.2e-3</td>
</tr>
<tr>
<td>115</td>
<td>1.4e-4</td>
<td>1.6e-4</td>
<td>1.6e-4</td>
<td>7.7e-4</td>
<td>1.6e-2</td>
<td>5.7e-3</td>
</tr>
</tbody>
</table>
Testing Proportional dividends

Calls, \(S_0 = 100 \)

\[\sigma = (0.08, 0.05, 0.04, 0.06) \]

Calls, permuted volatility vector, speed up factor range 4400 - 6400,

<table>
<thead>
<tr>
<th>K</th>
<th>Price</th>
<th>(\Delta)</th>
<th>(\Gamma)</th>
<th>RelPrice</th>
<th>Rel(\Delta)</th>
<th>Rel(\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>25.233</td>
<td>0.985</td>
<td>2.3e-8</td>
<td>8.8e-7</td>
<td>3.4e-7</td>
<td>9.1e+2</td>
</tr>
<tr>
<td>80</td>
<td>20.352</td>
<td>0.985</td>
<td>2.5e-9</td>
<td>1.3e-6</td>
<td>3.9e-7</td>
<td>5.5e-1</td>
</tr>
<tr>
<td>85</td>
<td>15.471</td>
<td>0.985</td>
<td>5.5e-6</td>
<td>1.9e-6</td>
<td>2.9e-7</td>
<td>7.3e-3</td>
</tr>
<tr>
<td>90</td>
<td>10.591</td>
<td>0.983</td>
<td>1.3e-3</td>
<td>3.2e-6</td>
<td>1.6e-5</td>
<td>3.2e-3</td>
</tr>
<tr>
<td>95</td>
<td>5.806</td>
<td>0.926</td>
<td>3.0e-2</td>
<td>6.1e-6</td>
<td>2.1e-4</td>
<td>8.0e-4</td>
</tr>
<tr>
<td>100</td>
<td>1.963</td>
<td>0.585</td>
<td>9.9e-2</td>
<td>2.0e-5</td>
<td>2.2e-4</td>
<td>4.0e-3</td>
</tr>
<tr>
<td>105</td>
<td>0.299</td>
<td>0.151</td>
<td>6.0e-2</td>
<td>5.4e-5</td>
<td>1.8e-3</td>
<td>3.2e-3</td>
</tr>
<tr>
<td>110</td>
<td>0.017</td>
<td>0.013</td>
<td>8.5e-3</td>
<td>2.7e-4</td>
<td>6.2e-3</td>
<td>6.7e-3</td>
</tr>
<tr>
<td>115</td>
<td>3.6e-4</td>
<td>3.7e-4</td>
<td>3.4e-4</td>
<td>7.0e-4</td>
<td>1.3e-2</td>
<td>5.5e-3</td>
</tr>
</tbody>
</table>
Puts, permuted volatility vector.

\(\sigma = (0.08, 0.06, 0.04, 0.05) \), speed up factor range 5900-7900.

<table>
<thead>
<tr>
<th>K</th>
<th>Price</th>
<th>(\Delta)</th>
<th>(\Gamma)</th>
<th>RelPrice</th>
<th>Rel(\Delta)</th>
<th>Rel(\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>8.4e-4</td>
<td>-8.3e-4</td>
<td>7.8e-4</td>
<td>3.4e-2</td>
<td>5.7e-3</td>
<td>4.8e-3</td>
</tr>
<tr>
<td>95</td>
<td>0.076</td>
<td>-0.050</td>
<td>2.9e-2</td>
<td>2.5e-3</td>
<td>4.4e-3</td>
<td>2.4e-3</td>
</tr>
<tr>
<td>100</td>
<td>1.166</td>
<td>-0.458</td>
<td>0.1</td>
<td>3.4e-4</td>
<td>1.6e-4</td>
<td>4.6e-4</td>
</tr>
<tr>
<td>105</td>
<td>5.0</td>
<td>-0.979</td>
<td>3.9e-2</td>
<td>5.9e-6</td>
<td>4.7e-4</td>
<td>5.0e-3</td>
</tr>
</tbody>
</table>

\(\sigma = (0.08, 0.05, 0.04, 0.06) \), speed up factor range 5700-7600.

<table>
<thead>
<tr>
<th>K</th>
<th>Price</th>
<th>(\Delta)</th>
<th>(\Gamma)</th>
<th>RelPrice</th>
<th>Rel(\Delta)</th>
<th>Rel(\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1.8e-3</td>
<td>-1.6e-3</td>
<td>1.3e-3</td>
<td>3.3e-2</td>
<td>6.3e-3</td>
<td>4.3e-3</td>
</tr>
<tr>
<td>95</td>
<td>0.102</td>
<td>-0.061</td>
<td>3.2e-2</td>
<td>1.7e-3</td>
<td>4.6e-3</td>
<td>2.0e-3</td>
</tr>
<tr>
<td>100</td>
<td>1.225</td>
<td>-0.447</td>
<td>0.1</td>
<td>1.6e-4</td>
<td>5.6e-6</td>
<td>5.2e-4</td>
</tr>
<tr>
<td>105</td>
<td>5.0</td>
<td>-0.979</td>
<td>4.1e-2</td>
<td>2.7e-5</td>
<td>4.2e-4</td>
<td>8.3e-3</td>
</tr>
</tbody>
</table>
Input

\[S_0 = 100, \]
\[t = (0, 0.0194, 0.103, 0.269, 0.519, 1.02, 3.02), \]
\[\sigma = (0.08, 0.075, 0.04, 0.05, 0.06, 0.082), \]
\[D = (0, 3, 0, 3, 3, 3, 0), \]
\[r = (0.035, 0.04, 0.045, 0.05, 0.06, 0.065) \]
Calls

Calls, speed up factor range **1600-2100**

<table>
<thead>
<tr>
<th>K</th>
<th>Price</th>
<th>Δ</th>
<th>Γ</th>
<th>RelPrice</th>
<th>RelΔ</th>
<th>RelΓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>25.910</td>
<td>0.991</td>
<td>0.002</td>
<td>1.053e-5</td>
<td>9.148e-6</td>
<td>4.278e-2</td>
</tr>
<tr>
<td>80</td>
<td>21.840</td>
<td>0.975</td>
<td>0.005</td>
<td>1.281e-5</td>
<td>3.888e-5</td>
<td>6.324e-3</td>
</tr>
<tr>
<td>85</td>
<td>17.902</td>
<td>0.940</td>
<td>0.009</td>
<td>1.652e-5</td>
<td>7.407e-6</td>
<td>3.907e-2</td>
</tr>
<tr>
<td>90</td>
<td>14.198</td>
<td>0.880</td>
<td>0.015</td>
<td>2.147e-5</td>
<td>4.534e-5</td>
<td>5.636e-2</td>
</tr>
<tr>
<td>95</td>
<td>10.850</td>
<td>0.792</td>
<td>0.022</td>
<td>1.960e-5</td>
<td>1.479e-4</td>
<td>2.502e-2</td>
</tr>
<tr>
<td>100</td>
<td>7.964</td>
<td>0.680</td>
<td>0.028</td>
<td>2.872e-5</td>
<td>6.992e-5</td>
<td>2.589e-2</td>
</tr>
<tr>
<td>105</td>
<td>5.603</td>
<td>0.554</td>
<td>0.031</td>
<td>2.112e-5</td>
<td>1.382e-4</td>
<td>2.544e-2</td>
</tr>
<tr>
<td>110</td>
<td>3.776</td>
<td>0.428</td>
<td>0.030</td>
<td>4.994e-5</td>
<td>5.554e-5</td>
<td>5.030e-2</td>
</tr>
<tr>
<td>115</td>
<td>2.439</td>
<td>0.313</td>
<td>0.027</td>
<td>2.619e-5</td>
<td>3.174e-4</td>
<td>2.602e-2</td>
</tr>
<tr>
<td>120</td>
<td>1.511</td>
<td>0.217</td>
<td>0.023</td>
<td>2.955e-5</td>
<td>3.525e-4</td>
<td>2.466e-2</td>
</tr>
<tr>
<td>125</td>
<td>0.900</td>
<td>0.144</td>
<td>0.018</td>
<td>3.769e-5</td>
<td>4.198e-4</td>
<td>2.457e-2</td>
</tr>
</tbody>
</table>
Puts

Puts, speed up factor range 1700-2000

<table>
<thead>
<tr>
<th>K</th>
<th>Price</th>
<th>Δ</th>
<th>Γ</th>
<th>RelPrice</th>
<th>RelΔ</th>
<th>RelΓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.054</td>
<td>-0.013</td>
<td>0.003</td>
<td>7.488e-2</td>
<td>8.564e-2</td>
<td>9.845e-2</td>
</tr>
<tr>
<td>80</td>
<td>0.200</td>
<td>-0.043</td>
<td>0.009</td>
<td>7.367e-2</td>
<td>6.968e-2</td>
<td>4.998e-2</td>
</tr>
<tr>
<td>85</td>
<td>0.631</td>
<td>-0.126</td>
<td>0.024</td>
<td>5.638e-2</td>
<td>3.739e-2</td>
<td>6.124e-3</td>
</tr>
<tr>
<td>90</td>
<td>1.708</td>
<td>-0.301</td>
<td>0.046</td>
<td>3.261e-2</td>
<td>7.995e-3</td>
<td>1.791e-2</td>
</tr>
<tr>
<td>95</td>
<td>3.855</td>
<td>-0.556</td>
<td>0.057</td>
<td>1.407e-2</td>
<td>5.922e-3</td>
<td>2.195e-2</td>
</tr>
<tr>
<td>100</td>
<td>7.199</td>
<td>-0.795</td>
<td>0.044</td>
<td>4.535e-3</td>
<td>7.027e-3</td>
<td>9.935e-4</td>
</tr>
<tr>
<td>105</td>
<td>11.499</td>
<td>-0.951</td>
<td>0.020</td>
<td>9.727e-4</td>
<td>3.956e-3</td>
<td>2.626e-2</td>
</tr>
<tr>
<td>110</td>
<td>16.288</td>
<td>-0.996</td>
<td>0.003</td>
<td>5.427e-5</td>
<td>7.784e-4</td>
<td>1.256e-1</td>
</tr>
<tr>
<td>115</td>
<td>21.164</td>
<td>-1</td>
<td>1.0e-4</td>
<td>1.354e-5</td>
<td>6.631e-6</td>
<td>1.484e-1</td>
</tr>
<tr>
<td>120</td>
<td>26.045</td>
<td>-1</td>
<td>6.8e-6</td>
<td>9.547e-6</td>
<td>1.040e-5</td>
<td>3.069e+0</td>
</tr>
<tr>
<td>125</td>
<td>30.926</td>
<td>-1</td>
<td>8.4e-7</td>
<td>7.989e-6</td>
<td>1.266e-6</td>
<td>9.537e+1</td>
</tr>
</tbody>
</table>
Given

- discrete set of times t_0, \ldots, t_n with $t_0 = 0$;
- interest rate $r(t) = r_i, t_i \leq t \leq t_{i+1}$;
- a log-normal diffusion underlying S_t with dividends, proportional $d(t) = d_i$ or discrete strike convention $D_i, t_i \leq t \leq t_{i+1}$;
- fixed strike $K > 0$;
- intrinsic prices O_i at time t_0, strike K of American puts or calls maturing at times $t_i, i \geq 1$.

Find the vector $\bar{\sigma}$ of BS implied volatilities $\bar{\sigma}_i$ on intervals $[t_i, t_{i+1}]$ for which $V_A(t_0, S_0, T = t_i, \text{par}) = O_i$.
Solution procedure, parallelizable

BS implied volatilities are extracted sequentially by solving iteratively the inverse problem to

- scalar pricing to find $\bar{\sigma}_0$ from O_1;
- multi-step pricing from the above to find $\bar{\sigma}_i$ from O_i, $i > 1$, known $\bar{\sigma}_0, \ldots, \bar{\sigma}_{i-1}$.

It is not guaranteed that

- in real-time markets $\bar{\sigma}_{\text{call}} = \bar{\sigma}_{\text{put}}$;
- for a non-BS underlying at strikes K, L, $\bar{\sigma}_K = \bar{\sigma}_L$.
Given

- a general underlying S_t with proportional dividends d_i or discrete strike convention dividends $D_i, t_i \leq t < t_{i+1}$;
- m fixed strikes $K_k > 0$;
- m pairs of vectors C_{Mkt}^k, P_{Mkt}^k of prices C_{Mkt}^k, P_{Mkt}^k at time t_0 and strikes K_k of American calls and puts maturing at times $t_i, i \geq 1$;

Find the vector $\hat{\sigma}$ of the underlying volatility (UV) and m vectors $\hat{\sigma}_k$ of European implied volatilities (IV) on intervals $[t_i, t_{i+1}]$ for which, following DVM,

- $V_A(t_0, S_0, T = t_i, K = K_k, \phi = -1, \hat{\text{par}}, \hat{\text{par}}) = P_{Mkt}^{k_i}$,
- $V_A(t_0, S_0, T = t_i, K = K_k, \phi = 1, \hat{\text{par}}, \hat{\text{par}}) = C_{Mkt}^k$.

The problem, as formulated, has $m + 1$ unknowns and $2m$ equations and cannot be solved. Solvable alternatives are offered below.
The weighted LS formulation for UV

Assuming the underlying close to log-normal, we look for volatility $\sigma(t)$ providing the weighted least square minimum for calls and puts at every time t_i.

Given $u_{\text{call},ki}, u_{\text{put},ki} \geq 0$, $\sum_{i,k} (u_{\text{call},ki} + u_{\text{put},ki}) = 1$, minimize

$$
\sum_{i,k} \left[u_{\text{call},ki} \left(C_{ki}(\sigma) - C_{Mkt}^{\text{Mkt}} \right)^2 + u_{\text{put},ki} \left(P_{ki}(\sigma) - P_{Mkt}^{\text{Mkt}} \right)^2 \right],
$$

where $C_{ki}(\sigma), P_{ki}(\sigma)$ just abbreviate

$V_A(t_0, S_0, T = t_i, K = K_k, \phi, \text{par}, \hat{\text{par}} = \text{par})$.

Under market conditions $C_{k,j}^{\text{Mkt}} \geq C_{ki}^{\text{Mkt}}, P_{k,j}^{\text{Mkt}} \geq P_{ki}^{\text{Mkt}}$ for $j > i$ and $C_{k,l}^{\text{Mkt}} \leq C_{ki}^{\text{Mkt}}, P_{l,i}^{\text{Mkt}} \geq P_{ki}^{\text{Mkt}}$ for $l > k$ the solution exists within bounds $\min_k \bar{\sigma}_{\text{call,put},ki} \leq \sigma_i \leq \max_k \bar{\sigma}_{\text{call,put},ki}$, where $\bar{\sigma}_{ki}$ are raw implied volatilities computed above.
The 1st order term equation for UV

Time saver

Assuming 2nd order σ-terms $u_{ki}(\sigma_i - \bar{\sigma}_i)(\sigma_j - \bar{\sigma}_j)$ small (in line with the assumption for the underlying of being close to log-normal) we arrive at

$$
\sum_{i,k} [u_{call,ki} CT_{ki}^2 + u_{put,ki} PT_{ki}^2] \rightarrow \text{min},
$$

$$
CT_{ki} = \sum_{j \leq i} \nu_{call,ki} j (\sigma_j - \bar{\sigma}_{call,kj}),
$$

$$
PT_{ki} = \sum_{j \leq i} \nu_{put,ki} j (\sigma_j - \bar{\sigma}_{put,kj}),
$$

leading to a linear system after differentiation by every σ_i. Because of positive $\nu_{ki} = \frac{\partial C_{ki}^{Mkt}}{\partial \bar{\sigma}_j} (\bar{\sigma}_{kj})$, under market assumptions above the solution is contained within same bounds. A time saving trick is to use, instead of ν_{ki}, the derivatives of European parts of CT_{ki}, PT_{ki}, easily obtainable analytically.
Another, even faster LS criterion matches directly σ and $\bar{\sigma}_k$

$$\sum_{i,k} \left[u_{call,ki} (\sigma_i - \bar{\sigma}_{call,ki})^2 + u_{put,ki} (\sigma_i - \bar{\sigma}_{put,ki})^2 \right] \rightarrow \min,$$

leading immediately to $\sigma_i = \frac{\sum_k (u_{call,ki} \bar{\sigma}_{call,ki} + u_{putl,ki} \bar{\sigma}_{put,ki})}{\sum_k (u_{call,ki} + u_{putl,ki})}$, more straightforwardly selecting heavier weighted $\bar{\sigma}_i$ but ignoring vegas as sensitivities.
More about weights

Every weight $u_{\text{call}/\text{put},ki}$ is a function $u(K_k, t_i, \phi)$.

A common, but not the only possible, choice is $u_{ki} = \theta_i w_{ki}$.

Most common choices for strike weights w_{ki} are

- **uniform** $w_{\text{call},ki} = w_{\text{put},ki} = \frac{1}{mn}$;

- **volume-weighted** $w_{\text{call},ki} = \frac{1}{n} \frac{Vol_{\text{call},ki}}{\sum_k (Vol_{\text{call},ki} + Vol_{\text{put},ki})}$,

 $w_{\text{put},ki} = \frac{1}{n} \frac{Vol_{\text{put},ki}}{\sum_k (Vol_{\text{call},ki} + Vol_{\text{put},ki})}$.

The Vol_{ki} above are end of day trade volumes, however it is also possible to consider (in any combination)

- intraday volumes traded within a fixed time Δt
- bid/ask or combined bid-ask volumes;
- call or put volumes only or one of two at any strike or time by setting the opposite side weight to 0.
Weights, continued

Strike K_k at time t_i on a call/put side can be excluded by setting $w_{\text{call/put}, ki} = 0$.

The most common choice for time weights θ_i are

- **deka-y**, $\theta_i = \frac{\lambda_i}{\sum_i \lambda_i}$, with $\lambda_i = e^{-\lambda \frac{\Delta t_i}{\Delta t}}$ for some fixed $\lambda, \Delta t$.

 $\lambda = 0$ gives uniform weights;

- **linear**, $\theta_i = \frac{\Delta t_{0,i}}{\Delta t_{0,n}}$.
The Inverse Problem

The LS parity criterion for IV, parallelizable

It is now possible to find the vector of IV at strikes K_k on call and put sides. A call is shown, a put is similar,

Given $\sigma, \hat{\sigma}_{\text{call}, j < i, k}$ and price C_{ki}^{Mkt} at given i, k, find $\hat{\sigma}_{\text{call}, ki}$ for which $V_A(S_0, t_0, t_i, \text{par}, \text{par}_{\text{call}}) = C_{ki}^{Mkt}$.

Solved iteratively, using the direct pricing formula.

However, without the put-call parity for restored European contracts. To guarantee it we need $\hat{\sigma}_{\text{call}, k} = \hat{\sigma}_{\text{put}, k}$.

Given σ, prices C_{ki}, P_{ki}, weights $u_{\text{call}, ki}, u_{\text{put}, ki}$, find $\hat{\sigma}_k$, minimizing for kiven k

$$\sum_i \left[u_{\text{call}, ki} \left(C_{ki}(\hat{\sigma}_k, \sigma) - C_{ki}^{Mkt} \right)^2 + u_{\text{put}, ki} \left(P_{ki}(\hat{\sigma}_k, \sigma) - P_{ki}^{Mkt} \right)^2 \right].$$

The bounds are $\min_k \hat{\sigma}_{\text{call}, put, ki} \leq \hat{\sigma}_{ki} \leq \min_k \hat{\sigma}_{\text{putl}, put, ki}$.
The 1st order term equation for IV
Time saver and supersaver

Leaving just the 1st order Taylor term in $\hat{\sigma}_{ki}$ we arrive at

$$\sum_{i} \left[u_{call,ki} C T_{ki}^2 + u_{put,ki} P T_{ki}^2 \right] \rightarrow \text{min},$$

$$C T_{ki} = \sum_{j \leq i} \hat{\nu}_{call,ki,j} (\hat{\sigma}_{kj} - \hat{\sigma}_{call,kj}), \quad P T_{ki} = \sum_{j \leq i} \hat{\nu}_{put,ki,j} (\hat{\sigma}_{kj} - \hat{\sigma}_{put,kj}),$$

differentiated to a linear system. A time saving simplification, computing $\hat{\nu}_{call/put,ki,j} = \frac{\partial C_{Mkt}^{Mkt}}{\partial \hat{\sigma}_{kj}} (\hat{\sigma}_{call/put,kj})$ from European parts of $C_{ki}^{Mkt}, P_{ki}^{Mkt}$ can be used here too.

And a faster LS criterion matches directly $\hat{\sigma}_{k}$ and $\hat{\sigma}_{call/put,k}$

$$\sum_{i} \left[u_{call,ki} (\hat{\sigma}_{ki} - \hat{\sigma}_{call,ki})^2 + u_{put,ki} (\hat{\sigma}_{ki} - \hat{\sigma}_{put,ki})^2 \right] \rightarrow \text{min},$$

leading to $\hat{\sigma}_{i} = \frac{u_{call,ki} \hat{\sigma}_{call,ki} + u_{putl,ki} \hat{\sigma}_{put,ki}}{u_{call,ki} + u_{putl,ki}}$.
Conclusions

Presented:

- an efficient analytic approximation for American options on log-normal underlyings with time-dependent parameters, proportional or discrete dividends – strike convention;

- the DVM framework, designed to price efficiently American options on a general underlying, proportional or discrete dividends;

- the comparison of results and computational times for the presented approximation and trinomial tree for a log-normal underlying, proportional or discrete dividends;

- the inverse problem of extraction of the time-dependent IV curve and UV surface for an general underlying, proportional or discrete dividends.
References

Y. Shkolnikov, *Decoupled American option pricing method, computation of implied volatilities, further applications*, SSRN, 2009, Abstract 1371930