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The Free Boundary SABR: Natural Extension to Negative Rates

Alexandre Antonov* Michael Konikov† Michael Spector‡

Abstract
In the current low-interest-rate environment, extending option models to negative rates has become an
important issue. This paper describes one such extension of the widely used SABR model. We stress
that our solution is more natural and attractive than the shifted SABR model. An exact formula is
derived for option prices in the case of zero correlation between the rate and its volatility. For nonzero
correlation, a mapping procedure onto a mimicking zero-correlation model is applied. Analytical results
from the suggested free-boundary SABR model are compared with Monte Carlo simulation results.

1 Introduction
The SABR process with parameters (F0, v0, β, ρ, γ)

1 [7] for a rate Ft and its volatility vt has the SDE

dFt = F β
t vt dW1, (1.1)

dvt = γ vt dW2, (1.2)

with correlation E[dW2 dW1] = ρdt and power 0 ≤ β < 1. The solution is not uniquely defined by the
SDE—we also need to impose boundary conditions. The standard choice is to assume that the boundary
at zero is absorbing, which enforces positivity and martingality of the rate. See [2], [4], [6], [8], [9], [10],
[13] for further references.

The SABR model is primarily used for volatility cube interpolation and for pricing CMS products
by replication with vanilla options. It is also used in term-structure models, e.g., [12], [14].

When the SABR model was first introduced, rate positivity seemed like a reasonable and attractive
property. In the current market environment, where rates are extremely low and sometimes even neg-
ative, it is important to extend the SABR model to negative rates. For example, Figure 1 shows the
historical evolution of Swiss Franc (CHF) interest rates. One observation is that rates reached as low
as −2%. Another important observation is that the rates “stick” to zero for certain periods of time,
suggesting that their probability density functions have a singularity at zero.

The simplest way to take negative rates into account is to shift the SABR process

dFt = (Ft + s)β vt dW1,

where s is a deterministic positive shift. This moves the lower bound of Ft from 0 to −s.
One can either include the shift in the calibration parameters (v0, β, ρ, γ, s) or fix it prior to calibration

(e.g., to 2% in the case of Swiss Franc short rates). Each alternative has drawbacks.
Calibrating the shift does not really introduce a new degree of freedom: its influence on the skew is

very similar to the power β and may result in an identification problem. Moreover, one still needs to
provide its lower bound (say 2%) as an input to a numerical solver. Otherwise, we risk reducing the
rate span. This means that we still end up with an unquoted input to our model.

*Numerix, SVP of Quantitative Research, antonov@numerix.com
†Numerix, Executive Director of Quantitative Development, mkonikov@numerix.com
‡Numerix, Director of Quantitative Research, mspector@numerix.com
1Sometimes α is used instead of v0.
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Figure 1: Swiss Franc interest rates.

If we fix the shift from the very beginning and calibrate the standard parameters (v0, β, ρ, γ), there
are still drawbacks. There is always the danger that rates can go lower than anticipated, in which case
we would need to change this parameter accordingly. This can result in a jump in the other SABR
parameters as a calibration response to such readjustment. As a consequence, we can get jumps in the
values/Greeks of the trades dependent on swaption or cap volatilities. To cover for potential losses in
such situations, traders are likely to be asked to reserve part of their P&L. Also, having the swaption
prices bounded from above (due to the rate being bounded from below) can lead to situations when the
shifted SABR model cannot attain market prices. In sum, we need a more natural and elegant solution
for permitting negative rates.

For β = 0, the normal SABR model, dFt = vt dW1, allows the rates to become negative when a free
boundary condition is enforced. Below, we come up with a generalization of this model

dFt = |Ft|β vt dW1

with 0 ≤ β < 1
2 and a free boundary. As we will see, such a model allows for rates that can be negative

and exhibit a certain “stickiness” at zero.
In what follows, we consider only the F0 > 0 case (unless explicitly stated otherwise). When F0 < 0,

we note that F̃t = −Ft satisfies the SABR SDE with parameters (−F0, v0, β,−ρ, γ), and the time value
of a European option on Ft struck at K equals that of an option on F̃t struck at −K.

To get intuition about the free boundary, we start with a CEV example dFt = |Ft|β dW and study the
PDF and option prices. Then we switch to the SABR model with a free boundary condition and present
an exact solution for the zero-correlation case. For the general case, we show an accurate approximation
for European options prices. We demonstrate that the exact formula as well as its approximation can be
presented in terms of a 1D integral over elementary functions, making it well-suited for fast calibration.2
We finish with simulation schemes and numerical results.

2 CEV Process
To aid with intuition, we consider the CEV model dFt = F β

t dW with 0 ≤ β < 1. The forward
Kolmogorov (FK) equation on the density p(t, f),

pt −
1

2

(
f2β p

)
ff

= 0,

2Note that the SABR approximation [7] based on the heat-kernel expansion cannot be applied to the free SABR because
it does not tale into account the boundary conditions.
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has two types of solutions, depending on the boundary conditions; fixing the PDE (or SDE) alone is not
sufficient to uniquely define the solution. One can show (e.g., [5]) that there are two distinct solutions
with asymptotics pA ∼ f1−2β and pR ∼ f−2β . We call the first solution absorbing and the second one
reflecting. The latter exists only for β < 1

2 ; otherwise, the norm around zero diverges.
The asymptotics are closely related to conservation laws, which can be obtained by integrating the

FK equation by parts against some payoffs h(f). Consider first the norm case h(f) = 1. It is easy
to see the asymptotic behavior of the absorbing solution leads to nonconservation of the norm, while
the reflecting solution conserves the norm. For the first moment conservation, we take h(f) = f and
deduce that the asymptotics of the reflecting solution leads to nonconservation of the first moment (i.e.,
nonmartingality), while the absorbing solution is a martingale.

The explicit PDFs for the CEV process are known (see [11] and [5]) in terms of the modified Bessel
functions, which permits us to calculate a call option time-value via the time integral without the
boundary term:

O(T,K) = E[(FT −K)+]− (F0 −K)+ =
1

2
K2β

∫ T

0

dt p(t,K). (2.1)

As explained in [5], this is not the case for put options, where a boundary term is present.
Below we will need option prices for absorbing/reflecting solutions as 1D integrals (see [3] and [5]).

These are given by

OA/R(T,K) =

√
KF0

π

(∫ π

0

sin(|ν|θ) sin(θ)
b− cos(θ) e−

q̄(b−cos(θ))
T dθ

+ sin(|ν|π)
∫ ∞

0

e∓|ν|x sinh(x)
b+ cosh(x) e−

q̄(b+cosh(x))
T dx

)
(2.2)

for an index ν = − 1
2(1−β) and parameters

q̄ = q0 qK , b =
q20 + q2K
2 q0 qK

, q0 =
F 1−β
0

1− β
and q =

K1−β

1− β
.

Now consider an extension of the CEV model to the entire real line by modifying the SDE to

dFt = |Ft|β dW (2.3)

for 0 ≤ β < 1
2 . The corresponding FK equation is

∂t p(t, f) =
1

2

(
|f |2β p(t, f)

)
ff
. (2.4)

A norm conserving and martingale solution that satisfies the FK equation with the initial condition
p(0, f) = δ(f − F0) can be constructed from the reflecting and absorbing solutions as

p(t, f) =
1

2
(pR(t, |f |) + sign(f) pA(t, |f |)) . (2.5)

We can get the same expression for the density with a purely probabilistic argument. For any f > 0,
a reflecting path ending at f is equivalent to a free-boundary path ending at f or −f , and vice versa.
For the absorbing case, we apply the reflection principal as usual, which involves taking the probability
of a path ending at f and subtracting the probability of the path ending at f and touching zero, which
is equivalent to a path ending at −f . Hence, we can write the linear system

pR(t, f) = p(t, f) + p(t,−f),
pA(t, f) = p(t, f)− p(t,−f).

Solving this yields the expression for the free boundary density. The solutions for typical parameters
are shown in Figure 2.
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Figure 2: The blue solid line represents the free PDF, the red dotted line depicts the
absorbing density expression sign(f) pA(t, |f |), while the green dashed line gives
the symmetrical reflecting solution.

Note that the PDF diverges as p(t, f) ∼ |f |−2 β at zero. (The asymptote is inherited from the
reflecting solution.) The observed singularity is quite natural: one can observe a “sticky” behavior of
real rates near zero in, for example, the behavior of the CHF rate in Figure 1.

A call option payoff h(f) = (f −K)+ leads to an option time value of

OF (T,K) =
1

2
|K|2β

∫ T

0

dt p(t,K) =
1

2
|K|2β

∫ T

0

dt
1

2
(pR(t, |K|) + sign(K) pA(t, |K|))

=
1

2
(OR(T, |K|) + sign(K)OA(T, |K|)) . (2.6)

Finally, we present the free CEV option integral. Its time value can easily be derived from the
absorbing-reflecting solutions (2.2) and (2.6), yielding

OF (τ,K) =

√
|KF0|
π

(
1K≥0

∫ π

0

sin(|ν| θ) sin θ
b− cos θ e−

q̄(b−cos θ)
τ dθ

+ sin(|ν|π)
∫ ∞

0

(1K≥0 cosh(|ν|x) + 1K<0 sinh(|ν|x)) sinhx
b+ coshx e−

q̄(b+cosh x)
τ dx

)
, (2.7)

where ν = − 1
2(1−β) and

q̄ =
|F0K|1−β

(1− β)2
with b =

|F0|2(1−β) + |K|2(1−β)

2 |F0K|1−β
.

We will use this formula to derive the analytics for the SABR model in the section below. Note that
we put the absolute value of F0 for symmetry with respect to the strike: F0 is assumed to be positive,
consistent with the remark in the introduction.

Regarding the sensitive region of small strikes and/or small rates, we see that the call option price
(the full one, including the intrinsic value) is a smooth function of K and F0 at zero. Thorough analysis
reveals that the main terms of the expansion near zero are linear with the following terms of the order
|K|2(1−β) for small strikes and |F0|2(1−β) for small spots.

3 SABR
Now, let us come back to the SABR process (1.1)–(1.2). The standard choice of the absorbing boundary
will be generalized to a free boundary. Namely, we will consider the SDE

dFt = |Ft|β vt dW1

Confidential Information. Copyright c⃝ 2015 Numerix LLC. All rights reserved. 7
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for 0 ≤ β < 1
2 (with the same process (1.2) for the stochastic volatility). Such a construction permits

both negative rates and “stickiness” at zero.
Looking forward, we plot the SABR density function, which is shown in Figure 3 for the Input I

parameters from Table 4. We also observe the singularity at 0, which reflects the “sticky” behavior of
rates at zero. (See Figure 1.)
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Figure 3: SABR model PDF for T = 3Y , β = 0.25.

3.1 Zero-Correlation Case
The zero-correlation free SABR model can be solved exactly. Indeed, the option price can be computed
as

OSABR
F (T,K) = E

[
OCEV

F (τT ,K)
]
, (3.1)

where OCEV
F (τ,K) is the free-boundary CEV option price (2.7), and the stochastic time τT =

∫ T

0
v2t dt is

the cumulative variance for the geometric Brownian motion vt (1.2). The dependence on τ in both inte-
grand terms of (2.7) is of the form exp (−λ/τ). Thus, averaging over stochastic time, E

[
OCEV

F (τT ,K)
]
,

requires calculating the mean value E [exp (−λ/τT )] .
The moment generating function (MGF) of the inverse stochastic time was derived in [3] and given

by

E
[
exp

(
− λ

τT

)]
=
G(T γ2, s)

cosh s for s = sinh−1

(√
2λ γ

v0

)
.

The function
G(t, s) = 2

√
2
e−

t
8

t
√
2πt

∫ ∞

s

duu e−
u2

2t

√
coshu− cosh s

has been introduced in [4]; it is closely related to the McKean heat kernel on the hyperbolic plane H2.
It is important to notice that, although the function G(t, s) is a 1D integral, it can be very efficiently
approximated by a closed formula (see [4]).

Thus, the exact option price for the zero correlation case can be presented as

OSABR
F (T,K) =

1

π

√
|KF0| {1K≥0A1 + sin(|ν|π)A2}

with the integrals

A1 =

∫ π

0

dϕ
sinϕ sin (|ν|ϕ)
b− cosϕ

G(T γ2, s(ϕ))

cosh s(ϕ) , (3.2)

A2 =

∫ ∞

0

dψ
sinhψ (1K≥0 cosh(|ν|ψ) + 1K<0 sinh(|ν|ψ))

b+ coshψ
G(T γ2, s(ψ))

cosh s(ψ) . (3.3)

Confidential Information. Copyright c⃝ 2015 Numerix LLC. All rights reserved. 8
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Here s has the following parameterization with respect to ϕ and ψ:

sinh s(ϕ) = γ v−1
0

√
2q̄(b− cosϕ),

sinh s(ψ) = γ v−1
0

√
2q̄(b+ coshψ),

where q̄ and b are the same as in the CEV free-boundary option.

3.2 General Correlation Case
As in [4], we approximate the general correlation option price by using the zero-correlation model

dF̃t = |F̃ |β̃t ṽt dW̃1,

dṽt = γ̃ ṽt dW̃2,

with E[dW̃1 dW̃2] = 0. That is, we aim to find model parameters for F̃ so that

E
[
(Ft −K)+

]
≃ E

[
(F̃t −K)+

]
.

For the free boundary, we reuse the same effective coefficients of the zero-correlation SABR model as in
[4] for the absorbing boundary. The power and vol-of-vol are strike-independent with

β̃ = β and γ̃2 = γ2 − 3

2

{
γ2ρ2 + v0γρ (1− β)F β−1

0

}
,

while the initial stochastic volatility is more complicated and strike-dependent. The ṽ0 parameters can
be calculated as an expansion

ṽ0 = ṽ
(0)
0 + T ṽ

(1)
0 + · · · . (3.4)

The leading volatility term can be expressed as

ṽ
(0)
0 =

2Φ δq̃ γ̃

Φ2 − 1
for Φ =

(
vmin + ρv0 + γ δq

(1 + ρ)v0

) γ̃
γ

, (3.5)

where

v2min = γ2δq2 + 2γρδqv0 + v20 , δq =
k1−β − F 1−β

0

1− β
and δq̃ =

k1−β̃ − F 1−β̃
0

1− β̃
. (3.6)

The effective strike k is a floored initial strike: all the effective parameters formulae based on the heat-
kernel expansion work only for positive strikes. In our experiments, we used k = max(K, 0.1F0). Note
that the initial value of the rate F0 is considered to be positive. See the remark in the introduction for
negative F0.

The first-order correction is more complicated and is given by

ṽ
(1)
0

ṽ
(0)
0

= γ̃2
√

1 + R̃2

1
2 ln

(
v0vmin
ṽ
(0)
0 ṽmin

)
− Bmin

R̃ ln
(√

1 + R̃2 + R̃
) for R̃ =

δq γ̃

ṽ
(0)
0

,

where ṽmin =

√
γ̃2δq2 +

(
ṽ
(0)
0

)2
and Bmin is the so-called parallel transport, defined as

Bmin = −1
2

β

1− β

ρ√
1− ρ2

(
π − arccos

(
−δq γ + v0 ρ

vmin

)
− arccos ρ− I

)

Confidential Information. Copyright c⃝ 2015 Numerix LLC. All rights reserved. 9
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and

I =


2√

1−L2

(
arctan u0+L√

1−L2
− arctan L√

1−L2

)
for L < 1,

1√
L2−1

ln u0(L+
√
L2−1)+1

u0(L−
√
L2−1)+1

for L > 1,

(3.7)

where
L =

vmin(1− β)

k1−β γ
√
1− ρ2

and u0 =
δq γρ+ v0 − vmin

δq γ
√
1− ρ2

.

See also [9] and [13].
At the end of this section, we comment on the arbitrage-free property of the free-boundary SABR

model. As a real process, the free-boundary SABR model is naturally arbitrage-free. On the other hand,
its approximation described in this subsection is, strictly speaking, not arbitrage-free (except in the case
of the zero correlation when the approximation becomes exact). However, in our efficient volatility
expansion ṽ0 we use the fixed efficient strike k = 0.1F0 for K < 0.1F0. This means that prices for such
strikes are given by the zero-correlation model with strike-independent coefficients and, consequently,
are arbitrage-free. For the other strikes, given high approximation accuracy, we can call the resulting
analytical formula quasi-arbitrage-free.

4 Numerical Experiments
Calibration to real data. We start with a real data example of a 1Y15Y CHF swaption from
10-Feb-2015 with a forward rate of F0 = 0.56%. The swaption prices are quoted in terms of normal
implied volatility (bps). We calibrate free-boundary and shifted SABR models to this data by using our
analytical approximations. The output is presented in Table 1 and graphed in Figure 4.

Strike Target free-bdry shifted

0.06% 23.5 23.5 24.6
0.31% 44.7 44.5 43.3
0.56% 59.3 59.2 58.7
0.81% 71.7 71.7 71.8
1.06% 83.0 83.1 82.9
1.56% 103.5 103.8 103.6
2.56% 140.4 140.2 140.7

Table 1: Normal implied volatilities (in bps) for the calibrated free-boundary SABR and
shifted SABR models.
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Figure 4: Plot of the free-boundary normal implied volatilities (bps) from Table 1.

The calibration errors for the free-boundary SABR model and the shifted SABR model are shown
in Figure 5. We see that the calibration error for the free-boundary SABR is small. Table 2 shows the
calibrated values of α = v0, ρ, γ, and β. The value of the shift for the shifted SABR model is 2%.
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Figure 5: Calibration errors (in bps) for free-boundary and shifted SABR models. Wee
see that the free-boundary SABR model has less calibration error.

Param free SABR shifted SABR

α 0.051 0.011
β 0.417 0.167
ρ 0.990 0.999
γ 0.658 1.080

Table 2: Calibrated parameters for the free-boundary SABR and shifted SABR models.

Note the extremely high values of the correlation ρ and fairly high values of the vol-of-vol γ. The
reason for such high correlation is a very steep skew prevailing in the current CHF.

We now study the accuracy of the analytical approximation for the free SABR model. First, let us
briefly address the Monte Carlo simulation scheme. (See [5] for more details.) Suppose that we have
simulated the stochastic volatility for all timesteps and paths vt.3 Our goal is to simulate Ft+∆t given

3This is trivial for the lognormal process.
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this information. The first thing to try is an Euler scheme without any boundary condition (i.e., a free
boundary), which is

Ft+∆t = Ft + |Ft|β vt ∆W1(t).

One can explicitly check that the Euler scheme does not work for points close to zero even when ∆t→ 0.
Instead, we need to come up with a more careful scheme based on a numerical inversion of the CDF,
which can be found in [5]. However, such a procedure is very slow, and we prefer to come up with a
regime-switching scheme similar to [1] in order to accelerate the simulations. For values away from the
boundary, we use moment matching to approximate Ft+∆t via the quadratic Gaussian step, while for
near-boundary values, we numerically invert the CDF.

In Table 3, we compare the Monte Carlo simulations described above (Exact) and our analytical
formula based on the map to the zero correlation SABR model (Analyt) for the calibrated parameters
in Table 2. As shown, the approximation is excellent.

K Analyt Exact Diff

0.06% 24 24 -0.7
0.31% 44 45 -0.7
0.56% 59 60 -0.8
0.81% 72 73 -0.8
1.06% 83 84 -0.9
1.56% 104 105 -1.0
2.56% 140 142 -1.3

Table 3: Comparison of implied volatilities from Monte Carlo simulations (Exact) and
the analytical formula (Analyt) with the parameters from Table 2.

Approximation accuracy analysis. We analyze the approximation accuracy for two additional
sets of inputs. These input data sets are negatively correlated, which is a more classical situation. The
input data that is used is shown in Table 4, and the implied volatilities from the Monte Carlo simulation
method are compared against the analytical approximation for both sets of inputs in Table 5.

Parameter Symbol Value for Input I Value for Input II

Rate Initial Value F0 50 bps 1%
SV Initial Value v0 0.6F 1−β

0 0.3F 1−β
0

Vol-of-Vol γ 0.3 0.3
Correlations ρ −0.3 −0.3

Skews β 0.25 0.25

Maturities T 3Y 10Y

Table 4: Setups for the free-boundary SABR model.

Confidential Information. Copyright c⃝ 2015 Numerix LLC. All rights reserved. 12
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Input I Input II
K Analyt Exact Diff Analyt Exact Diff

-0.95 30.87 30.93 -0.06 40.05 40.86 -0.81
-0.8 29.83 29.95 -0.12 38.43 39.24 -0.81
-0.65 28.80 28.97 -0.17 36.80 37.60 -0.80
-0.5 27.79 27.99 -0.20 35.18 35.97 -0.78
-0.35 26.83 27.04 -0.21 33.59 34.33 -0.74
-0.2 25.95 26.15 -0.20 32.05 32.73 -0.68
-0.05 25.30 25.46 -0.16 30.67 31.25 -0.58
0.1 25.77 25.85 -0.08 30.20 30.63 -0.43
0.25 26.63 26.69 -0.06 30.19 30.51 -0.31
0.4 27.33 27.39 -0.06 30.14 30.41 -0.27
0.55 27.90 27.97 -0.06 30.06 30.31 -0.25
0.7 28.38 28.45 -0.07 30.00 30.22 -0.23
0.85 28.80 28.87 -0.07 29.98 30.18 -0.20

1 29.18 29.25 -0.07 30.05 30.22 -0.17
1.15 29.53 29.60 -0.07 30.24 30.36 -0.12
1.3 29.87 29.94 -0.07 30.56 30.63 -0.07
1.45 30.22 30.29 -0.06 31.03 31.04 -0.01
1.6 30.58 30.63 -0.06 31.63 31.58 0.04
1.75 30.95 30.99 -0.05 32.35 32.26 0.09
1.9 31.33 31.37 -0.04 33.17 33.04 0.13

Table 5: Differences in implied volatilities (in bps) between simulations (Exact) and an-
alytics (Analyt). The bold line (K = 1) represents the ATM strike.

The implied volatility results that are shown in Table 5 are plotted in Figure 6
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Figure 6: Plot of implied volatility for Monte Carlo simulation (Exact) and our method
(Analyt).

The approximation is excellent for positive strikes for the 3Y data and for K > 1
2F0 for the 10Y

data. For other strikes, we observe slight degeneration. We see that the normal implied volatility
exhibits significant smiles, with the bottom between zero and the ATM strike. In general, increasing the
volatility-of-volatility and maturity moves the vertex of the smile to the ATM strike.
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5 Conclusion
We presented a natural generalization of the SABR model to negative rates, which is very important
in the current low-rate environment, and described its properties. We derived an exact formula for the
option price in the zero-correlation case and an efficient approximation for the general correlation case
written in terms of a one-dimensional integral of elementary functions. The simplicity of the approxi-
mation allows for straightforward implementation. Moreover, the main formulae from our “absorbing”
(standard) SABR approximation can be directly reused. Finally, we have numerically checked the
accuracy of the approximation for option pricing.
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Martingale and Distribution Tests for the Libor Market Model

Alexander Antonov* Dan Li† Leonard Tchuindjo‡

Abstract

Using martingale normalization, we find appropriate adjustment factors to simulated Libor rates, which
we use for two purposes. First, we show that the adjusted model-simulated forward Libor rate is a
martingale under the simulation measure. This allows us to construct a martingale restriction test
for the Libor market model, which requires that in an arbitrage-free market, the expectation of each
adjusted forward Libor rate simulated by a model calibrated to option-embedded instruments equals
the corresponding forward Libor rate implied from the yield curve. This has practical implications for
arbitrage trading. Second, we use the adjustment factors to construct a distribution test for the simulated
forward Libor rates. We show how, in the simulated measure, the adjustment factors transform the
distribution of each simulated Libor rate to match the initial distribution assumption of its corresponding
forward Libor rate in its relevant measure. This has practical implications for model testing.

1 Introduction
The Libor market model (LMM) framework was independently proposed by Brace, Gatarek and Musiela
[2] and Sandmann and Sonderman [13] and further improved by Jamshidian [9]. This framework is
attractive because it can directly model observable rates such as Libor or swap rates, which is a significant
improvement over short-rate models (e.g., Hull and White [8]) and forward-rate models (e.g., Heath,
Jarrow, and Morton [10]), which model unobservable instantaneous rates.

The setup of the standard LMM is straightforward. We assume that each forward Libor rate follows
a stochastic process with a known distribution under its relevant measure. However, because all rates are
simultaneously simulated under a single measure, the stochastic differential equation (SDE) of each rate
must be reformulated in this measure, which adds a time-dependent drift.1 As a result, each forward
Libor rate follows a stochastic process with a distribution that can be unknown in the simulating
measure (especially if the initial process is lognormal). Market practitioners therefore face the problem
of recovering the model distribution for the simulated forward Libor rate. For example, if the model
setup assumes that each forward Libor is lognormal in its relevant measure, then one has to find a way
to adjust the distribution of each simulated forward Libor so that it becomes lognormally distributed in
the simulation measure. Constructing this adjustment allows us to test whether the distribution of the
simulated forward Libor rates is concordant with the initial distribution assumption of the Libor market
model.

Finding appropriate adjustments for the simulated forward Libor rate can also help verify the mar-
tingale restriction for the Libor rate market. This means that in the absence of arbitrage, the forward
Libor rate simulated by the LMM calibrated to option-embedded market instruments (such as caps,
floors, and swaptions) equals the corresponding forward rate implied from the yield curve constructed
from Libor-based instruments (such as cash Libor rates, forward rate agreements, Eurodollar futures,

*Numerix, SVP of Quantitative Research, antonov@numerix.com
†Numerix, SVP of Financial Engineering, dli@numerix.com
‡Numerix, Director of Financial Engineering, ltchuindjo@numerix.com
1If the simulation is conducted in a measure associated with a particular rate, then the SDE for that rate under the

simulation measure will have zero drift.
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and swaps). The martingale restriction test can be conducted by using any option-pricing model to test
for the absence of arbitrage in the corresponding market. Early studies were done by Longstaff [11], who
conducted a test to check whether the underlying S&P value implied from call options on the S&P 100
through the model equals its actual market value. In [3], Brenner and Eom conducted the test on call
and put options on the S&P 500. Busch [4] has also tested the martingale restriction on the USD-GBP
call and put currency market. These authors conducted their analysis in the Black-Scholes framework.
However, no such test has been done for Libor rates to the best of our knowledge.

We use martingale normalization to find appropriate adjustment factors, which are built upon a
proposed sample stochastic discount factor, and show that when the simulated forward Libor rate is
adjusted by these factors, its expectation under the simulating measure equals the value of the corre-
sponding forward Libor rate implied from the yield curve. We set up a one-factor lognormal LMM and
we check this condition with USD market data for 31 December 2014. We find that the adjusted forward
three-month Libor rates simulated by the LMM calibrated to swaptions are very close to the forward
three-month Libor rates implied from the Eurodollar futures and swap data. This shows that there are
very limited arbitrage opportunities and negligible frictions in the USD Libor market.2 Furthermore,
we use the above factors to adjust the distributions of the simulated forward Libor rates so that they
become lognormal. We thus recover the initial lognormal assumption of our LMM setup. A Kolmogorov-
Smirnov test supports this finding. However, it is important to note that our proposed martingale and
distribution tests are not based on a specific assumption for the distribution of the underlying Libor
rate.

This paper is structured as follows. Section 2 provides a brief overview of the LMM framework. In
Section 3, we propose a stochastic discount factor, which is used to construct the adjustment factors
for the simulated forward Libor rates in Section 4, where we show that in the absence of arbitrage, the
expectation of each adjusted simulated forward Libor rate equals the corresponding forward Libor rate
implied from the yield curve. Numerical results illustrate this result. In Section 5, we prove that, in
the simulated measure, the adjustment factors transform the distribution of each simulated Libor rate
to match the initial distribution assumed for its corresponding forward Libor rate in the LMM setup.
We use a Kolmogorov-Smirnov test to compare the distributions. Section 6 summarizes the results and
proposes areas of further investigation.

2 An Overview of the LMM
Consider a discrete set of times T = {Ti}Mi=0, where 0 = T0 < T1 < · · · < TM < ∞. At any time
t ≥ 0, define P (t, Ti) to be the time-t price of a zero-coupon bond maturing at Ti ≥ t. We assume this
zero-coupon bond to be default-free; i.e., P (t, Ti) > 0 for all t ∈ [0, Ti]. The forward Libor rate between
times Ti and Ti+1, as seen at time t ≤ Ti, can be defined as

Li(t) ≡
(P (t, Ti)− P (t, Ti+1)) /δi

P (t, Ti+1)
, (2.1)

where δi = Ti+1−Ti is the day-count fraction between Ti and Ti+1. In (2.1), the numerator is a tradable
asset, as it is a linear combination of two tradable assets, and the denominator is strictly positive, as it
is the price of a default-free bond. Thus, following Geman, Karoui and Rochet [6], the stochastic process
of the forward Libor rate {Li(t) : 0 ≤ t ≤ Ti} is a martingale under the measure Qi+1 associated with
the numeraire {P (t, Ti+1) : 0 ≤ t ≤ Ti+1}.

Because of the martingale property, the stochastic process of the forward Libor rate is driftless under
Qi+1. Furthermore, by the martingale representation theorem, this stochastic process can be represented
as a function of a finite number of Brownian motions. Therefore, if we assume this forward Libor rate
to be lognormally distributed, we can write

dLi(t) = Li(t)
K∑

k=1

σi,k(t)dWi+1,k(t), (2.2)

2All numerical computations (e.g., yield curve construction, model calibration, and rate simulations) were done using
Numerix CrossAsset.
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where each σi,k : R+ → R is bounded and square integrable on [0, TM ], and Wi+1,k(t) represents the
time-t value of a Qi+1-standard Brownian motion. However, the process of this forward Libor will not
be a martingale under a different measure. As in [14], one can model all forward Libor rates using the
rolling spot measure, which is defined with the numeraire

N(t) ≡ P (t, Ti+1)
i∏

k=0

P (Tk, Tk+1)
−1 (2.3)

for t ∈ [Ti, Ti+1]. In this measure, the stochastic differential equation of the forward Libor rate is

dLi(t) = Li(t)
i∑

j=η(t)

(
δjLj(Tj)

1 + δjLj(Tj)

K∑
k=1

σi,k(t)σj,k(t)

)
dt+ Li(t)

K∑
k=1

σi,k(t), dWi+1,k(t), (2.4)

where η(t) = m+ 1 for t ∈ (Tm, Tm+1].

3 The Sample Stochastic Discount Factor
We consider a one-factor LMM with constant volatility, and we assume each forward Libor rate has
a three-month tenor; i.e., δi is approximately three months.3 In this case, the stochastic differential
equation of the forward Libor rate in its relevant measure is

dLi(t) = σiLi(t)dWi+1(t). (3.1)

Let T0 = 0 denote the current time. The current yield curve can be defined through the discount
factor D(0, t) for t ∈ [0, TM ]. In an N -path Monte Carlo simulation where the true measure is replaced
by the sample measure S∗, we can construct a sample stochastic discount factor A(0, t) such that its
expectation equals the discount factor implied from the yield curve; i.e.,

E∗ [A(0, t)] = D(0, t), (3.2)

where E∗ represents the expectation operator under the sample measure S∗.4
Following a martingale normalization method as in [7], we describe how such a sample stochastic

discount factor can be constructed. Let

B(0, Ti) =

i−1∏
j=0

(1 + δjLj(Tj))
−1
,

where the values Lj(Tj) are simulated by using Equation (3.1). For maturity Ti ≥ 0, the sample expecta-
tion E∗ [B(0, Ti)] is computed as the arithmetic average of the results from all paths, 1

N

∑
paths B(0, Ti).

Certainly, this sample expectation does not equal the discount factor for the same maturity; i.e., B(0, t)
does not satisfy (3.2). However, we can rescale B(0, Ti) to force this condition to hold. Indeed, we wish
to find a deterministic ci such that

E∗ [ciB(0, Ti)] = D(0, Ti).

As ci is deterministic, we simply have
ci =

D(0, Ti)

E∗ [B(0, Ti)]
. (3.3)

Thus, Equation (3.2) is obtained if we set

A(0, Ti) = ciB(0, Ti). (3.4)

Table 1 in Appendix A shows a numerical illustration of Equation (3.2) for sample stochastic discount
factors with maturities ranging from three months to five years with quarterly intervals. The sample
stochastic discount factors were created from a 1000-path Monte Carlo simulation.

3This corresponds to setting “Volatility Type” to Flat Volatility and leaving “Correlation Type” empty in Numerix CrossAs-
set. (See, e.g., [12]).

4Numerix CrossAsset has an implementation of such a sample discount factor, called ADP. See, e.g., [5] for details.
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4 The Martingale Test
For the forward Libor rate Li(t), Equation (3.1) holds only in the measure Qi+1. In fact, a drift term
must be added to express (3.1) in any other measure. Therefore, the terminal value Li(Ti) of the
simulation will not be a martingale under the sample measure. Moreover, its distribution might be
unknown.

On the one hand, under the measure Qi+1, the expected value of the forward Libor rate at Ti equals
the yield-curve-implied forward Libor rate maturing at Ti; i.e.,

EQi+1

[Li(Ti)] = Li(0). (4.1)

One the other hand, define
L̃i(Ti) = P (Ti, Ti+1)Li(Ti),

where P (Ti, Ti+1) is the simulated price at Ti of a zero-coupon bond maturing at Ti+1. Let

N∗(t) =
1

A(0, t)

for any time t ≥ 0. By the change of measure technique, we have

E∗

[
L̃i(Ti)

N∗(Ti)

]
N∗(0) = EQi+1

[
L̃i(Ti)

P (Ti, Ti+1)

]
P (0, Ti+1). (4.2)

As N∗(0) = 1 and P (0, Ti+1) = D(0, Ti+1), and using the definition of L̃i, (4.2) can be rewritten as

E∗
[
P (Ti, Ti+1)Li(Ti)

N∗(Ti)D(0, Ti+1)

]
= EQi+1

[Li(Ti)] . (4.3)

Combining Equations (4.1) and (4.3) gives

E∗ [ωiLi(Ti)] = Li(0), (4.4)

where
ωi ≡ A(0, Ti)

P (Ti, Ti+1)

D(0, Ti+1)
.

As ω0 = 1, Equation (4.4) can be rewritten as

E∗ [ωiLi(Ti)] = ω0Li(0). (4.5)

Thus, ωiLi(Ti) satisfies the martingale property under the measure S∗. Therefore, the adjusted simulated
forward Libor rates are martingales under the sample measure. Table 2 in Appendix A shows a numerical
illustration of this property for forward three-month Libor rates with maturities ranging from three
months to five years. This table also shows the expectation of the simulated weights. The results come
from a 1000-path Monte Carlo simulation.

5 The Distribution Test
Equation (4.5) shows how the simulated forward Libor rate Li(Ti) can be adjusted to become a martin-
gale under the sample measure S∗. However, we still do not know its distribution in the sample measure.
Recall the cumulative distribution function of Li(Ti) can be represented as

Fi(x) = EQi+1 [
I{Li(Ti)<x}

]
, (5.1)

where x > 0 and IA represents the indicator function of the set A. Define

Ui(x) = P (Ti, Ti+1)I{Li(Ti)<x}. (5.2)
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By substituting Ui(x) for L̃i(Ti+1) in (4.2), we obtain

E∗
[
Ui(x)

N∗(Ti)

]
N∗(0) = EQi+1

[
Ui(x)

P (Ti, Ti+1)

]
P (0, Ti+1). (5.3)

Again, as N∗(0) = 1 and P (0, Ti+1) = D(0, Ti+1), we have

E∗
[

Ui(x)

N∗(Ti)D(0, Ti+1)

]
= EQi+1

[
Ui(x)

P (Ti, Ti+1)

]
. (5.4)

Using the definitions of Ui(x) and ωi, as in (5.2) and Section 4 respectively, (5.4) becomes

E∗ [ωiI{Li(Ti)<x}
]
= EQi+1 [

I{Li(Ti)<x}
]
. (5.5)

Then Equations (5.1) and (5.5) give

E∗ [ωiI{Li(Ti)<x}
]
= Fi(x). (5.6)

Equation (5.6) shows that the factor ωi adjusts the distribution of the simulated forward Libor
Li(Ti) so that it becomes lognormally distributed in the simulation measure. To illustrate this result,
we perform a Kolmogorov-Smirnov test on the adjusted distribution of each forward Libor rate simulated
in Section 4. Note that for a 1000-point sample, as in our case, the Kolmogorov-Smirnov test has critical
values of 0.051545, 0.043007, and 0.038580 for α levels of 1%, 5%, and 10%, respectively. Appendix
A shows the test statistics for the Kolmogorov-Smirnov test described above. With an α of 10% for
each maturity, we fail to reject the null hypothesis that the adjusted simulated Libor rate is lognormally
distributed in the simulation measure.

Note that (5.6) does not depend on any particular form of the cumulative distribution function, i.e.,
on any assumed distribution. The result holds for any distribution of the underlying Libor rate.

6 Conclusion
In this paper, we construct adjustment factors that transform all LMM-simulated forward Libor rates
into martingales in the simulation measure. We use a one-factor lognormal LMM and find that in the
USD Libor market, the forward three-month Libor rates (up to five years) implied from option-embedded
instruments equal the corresponding forward Libor rates implied from option-free instruments. This
shows that there are almost no arbitrage opportunities in the USD Libor market. Small differences
can be explained by frictions stemming from bid-ask spreads. These adjustment factors also allow us
to transform the distributions of the simulated forward Libor rates to recover the initial lognormal
distribution assumption of our LMM setup. This study can be extended in various directions, including
using different volatility types, changing the initial distribution assumption of the forward Libor rates,
or adding more factors to the LMM. Moreover, the test can be performed on other currency markets.

Acknowledgments
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Appendix A Numerical Results
Here we display the results of the tests we performed. Table 1 shows the results of testing condition
(3.2), Table 2 shows the results of testing the martingale condition (4.5), and Table 3 shows the results
of the Komogorov-Smirnov test for the lognormality of the adjusted simulated forward Libor rate. All
tests were performed with 1000 Monte Carlo paths.
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Date Ti D(0, Ti) E∗ [A(0, Ti)] D(0, Ti)− E∗ [A(0, Ti)]

31-Dec-14 0.00 1.0000000000 1.0000000000 0.0000000000
31-Mar-15 0.25 0.9993614081 0.9993614081 0.0000000000
30-Jun-15 0.50 0.9986095184 0.9986095184 0.0000000000
30-Sep-15 0.75 0.9973844368 0.9973844368 0.0000000000
31-Dec-15 1.00 0.9956225621 0.9956225621 0.0000000000
31-Mar-16 1.25 0.9932188573 0.9932188573 0.0000000000
30-Jun-16 1.50 0.9901739071 0.9901739071 0.0000000000
30-Sep-16 1.75 0.9865333822 0.9865333822 0.0000000000
30-Dec-16 2.00 0.9823806984 0.9823806984 0.0000000000
31-Mar-17 2.25 0.9777345261 0.9777345261 0.0000000000
30-Jun-17 2.50 0.9727683334 0.9727683334 0.0000000000
29-Sep-17 2.75 0.9674839017 0.9674839017 0.0000000000
29-Dec-17 3.00 0.9619691093 0.9619691093 0.0000000000
30-Mar-18 3.25 0.9562668430 0.9562668430 0.0000000000
29-Jun-18 3.50 0.9505420559 0.9505420559 0.0000000000
28-Sep-18 3.75 0.9448515408 0.9448515408 0.0000000000
31-Dec-18 4.00 0.9390091940 0.9390091940 0.0000000000
29-Mar-19 4.24 0.9331238323 0.9331238323 0.0000000000
28-Jun-19 4.49 0.9270659080 0.9270659080 0.0000000000
30-Sep-19 4.75 0.9208495638 0.9208495638 0.0000000000
31-Dec-19 5.00 0.9148058463 0.9148058463 0.0000000000

Table 1: Sample stochastic discount factor test results.

Date Ti E∗ [ωi] Li(0) E∗ [ωiLi(Ti)] Li(0)− E∗ [ωiLi(Ti)]

31-Dec-14 0.00 1.0000 0.0026 0.0026 0.0000
31-Mar-15 0.25 1.0000 0.0030 0.0030 0.0000
30-Jun-15 0.50 1.0000 0.0048 0.0048 0.0000
30-Sep-15 0.75 1.0000 0.0069 0.0069 0.0000
31-Dec-15 1.00 1.0000 0.0096 0.0096 0.0000
31-Mar-16 1.25 1.0000 0.0122 0.0122 0.0000
30-Jun-16 1.50 1.0000 0.0144 0.0144 0.0000
30-Sep-16 1.75 1.0000 0.0167 0.0167 0.0000
30-Dec-16 2.00 1.0001 0.0188 0.0188 0.0000
31-Mar-17 2.25 1.0000 0.0202 0.0202 0.0000
30-Jun-17 2.50 1.0000 0.0216 0.0216 0.0000
29-Sep-17 2.75 1.0000 0.0227 0.0227 0.0000
29-Dec-17 3.00 1.0001 0.0236 0.0236 0.0000
30-Mar-18 3.25 1.0000 0.0238 0.0238 0.0000
29-Jun-18 3.50 1.0000 0.0238 0.0238 0.0000
28-Sep-18 3.75 1.0002 0.0238 0.0238 0.0000
31-Dec-18 4.00 1.0000 0.0258 0.0258 0.0000
29-Mar-19 4.24 1.0000 0.0259 0.0259 0.0000
28-Jun-19 4.49 1.0000 0.0259 0.0259 0.0000
30-Sep-19 4.75 1.0001 0.0259 0.0259 0.0000
31-Dec-19 5.00 1.0000 0.0269 0.0269 0.0000

Table 2: LMM martingale test results.
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Date Ti Test Statistics

31-Mar-15 0.25 0.002316
30-Jun-15 0.50 0.004037
30-Sep-15 0.75 0.004519
31-Dec-15 1.00 0.004379
31-Mar-16 1.25 0.010219
30-Jun-16 1.50 0.009851
30-Sep-16 1.75 0.019725
30-Dec-16 2.00 0.009038
31-Mar-17 2.25 0.006100
30-Jun-17 2.50 0.010026
29-Sep-17 2.75 0.014423
29-Dec-17 3.00 0.007934
30-Mar-18 3.25 0.009531
29-Jun-18 3.50 0.011102
28-Sep-18 3.75 0.013060
31-Dec-18 4.00 0.012425
29-Mar-19 4.24 0.015087
28-Jun-19 4.49 0.016621
30-Sep-19 4.75 0.018845
31-Dec-19 5.00 0.019678

Table 3: Kolmogorov-Smirnov test statistic.
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“Hot-Start” Initialization of the Heston Model
Serguei Mechkov*

Abstract

We suggest a new way of setting up multifactor models with hidden variables. We claim that the standard
initial condition, which assigns some fixed value to the stochastic volatility subprocess, is illogical and
greatly underestimates the effect of the hidden variable. For instance, a stochastic volatility model
generates a significantly weaker implied volatility smile at short maturities. A good initial condition
should specify the distribution of the hidden variable instead of a particular fixed value. The most
straightforward way of initializing a hidden variable is by specifying its equilibrium distribution, which
assumes that this component of the multifactor process has been started well before the observable part.
As a practical example, the Heston model is considered.

1 Introduction
A logical way of making a model more closely fit observed behavior is to augment its dimension by adding
a hidden process that somehow affects the evolution of the principal observable value. The complete
model specification then acquires the parameters of the hidden process and its possible correlation with
the principal process. This also requires describing how the hidden process starts, which is the main
subject of this paper.

The very fact that the process is hidden makes it illogical to assume that its latent variable has some
definite value today as part of the initial conditions of the model. A more logical initial condition is a
distribution of the latent variable based on the previous history of the market. We will refer to this as
a “hot-start” initialization of the process. The market history for the principal observable value may
be known and somehow taken into account or it may be ignored so that the distribution of the latent
variable is simply an equilibrium achieved by the process started some time ago. The parameters of
the implied historical process may be a continuation of the parameters used for the future evolution or
independently adjusted by some calibration. The main point is that the initial condition for the latent
variable should not just be some fixed value, but instead must be a hot-start distribution.

These considerations have already been taken into account by Dragulescu and Yakovenko [2] in
the econometric context for quantitative comparisons of modeled stock distributions against historical
records. Although not totally unnoticed, the hot-start approach seems to have been essentially ignored
by successors (and sometimes even explicitly disregarded as irrelevant [1]). In particular, we are not
aware of any attempt to apply it to pricing market instruments. In this domain, the latent process
is always initialized by a single value that is somehow selected. Even if this value is calibrated by a
best fit to market data, it is still just a number. As a result, the stochasticity of the latent process
is suppressed at short maturities and only takes effect after a certain relaxation time. In our opinion,
hot-start initialization provides a method to better fit the market at all maturities.

2 Reparameterized Heston Model
Below we concentrate on the stochastic volatility latent process. A typical example is the Heston process,
which is the most convenient and popular model of this sort. The original formulation [5] considers a

*Numerix, SVP Quantitative Research, meshkov@numerix.com
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geometric Brownian motion for the stock S and then postulates that the squared instantaneous volatility
of x = logS (denoted v for “variance”) follows the mean-reverting Cox-Ingersoll-Ross (CIR) process:

dxt = rdt− 1

2
vtdt+

√
vtdWx, (2.1)

dvt = a (θ − vt) dt+ κ
√
vtdWv,

⟨dWxdWv⟩ = ρdt.

Leaving aside the trivial deterministic drift r, which is due to market discounting, the Heston process
has four parameters: the long-term mean θ > 0, the reversion speed a > 0 of the variance, the volatility
κ > 0 of the variance, and the correlation −1 ≤ ρ ≤ 1 between the two Brownian motions Wx and Wv.

The presence of the stochastic volatility allows the Heston model to adequately capture the implied
volatility smile of the actual market at longer maturities. It is known, however, (see, e.g., Gatheral [4])
that this smile is unrealistically weak at short maturities. This apparently fundamental property usually
prompts the conclusion that the stochastic volatility approach is intrinsically incapable of producing
strong volatility smiles at short maturities, and therefore the model must include jumps. Such an
extension (e.g., the Bates model) formally fixes the problem, but it also introduces new complexity into
the calibration because of the need to determine the additional parameters related to the jump process.

We stress that the weak smile of the Heston process is not an artifact of the process itself, but rather
reflects the essentially incorrect initialization of the stochastic volatility component by a single initial
value v0. By analyzing the effect of the appropriate hot-start initialization, we show that it can generate
very strong implied volatility smiles at short maturities, suggesting that the Heston model is actually
more powerful in fitting the market than is usually assumed.

The classic Heston parameterization is inconvenient in several respects. The most important problem
is its very poor time-dependent behavior, which only allows very gradual time evolution of the implied
volatility. For flexibility of extensions and a more intuitive connection of the parameters to the implied
volatility surface, we abandon the classic formulation of the Heston model (2.1) and switch to the
mathematically equivalent but more effective parameterization

dxt = rdt− 1

2
ztσ

2dt+ σ
√
ztdWx,

dzt = a ((1− zt) dt+ γ
√
ztdWz) ,

(2.2)

where the CIR process drives a dimensionless stochastic multiplier zt that reverts to 1. This multiplier
enters the Black-Scholes-like diffusion for the log-return xt = log(St) as a scaling factor for the explicit
volatility parameter σ.

Here the speed of reversion a and the correlation ρ between the Brownian motions Wx and Wz are the
same as in the classic formulation. The long-term mean θ is replaced by the volatility of the stock, with
σ =

√
θ, and instead of the volatility of variance κ, we use the relative volatility of the stochastic factor,

γ = a−1θ−1/2κ. In the following, we shall refer to γ as the volatility noise. The volatility noise actually
controls the implied volatility smile at long maturities, whereas the correlation ρ affects the asymmetry
(skew) of the profiles. The convenience of such scaling has been demonstrated in our previous work [7],
where we show that the reparameterized Heston model remains valid even after taking the reversion a
to infinity.

We assume that the evolution starts at t0 = 0 from some arbitrary value x0. The standard “cold-
start” setup also includes the initial value for the stochastic variance factor z0, the simplest default
choice being z0 = 1. An example of the implied volatility surface is presented in Figure 1. As expected,
at short maturities the smile is weak. This is because the fluctuations of the volatility are not fully
active during the initial relaxation period, which is of the order a−1 = 1 here.

3 Choice of the Hot-Start Distribution
The correct choice of the initial distribution of the latent process is vital to the hot-start concept.
Dragulescu and Yakovenko [2] simply postulated zero knowledge of the current state of latent process
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Figure 1: Implied volatility surface for a cold-start (z0 = 1) Heston model.

for the evolution of the stochastic multiplier z, assuming that it has actually started much earlier and
reached its equilibrium Gamma distribution with the density

Fa,γ(z) =
αα

Γ(α)
zα−1 exp [−αz] , (3.1)

α =
2

aγ2
.

by the time t0 = 0 . This straightforward choice may be quite a practical approximation in many cases.
However, a more rigorous setup is also worth discussing.

In reality, some indirect information about the latent part of the process is available through the
known history of the observable path because these components are coupled. Thus, we can expect that
the hot-start distribution may be shifted and somewhat squeezed with respect to the equilibrium one.
The question is how to quantify this effect. In the spirit of standard calibration, we are allowed to
assume that today’s market absorbs historical information and translates it into quotes. Under such
an assumption, it is enough to somehow parameterize today’s distribution of the latent factor and to
calibrate these parameters together with those of the process.

Since the estimation cannot be very accurate in general, it should be sufficient to use only a couple of
parameters related to the moments of the distribution. The “historical” effects we are trying to adapt to
are not able to drastically change the principal features of the distribution. It is therefore most suitable
to use the distribution from the same family as the equilibrium one.

For the Heston model, we suggest the Gamma distribution

F (z) =
zα−1

Γ(α)βα
exp

[
− z

β

]
(3.2)

with two parameters: the shape α and the scale β. The moment generating function is

E[eqz] = (1− βq)
−α

,

and the equilibrium values
α = β−1 = α0 =

2

aγ2
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correspond to the unit average of z,
E[z] = 1,

and the variance
E[(z − z̄)

2
] = αβ2 = α−1

0 =
aγ2

2
.

We introduce two scaling parameters ζ and ω, determined by

α =
α0

ω
,

β =
ζω

α0
,

so that the average value of z and its variance become

E[z] = αβ = ζ

and
E[(z − z̄)

2
] = αβ2 =

ωζ2

α0
= ωζ2

aγ2

2
,

respectively. The idea of this choice of scaling is that the bare equilibrium setting is obtained simply by
setting ζ = ω = 1, and adjusting the average value of z through the ζ parameter does not perturb the
shape α of the distribution.

When the model is applied in the econometric context, we do not usually rely on today’s market
quotes. Instead, we have to explicitly analyze the historical time series by considering the latent distri-
bution to be a result of a long evolution, conditional on the actually recorded history of the observable
variables. An accurate determination of the conditional distribution is a very challenging task. In fact, it
is very close to the maximum likelihood estimation of multifactor process parameters from the historical
market observables. It cannot be accomplished exactly, but there are workable approximations based on
a recursive forward-in-time buildup of a few (e.g., two) of the lowest moments of the distribution. Once
the recursion reaches the end (today), the hot-start distribution can be adjusted to match the obtained
moments. In the case of the Heston process, the derivations are available, for instance, from Hurn et
al. [6] and references therein. The parameterization introduced above is naturally valid for this purpose
as well.

Computational Aspects
The complication introduced by the hot-start initialization to any computational framework is minimal
because the underlying stochastic process remains the same.

The most straightforward is an extension of Monte Carlo simulation. Instead of initializing all the
simulation paths by the same fixed value of the latent variable, the initial value should be sampled
from the adjusted distribution. Essentially, this is equivalent to inserting a special Monte Carlo step at
today’s time node. The statistical accuracy of the pricing should not deteriorate.

In a finite difference scheme, the price is usually obtained by taking the payoff at the spot node of
the lattice after back propagation to today’s time node. For the hot-start evaluation, the payoff must be
collected from the entire projection of the latent variable grid with the given spot value of the observable
variable and averaged with the adjusted distribution.

Analytic pricing of European options is available for the Heston model. The price is usually obtained
as a Fourier representation through the characteristic function of the marginal distribution of the stock
at the option maturity date. As a function of the spot value z0 of the latent stochastic multiplier, the
characteristic function is an exponential of a linear form with coefficients determined by an analytically
solvable Riccati equation. (For derivations, see, e.g., Dragulescu and Yakovenko [2] and, in our notations,
[7].) The hot-start initialization just replaces the exponential by its integral with the Gamma distribution
(3.2). While we do not write the integrand out here, it is clear that the numerical integration workload
remains essentially the same.
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Figure 2: Implied volatility surface for a Heston model with a hot-start initialization
from the equilibrium distribution (3.1).

As an example, for the same process parameters as those used for Figure 1, we applied the hot-
start initialization with the full equilibrium distribution (3.1) and obtained the implied volatility surface
shown in Figure 2. As expected, the surface changes only slightly on the horizons after the relaxation
period a−1, but the smile gets stronger at early maturities and demonstrates a tendency to diverge at
very short ones. This is in striking contrast to the cold-start case, where implied volatility remains finite
in the limit of zero time to maturity T → 0. (See, e.g., [3].)

Note also that the short-maturity smile depends on the reversion speed a. When the reversion spreed
increases, both the cold-start and the hot-start volatility surfaces display more extreme smiles at short
maturities and become indistinguishable in the limit a→ ∞. This behavior was explored in [7]. Figure
3 provides a plot of the implied volatility of a such a fast-reversion Heston model.

Considering the short maturity asymptotic quantitatively, we notice that this limit reduces to pricing
European options by the Black-Scholes model that corresponds to the first SDE in (2.2) with a fixed
value of the factor z and averaging the result over the hot-start distribution (3.2). For a call option on
the stock with spot value S0 and strike K = S0 exp [X + rT ], the Black-Scholes price Cz(X) is

S−1
0 Cz(X) =

e−rT

2π

1√
2πV

∫ +∞

X

exp
[
−
(
x+ 1

2σ
2zT

)2
2σ2zT

] (
ex − eX

)
dx.

In the limit as T → 0, it is enough to work in the main exponential approximation for the Black-Scholes
out-of-the-money price

S−1
0 Cz(X) ≈ exp

[
− X2

2σ2zT

]
and for the tail of Gamma distribution

F (z) ≈ e−z/β .

The resulting average price of the call option

C(X) ≈ S0 exp
[
− X

σ
√
2Tβ

]
is to be compared against the price of the same option under the Black-Scholes model with the implied
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Figure 3: Implied volatility surface for a fast-reversion Heston model (a = ∞).

volatility σ̃,

C(X) ≈ S0 exp
[
− X2

2σ̃2T

]
.

A match is obtained for

σ̃2 = σ

√
β

2T
|X| ,

where we included the symmetric result for in-the-money strikes.
We see that the implied volatility indeed diverges at short maturities as T−1/4. In addition, we see

that, like the fast-reversion limit of the Heston model, the hot-start volatility surface is symmetric on
short maturities. This is natural, because the hot-start distribution effectively comes from the past and
thus is not correlated with subsequent stochastic moves of the stock. Note that only the leading term is
symmetric and the overall smile is significantly skewed even at rather short maturities, as demonstrated
in Figure 4.

4 Concluding Remarks
We see that the effect of hot-start initialization is very significant and suggest that it should be considered
as an essential component of every model that contains latent stochastic factors. Specifically to the
Heston model, we proposed the two-parameter distribution (3.2), which should be easy to calibrate to
market options or to adjust to historical data in the maximum likelihood sense. We wish to stress
once more that, even when there is not enough information to calibrate all parameters, the single-value
initialization of the latent process is still a poor solution compared to the full-equilibrium hot-start
initialization (3.1).

Note that hot-start initialization is also important for the future market scenarios generated by a
multifactor model. At first glance, it appears that every scenario is based on some specific simulation
path, and thus all the state variables are known, including the latent ones. However, using single-value
initialization of the future model will definitely produce an unrealistic implied volatility surface. This is
because, in reality, the future market will not know the latent projections of the simulation path. Thus,
for a more rigorous generation of scenarios, one has to “forget” the simulated trajectory of the latent
variables and to prepare their distribution conditional on the observable trajectory, in the same way as
in the maximum-likelihood-related filtrations.
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Figure 4: Implied volatility surface for a hot-start Heston model with strong correlation
between the stock and the volatility multiplier.
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Negative Rates: The Challenge
and the Opportunity
Ilja Faerman, VP Financial Engineering
Ion Mihai, Quantitative Analyst

Negative interest rates have recently be-
come an important issue in finance, and
pricing methodologies must adjust to this

phenomenon. This article discusses the challenges
that negative rates pose to the financial commu-
nity and how Numerix has innovated to address
these challenges.

An Overview
On January 15, 2015, the Swiss National Bank
(SNB) took the world by surprise by announcing
that it was ending the 1.20 floor on the EURCHF
exchange rate. (It had put the floor in place in
September 2011.) On the same occasion, in a move
meant to ease the pressure on the Franc, the SNB
announced that it was lowering the interest rate
on sight deposits to -0.75% and shifting its target
range for the 3M Libor rate downwards by 50 basis
points to [-1.25%, -0.25%]. While the SNB move
brought negative rates into the headlines, this was
not their first appearance. At its previous press
conference, the SNB set the interest rate to -0.25%
and moved the lower end of its target range for the
3M Libor into negative territory. Since then, the
CHF 3M Libor rate has been negative, as shown in
Figure 1. Before that, the CHF overnight rate had
regularly fixed in the [-0.05%, 0%] range for over
three years. Examples of negative rates abound
for other currencies as well. For the EUR, the
European Central Bank’s (ECB) deposit facility
rate was set at a negative level since Jun 11, 2014,
the overnight EONIA rate and some OIS rates fol-
lowed suit roughly three months later (when the
ECB moved its depo rate further down), and the
EURIBOR 1M rate is now negative. This is shown
in Figure 2. For the DKK, the Danmarks Nation-
albank lowered its interest rate on certificates of
deposit to -0.20% in July 2012, and the rate has

stayed mostly negative since; the Tomorrow/Next
(T/N) rate and the 1M T/N-indexed swap rate
have been negative over roughly the same period.

Figure 1: Historical CHF rate between March 2014
and March 2015.

As recently as six months ago, the major-
ity of market participants would have considered
the emergence of negative rates a temporary phe-
nomenon. However, the current consensus, espe-
cially in light of the SNB’s January 15, 2015 an-
nouncement, is that rates could stay negative for
much longer and could even drop below today’s
levels.

Figure 2: Historical EUR rate between March 2014
and March 2015.

The Challenge
Negative rates impact some of the most basic cal-
culations and procedures used by the financial
community. Two prominent examples are the quo-
tation of option volatilities and volatility smile in-
terpolation models. The widespread convention
for quoting options is to quote them in terms of
implied lognormal volatilities. Underlying the con-
version from price to volatility is the assumption
that the distribution of the rate is lognormal. It is
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a basic mathematical fact that lognormal variables
are positive. Therefore, negative rates make the
conversion from option price to lognormal volatil-
ity impossible. This means that when the market
considers it plausible that a rate will become neg-
ative, a model which prohibits negative rates is
likely to be inappropriate, even if it is only used as
a quoting unit conversion tool.

In light of the negative rates environment, the
market and the main market data providers have
recently embraced two alternatives to the lognor-
mal volatility quotation convention. One is to use
normal volatility, which has been around for many
years. The assumption here is that the underlying
rate follows a normal distribution, which does not
restrict the range of the rate to only positive val-
ues. It can therefore cope with situations where
the forward rate or the strike are negative.

A second alternative, which is becoming widely
popular, is to use shifted lognormal volatilities for
quoting option prices. Here, instead of making the
assumption that the rate is lognormal, one postu-
lates that the rate plus some constant (called the
shift) is lognormal. This has the effect of moving
the lognormal distribution downwards, into neg-
ative territory, by an amount equal to the shift.
The shift thus defines the lower bound of the rate:
for example, with a shift of 2% the rate can go as
low as -2%.

This method is attractive because it is concep-
tually simple and can be implemented with fairly
benign modifications to the existing infrastruc-
ture. Nonetheless, shifted lognormal volatilities
have some disadvantages. One obvious drawback
is that the value of the volatility corresponding to
a given option price depends on the chosen shift.
The shift value is set somewhat arbitrarily, in ac-
cordance with the lowest negative rate perceived
possible at that point in time. If the market situ-
ation then evolves so that rates become even more
negative, then the shift will have to be adjusted
upwards. One implication of this is that the val-
ues of off-the-grid volatility points, which are ob-
tained through interpolation, will possibly change
with the shift (if, as is usually the case, the inter-
polation is done on volatilities).

Another area where negative rates impact ex-

isting standard market practice is smile interpo-
lation models. One of the most widely used of
these models is SABR, which stays nonnegative
for all admissible values of its β parameter. (In
this aspect, the situation is similar to that of the
lognormal model.) When the β parameter is less
than 0.5, the SABR model can reach 0, but its
behavior afterwards is not uniquely defined. This
is exploited in the definition of the free-boundary
SABR model; see The Free-Boundary SABR: Nat-
ural Extension to Negative Rates in this issue of
Numerix Journal. However, another problem with
the SABR model is that, very often, it is imple-
mented through Hagan’s formula [2], which is well
known to produce arbitrage at low strikes. In an
environment where the smile can extend to nega-
tive strikes, this issue renders the model unusable.

The Solution
Starting with version 12.0.3, the Numerix
CrossAsset analytics library supports the new
market practices that have emerged as a response
to the negative rates environment. On the market
data quotation side, both shifted lognormal volatil-
ities and normal volatilities can now be used as in-
puts for cap and swaption surfaces and cubes, and
the underlying rates and strikes are allowed to be
negative. This has also been extended to cap and
swaption instruments themselves, which can now
consume shifted lognormal or normal volatilities
as inputs, or source the volatility from a volatil-
ity surface or cube that is defined with such input
volatility. These cap and swaption instruments
can then be used as calibration instruments for
term-structure models or can be priced by an an-
alytic pricer which, according to the type of the
input volatility, implements the shifted Black for-
mula or the Bachelier formula.

With the newly added input types, market
quotes for option prices can take a variety of
forms: not only standard lognormal volatilities,
normal volatilities, and the newer shifted lognor-
mal volatilities, but also truncated normal volatil-
ities, premiums, and forward premiums. The in-
terface of each of the Numerix CrossAsset objects
that can take one of these market quotes has been
revamped to make it easier to use all of the possible
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types of market quotes. Specifically, the new in-
terfaces have a QUOTE input heading which accepts
the market quote. This input heading is always
paired with a QUOTE TYPE input heading which
can be used to specify the type of market quote
passed into the QUOTE input heading. Depending
on the QUOTE TYPE input, an additional input may
need to be specified to complete the description of
the market quote. For instance, with shifted log-
normal volatilities, QUOTE takes the value of the
quoted volatility, QUOTE TYPE is set to SHIFTED
LOGNORMAL VOL, and an additional input, VOL RATE
SHIFT, is used to hold the value of the shift.

Figure 3: Numerix CrossAsset support for various
quote types.
1. SABR and AKS SABR work naturally with lognormal volatil-

ities.

2. Shifted versions.

3. Free-boundary SABR works naturally with normal volatili-

ties.

Numerix CrossAsset also introduced new en-
hancements for the SABR model in the context
of the negative rates environment. In a devel-
opment that goes hand-in-hand with the intro-
duction of shifted lognormal volatilities, shifts
are now supported. “Shifted” versions of both
the standard SABR model as well as the newer
AKS SABR model, which is based on the work
of A. Antonov, M. Konikov and M. Spector [1],
are available. In addition to the simple exten-
sions with shifts, Numerix CrossAsset now sup-
ports the free-boundary SABR model which na-
tively handles negative rates. (This model was de-
veloped by the same three Numerix quantitative
researchers.) The “shifted” SABR model naturally
works with shifted lognormal volatility inputs; the
free-boundary SABR model naturally works with
normal volatility inputs.
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Numerix Real-World Modeling
Ping Sun, Executive Director, Financial
Engineering
Vladimir Pavlov, VP Financial Engineering

Real-world modeling capabilities are essen-
tial to many applications in finance, in-
cluding economic scenario generation and

counterparty risk. This article introduces the cur-
rent status of real-world modeling in Numerix an-
alytics and outlines the roadmap for the future.

The Real-World vs. the Risk-Neutral
Measure
Derivatives are valued under the so-called risk-
neutral (RN) or pricing measure. Under the RN
measure, the values of all assets grow at the
same instantaneous rate, the risk-free interest rate.
This common-drift property follows from the no-
arbitrage assumption, which forms the cornerstone
of the modern approach to derivatives valuation.

However, this property does not carry over to
real-world asset dynamics. Observable long-term
rates of return show considerable variation across
assets. Risk premia1 are generally linked to an as-
set’s exposure to systematic risks and fundamental
economic parameters such as investor risk prefer-
ences and technology shocks. Risk premia can be
positive or negative, depending on the asset’s re-
lationship with fundamental risk factors and cor-
relations.

Derivatives pricing models are typically cali-
brated to be consistent with the observed prices of
actively traded products. Derivatives are priced in
relative terms. In other words, they are priced in
reference to the prices of other assets. This con-
trasts with the so-called fundamental approach to
valuation, wherein assets are valued by using ex-
pert and/or quantitative assessments of the eco-
nomic nature of asset cash-flows and risk. Due to
the relative nature of risk-neutral valuation, cross-
sectional derivatives pricing data does not contain

explicit information about risk premia. Different
methods and data sources are therefore needed to
extract this information.

The simplest approach to evaluating risk pre-
mia is by using long-term average differences in
asset returns. These can be complemented by or
subjectively adjusted based on expert opinions or
fundamental analysis. In the Numerix risk prod-
uct offering, the results of this type of analysis can
be applied by using the projection curves mech-
anism explained below. The fundamental limita-
tion of this approach is that it does not allow for
stochastic risk premia, which could be an impor-
tant component of the overall market or volatility
risk, especially when forecasting over longer hori-
zons.

Current Numerix Real-World Modeling
Practices

Current Numerix real-world risk and economic sce-
nario generator (ESG) solutions combine existing
Numerix CrossAsset (CA) pricing functionalities
with Excel and MATLAB® supplements.

Risk Premia

In the risk-neutral world, expected returns on any
investment portfolio are the same (locally) as the
risk-free return on the market account. Since no
asset can earn an excess return over the risk-free
investment, risk premia cannot exist under the RN
measure by construction.

Risk premia can be incorporated into projec-
tions from CA risk-neutral hybrids by using the
existing index curve functionality, which allows
for the deterministic shifting of asset value pro-
jections. The effective local risk premia are then
determined as the difference in forward rates im-
plied by the index versus the model curves.

Model Parameter Estimation

Statistical model calibration is an important as-
pect of RW functionality—it enables choosing the
model which gives the best representation of the

1The risk premium is defined as the expected excess return of an asset over the risk-free rate.
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observed historical time-series behavior. Prior to
CA 12.0, this functionality was not native in CA.

Some econometric estimators have been im-
plemented for specific projects outside of CA. A
quasi-maximum likelihood (QML) estimator for
the Heston stochastic volatility (SV) model was
built in Excel. This estimator relied on a simple
approximation of the transition density of the SV
model. Another implementation used an even sim-
pler method–of-moments (MOM) estimator.

Bootstrapping the Index Yield Curve

The risk-neutral measure imposes the local expec-
tations theory on bond returns and cannot account
for either term premia (excess return on bonds of
different maturities) or the time variation in these
premia. The user can, however, overwrite model
rate projections using CA multi-curve functional-
ity. Specifically, it is possible to add deterministic
time-dependent term premia through the projec-
tion curve option on rate indices. When apply-
ing term premia through a projection curve, users
should be mindful of the presence of model-specific
convexity, which causes the forward rates implied
by the valuation date curve and expected future
Libor rates to diverge.

Brute Force (Including
Stochastic-on-Stochastic)

Scenario generation is an important part of RW
modeling and is usually the first step of stochas-
tic modelling for a wide range of applications in
risk and insurance. Generated scenarios are passed
into a second modelling layer comprised of revalua-
tion and optimization models. Assuming a simple
relationship between the RW model state variables
and implied volatilities allows for the conversion of
the generated RW scenarios into simulated mar-
kets which can then be used to revalue the port-
folio and construct the projected distributions of
prices and sensitivities.

Real-World Functionality in Numerix
CrossAsset 12.0 and Beyond
To capture and extend the basic RW functionality
already delivered to clients through custom imple-

mentations outside of CA, the following features
are currently implemented or planned for CA.

Equity and FX Heston Model with
Variance Risk Premium

The Heston model is used extensively in insurance
and capital markets. It allows projecting volatility
over long time horizons while capturing volatility
clustering and generating realistic implied volatil-
ity skew dynamics. Defined as the expected equity
or foreign exchange return in excess of the risk-free
rate, the risk premium is a fundamental quantity
in generating economic scenarios.

In the Numerix formulation of the RW Heston
model, the risk premium is proportional to the un-
derlying stochastic variance rate, with the variance
premium coefficient estimated by a maximum like-
lihood method (MLE).

Stripping the Index Yield Curve

In order for stochastic short-rate models like
Hull–White or CIR to shift future rate projections
away from those implied by the risk-free curve
at the valuation date, the index curve must be
calibrated to match the user input. This is ac-
complished using global optimization and/or boot-
strapping. The final implementation of the boot-
strapping method will depend on the results of sta-
bility and efficiency tests on the calibration proce-
dure.

RW Hybrid Model

To model multiple underlying assets across cur-
rencies in the RW measure, the Numerix hybrid
framework has been adapted to RW modeling and
scenario generation. The RW hybrid will turn off
RN quanto drift adjustments to allow foreign un-
derlyings to grow according to their own risk-free
rates and variance risk premia. Path-wise stochas-
tic discount factors reported via Arrow-Debreu
price (ADP) indices for each currency within the
hybrid framework can be used to check the rele-
vant martingale properties.
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Maximum Likelihood Estimation of Heston
Model Parameters

The main advantages of econometric estimation
for RW modelling are that it guarantees a model
providing the best fit to time-series observations
and that it allows rigorous hypothesis testing on
the model dynamics. Numerix implements QML
for the Heston model in the RW measure. The
MLE is based on approximating the transition
density of the Heston model with the bivariate
Gaussian distribution that matches the first and
second moments of the time-series.

In its current state, the MLE requires an ob-
servable proxy for the volatility. Such proxies may
include VIX or other implied volatility-based mea-
sures when data on liquid options are available
or a time-series of realized volatility constructed
from high frequency data. For cases when reliable
volatility proxies are not available, a filtering pro-
cedure to infer unobserved volatility can be added
in future Numerix releases.

Monte Carlo Greeks

An important part of RW modeling is the cal-
culation of future portfolio value and the corre-
sponding sensitivities. The computation of these
Greeks usually requires repeatedly bumping the
base market and recalculating the value for each
simulated scenario, which is very time consum-
ing. To enhance performance, Monte Carlo (MC)
Greeks can be calculated on-the-fly and concur-
rently with the portfolio PV. The current release of
CA (12.0) delivers on-the-fly calculations of Delta,
Vega, Theta, and Gamma using MC with individ-
ual pricing models in EQ and FX. A similar fea-
ture under the backward finite-difference method
was already available in CA.

Numerix Real-World Roadmap
In addition to working on the planned features,
we are also devising a broader roadmap for RW
functionality in subsequent Numerix releases, from
both a methodology and a modeling perspective.
The goal is to build a complete RW modeling
framework that will fulfill the full range of require-
ments for counterparty risk, market risk, and ESG.

Modeling Risk Premia

The first version of the EQ and FX Heston mod-
els with variance risk premia was delivered in CA
12.0. This functionality will need to be extended
to other EQ and FX models, as well as models for
other asset classes including IR, CMDTY, Infla-
tion and Credit. This extension is necessary for
real-world modelling over longer projection hori-
zons to capture the excess return on holding a risky
underlying.

Modeling Stochastic Volatility Dynamics

Established RN valuation models implemented in
CA are quite different from RW market practice,
especially when it comes to modeling volatility dy-
namics. In particular, GARCH models have been
widely used in risk applications in the market. Al-
though a large number of GARCH implementa-
tions are publically available, none are available in
CA.

The following ARCH models deserve consider-
ation:

• GARCH and EGARCH,

• TGARCH, GJR-GARCH: incorporating
asymmetric volatility response to positive
vs. negative news,

• GARCH–M: incorporating the variance pre-
mium in the mean dynamics under GARCH.

Time Series Analysis Tools

MLE for the RW Heston model is available in CA
12.0. CA also provides access to Kalman filter
methods in the context of extracting seasonality
from historical CMDTY data. In general, a more
complete set of time series analysis tools is re-
quired, including:

• MLE,

• Generalized Method of Moments (GMM),

• Kalman Filter,

• Copula models of dependence.
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More than one method can be combined in
a multi-asset cross-currency hybrid in order to
achieve more reliable and stable estimation of
the model parameters. There are also model-
specific features involved in the application of
these schemes.

Model Calibration to a User-Specified
Mean and/or Distribution of Financial
Quantities

CA currently lacks the capability to calibrate a
model to match any of several user-specified finan-
cial quantities. These user-specified projections
may include future yields (delivered in 12.0), ex-
pected mean return, percentiles, and other param-
eters of the return distribution or any other quan-
tities relevant to the user’s view of the future state
of the market. These projections may cover both
price and volatility scenarios.

This functionality would to some extent be
similar to the time-series analysis tools. However,
there would be more flexibility for users to specify
the required projections beyond time series from
the historical data.

Some work has been done in this direction
in the so-called external calibration functionality.
This needs to be developed further and extended
in scope.

Consumption of RW Modeling

Generating RW scenarios is just one of the pur-
poses of RW modeling. In the risk space, many
quantities are computed under the RW measure,
including PFE, VaR, and Expected Shortfall. Ul-
timately, Numerix will need to build a RW pricing
tool in CA to consume the RW models and RW
scenarios. The challenge is that some common RN
assumptions will need to be revised. The result
will be closer to the multicurve framework, which
RN pricing is moving towards.
�
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