VOLATILITY CONVERSION CALCULATORS

PATRICK S. HAGAN
BLOOMBERG
499 PARK AVENUE
NEW YORK, NY 10022
PHAGAN1@BLOOMBERG.NET

Abstract. We provide the formulas needed to translate from absolute (normal) volatilities to Black (log normal) volatilities. For good measure, we then give the formulas to convert CEV volatilities into Black and absolute volatilities.

Key words. equivalent vol, deterministic vol, smile

1. Conversion between log normal and normal vol. Black’s model is

\[dF = \sigma_B F dW, \quad F(0) = f \]

where \(f \) is today’s forward swap/caplet rate and where \(\sigma_B \) is the implied Black (log normal) volatility. The normal model is

\[dF = \sigma_N dW, \quad F(0) = f \]

where \(\sigma_N \) is the “normal” or “absolute” or “bps per year” volatility.

1.1. Calculating normal vol from log normal vol. For a swaption with strike (fixed rate) \(K \), the normal volatility \(\sigma_N \) (which gives the same price of the option) as the log normal volatility \(\sigma_B \) is:

\[\sigma_N = \sigma_B \left(\frac{f - K}{\log f/K} \right) \frac{1}{1 + \frac{1}{24} \left(1 - \frac{1}{120} \log^2 f/K \right) \sigma_B^2 \tau + \frac{1}{5760} \sigma_B^4 \tau^2} \]

where

\[f = \text{current forward swap or caplet rate}, \]
\[K = \text{option’s strike (fixed rate)}, \]
\[\tau = \text{time to exercise (notification) date in years}, \]

We probably should dispense with the

\[\frac{1}{120} \log^2 f/K \quad \text{and} \quad \frac{1}{5760} \sigma_B^4 \tau^2. \]

They are too small to add measureably to the accuracy.

When \(f \to K \), the above formula goes to a “0 over 0.” To avoid this complication, we should use the alternative formula

\[\sigma_N = \sigma_B \sqrt{f/K} \left(\frac{1 + \frac{1}{24} \log^2 f/K}{1 + \frac{1}{24} \sigma_B^2 \tau + \frac{1}{5760} \sigma_B^4 \tau^2} \right) \]

when

\[\left| \frac{f - K}{K} \right| < 0.001. \]
1.2. Calculating normal vol from log normal vol. Now suppose we are given an absolute (normal) vol, and the user wants the equivalent log normal (Black) vol. For consistency, we need to invert 1.2a exactly. This should be done using a global Newton method. Let us re-write 1.2a as

\[H(\sigma_B) = \sigma_N, \] (1.5)

where

\[H(\sigma_B) = \sigma_B \frac{f - K}{\log f/K} \cdot \left(1 + \frac{1}{24} \left(1 - \frac{1}{120} \log^2 f/K \right) \sigma_B^2 \tau + \frac{1}{5760} \sigma_B^4 \tau^2 \right). \]

The problem is to find \(\sigma_B \) when the normal vol \(\sigma_N \) is given. One should start with an initial guess of

\[\sigma_B \approx \sigma_N \frac{\log f/K}{f - K} \cdot \left\{ 1 + \frac{1}{24} \left(1 - \frac{1}{120} \log^2 f/K \right) \frac{\sigma_N^2 \tau}{f/K} \right\} \]

if \(\left| \frac{f - K}{K} \right| \geq 0.001 \)

\[\sigma_B \approx \frac{\sigma_N}{\sqrt{f/K}} \left[1 + \frac{1}{24} \log^2 \frac{f}{K} \right] \]

if \(\left| \frac{f - K}{K} \right| < 0.001 \)

Only one, or possibly two, Newton steps will be needed. In the Newton scheme, the derivative can be approximated by

\[H'(\sigma_B) = \frac{f - K}{\log f/K}, \]

if \(\left| \frac{f - K}{K} \right| \geq 0.001 \)

\[H'(\sigma_B) = \frac{1}{\sqrt{f/K}} \]

if \(\left| \frac{f - K}{K} \right| < 0.001 \)

2. Converting CEV vols to absolute or Black volatilities. Another popular skew model is the CEV model:

\[dR = \alpha R^\beta \] (2.1a)

where

\[\beta = \text{user input CEV exponent}, \quad 0 \leq \beta \leq 1. \]

2.1. Converting between CEV vol and normal vol. To convert the CEV vol \(\alpha \) into a normal (absolute) vol, one can use

\[\sigma_N = \alpha \left(1 - \beta \right) \frac{f - K}{f^{1-\beta} - K^{1-\beta}} \cdot \frac{1}{1 + \frac{1 - 2^\beta + \beta^2}{120} \log^2 f/K \beta (2 - \beta) \alpha^2 \tau} \]

\[\cdot \frac{1}{1 - \frac{(1-\beta)^2}{12} \log^2 f/K \cdot 24(fK)^{1-\beta}} \]

When \(f \) is very near \(K \), or when \(\beta \) is very near 1, one needs to replace the formula with one that doesn’t have the singularity at \(\beta = 1 \) or \(f = K \). To cover both possibilities, we replace the above formula with

\[\sigma_N = \alpha (fK)^{\beta/2} \cdot \frac{1}{1 + \frac{1}{24} \log^2 f/K} \]

\[\cdot \frac{1}{1 + \frac{1 - 2^\beta + \beta^2}{120} \log^2 f/K \beta (2 - \beta) \alpha^2 \tau} \]

\[\cdot \frac{1}{1 - \frac{(1-\beta)^2}{12} \log^2 f/K \cdot 24(fK)^{1-\beta}} \]
when

\[(2.2c) \quad (1 - \beta) \frac{|f - K|}{K} < 0.001\]

To convert the normal vol σ_N into a CEV vol, we should again use a global Newton method, to solve

\[(2.3a) \quad H(\alpha) = \sigma_N.\]

Here,

\[(2.3b) \quad H(\alpha) = \frac{(1 - \beta)(f - K)}{f^{1-\beta} - K^{1-\beta}} \cdot \frac{1}{1 + \frac{1 - 2^{2-\beta+\beta^2}}{120} \log^2 f/K \beta(2 - \beta) \alpha^2 \tau} \cdot \frac{1}{1 + \frac{1 - 2^{-\beta/2}}{24} \log^2 f/K \frac{\beta(2 - \beta) \alpha^2 \tau}{120 \log^2 f/K}} \cdot \frac{1}{1 + \frac{1 - 2^{-\beta/2}}{24} \log^2 f/K \frac{\beta(2 - \beta) \alpha^2 \tau}{120 \log^2 f/K}}

if \((1 - \beta) \frac{|f - K|}{K} \geq 0.001 \)

and

\[(2.3c) \quad H(\alpha) = \alpha fK^{\beta/2} \cdot \frac{1 + \frac{1 - 2^{-\beta}}{24} \log^2 f/K \frac{\beta(2 - \beta) \alpha^2 \tau}{120 \log^2 f/K}} {1 + \frac{1 - 2^{-\beta/2}}{24} \log^2 f/K} \cdot \frac{1}{1 + \frac{1 - 2^{-\beta/2}}{24} \log^2 f/K \frac{\beta(2 - \beta) \alpha^2 \tau}{120 \log^2 f/K}} \cdot \frac{1}{1 + \frac{1 - 2^{-\beta/2}}{24} \log^2 f/K \frac{\beta(2 - \beta) \alpha^2 \tau}{120 \log^2 f/K}}

if \((1 - \beta) \frac{|f - K|}{K} < 0.001 \)

A superb initial guess is

\[(2.4) \quad \alpha \approx \frac{\sigma_N}{fK^{\beta/2}} \cdot \frac{1 + \frac{1 - \beta}{24} \log^2 f/K \frac{\beta(2 - \beta) \sigma_N^2 \tau}{120 \log^2 f/K}} {1 + \frac{1 - \beta}{24} \log^2 f/K \frac{\beta(2 - \beta) \sigma_N^2 \tau}{120 \log^2 f/K}}\]

As above, the derivative for Newton’s method can be taken as

\[(2.5a) \quad H'(\alpha) = \frac{(1 - \beta)(f - K)}{f^{1-\beta} - K^{1-\beta}}.\]

\[(2.5b) \quad H'(\alpha) = (fK^{\beta/2}).\]

2.2. Converting CEV vol to log normal vol. To convert the CEV vol α to a log normal (Black) vol, one should first translate it to the normal vol σ_N, and then use the above routine to calculate the Black vol σ_B from the normal vol σ_N.

Similarly, to convert the Black vol σ_B to the CEV vol σ, one uses the above routines to first translate it to a normal vol σ_N, and then translate the normal to the Black vol.
bloomberg.com

Frankfurt +49 69 92041 0
Hong Kong +852 2977 6000
London +44 20 7330 7500
New York +1 212 318 2000
San Francisco +1 415 912 2960
São Paulo +55 11 3048 4500
Singapore +65 6212 1000
Sydney +61 2 9777 8600
Tokyo +81 3 3201 8900

Press the <HELP> key twice for instant live assistance.