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Introduction



What is a model?

Two types of financial assets:

◮ Liquid assets whose price is directly observable in the market.

◮ Futures, e.g. commodities (oil, gas, etc.) and indices (SPX)
◮ Interest rate swaps

◮ Instruments for which the price is not directly observable in the
market

◮ Financial derivatives - products related to the performance of simpler
assets

◮ Complex financial products, e.g.

Pricing the second type of products requires a model

Models express derivatives prices in terms of simpler liquid instruments,
possibly also introducing unobservable parameters



Examples

1. Local volatility model. Calibrate to vanilla options on a given stock
S(t) with all strikes and maturities - liquid observable instruments.
The resulting model can price any European payoff

Payoff = f (S(t))

The set of all vanilla calls and puts gives the terminal distribution of
the asset (e.g. stock price) at any given maturity t

2. Pricing CMS products by replication. Calibrate the model to prices
of European swaptions with all strikes at a given maturity T and
tenor τ .

The model can price any payoff depending on the swap rate S(T , τ),
e.g. CMS swaps, CMS caps/floors.



Model risk

Model risk: assume that several models can be calibrated such that they
price perfectly a set of liquid instruments, but produce different prices for
the same exotic product. The spread of the prices among different
models is a measure of the model risk.

Is there a unique “correct” model? If not, how do we measure model risk?



Model risk

In July 2009 the Basel Committee on Banking Supervision mandated [3]
that financial institutions quantify model risk.

Two types of model risk should be taken into account:

◮ The model risk associated with using a possibly incorrect valuation

◮ The risk associated with using unobservable calibration parameters

How to quantify the model risk associated with a possibly incorrect
valuation?



More on model risk

How is the model used?

◮ Just valuation, or are we also going to use the model for hedging?
The latter case requires stable and accurate greeks.

◮ Does the model capture the correct dynamics? For example,
European options require only the terminal distribution, which can
be obtained from vanilla options.

◮ More complex dynamics may be needed. For example, a forward
starting option (e.g. cliquet for equities) must describe the correct
joint smile-forward dynamics.

Do we use the correct input data? I will assume this as given.



Regulatory mandates: OCC Bulletin 2011-12

Supervisory Guidance on Model Risk Management

1. Model risk should be managed like other types of risk: banks

should identify the sources of that risk, assess its magnitude,

and establish a framework for managing the risk.

2. Banks should objectively assess model risk using a sound

model validation process, including evaluation of conceptual

soundness, ongoing monitoring, and outcomes analysis.

3. A central principle for managing model risk is the need for

“effective challenge” of models: critical analysis by objective,

informed parties who can identify model limitations and

assumptions and produce appropriate change.



Types of Model Validation

1. Examine the theoretical assumptions of the model and check
soundness of model, e.g. absence of arbitrage.
2. Test run the front office implementation:

◮ Test pricing under different market conditions (stress-testing)

◮ Under what conditions does it calibrate?

◮ How stable are the prices and Greeks?

3. Check the performance of the model in the front office
implementation:

◮ Backtesting of hedging performance under historical market
conditions

◮ Compare performance of the model against alternative models used
for same product

4. Replicate the model under a different simulation method (Monte
Carlo) and check pricing and calibration
5. Compare against limiting cases where exact or approximative solutions
are available.



Model Validation for Interest Rate Products

◮ Brief introduction to interest rate modeling

◮ Types of interest rate derivatives

◮ Model validation for interest rates derivatives

◮ New issues post-2008



Types of interest rates

◮ Treasury rates: rates implied by the US government bonds and
T-bills

◮ Inter-bank rates: LIBOR (USD, GBP), Euribor (EUR)
“The rate at which an individual Contributor Panel bank could

borrow funds, were it to do so by asking for and then accepting

inter-bank offers in reasonable market size, just prior to 11:00

London time.”

◮ Swap rates. Effective rate used for a periodic payment over a longer
time (2Y-30Y)

◮ Unsecured overnight lending rates:

◮ Federal Funds rate (USD),
◮ EONIA (Euro OverNight Index Average),
◮ SONIA (Sterling OverNight Index Average),
◮ SARON (Swiss Average Rate Overnight),
◮ Mutan (same for JPY)



The yield curve

Naively, all these rates should be obtainable from a common yield curve.
This could be defined for example as the zero rate curve R(t).
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Different rates

3 month T-Bill and Libor rates.
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Libor-OIS spread

The Libor - OIS spread is a measure of the stress in the money markets.
A high spread indicates decreased willingness to lend by major banks,
while a lower spread indicates higher liquidity in the markets.
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Overnight rate secured by Treasuries
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A multiplicity of curves

◮ All rates can be derived from a single yield curve only if all cash
flows are free of default risk, and if we are guaranteed to be able to
borrow at the respective rate (liquidity)

◮ Historically credit and liquidity issues have been considered
insignificant for inter-bank lending.

◮ The credit crunch changed the market’s perception, and banks are
now more conservative about the possibility of other banks’ default,
and their own funding cost

◮ These risks are now being realized. They introduce spreads among
different rates, which are not related anymore (e.g. Libor - OIS
spread)

◮ Model validation of these curves: data sourcing, curve construction.



Interest rate modeling

◮ The need to hedge against changes in the interest rates contributed
to the creation of interest rate derivatives.

◮ Corporations, banks, hedge funds can now enter into many types of
contracts aiming to mitigate and/or exploit the effects of the
interest rate movements

◮ Well-developed market. Daily turnover for1:

◮ interest rate swaps $295bn
◮ forward rate agreements $250bn
◮ interest rate options (caps/floors, swaptions) $70bn

◮ This requires a very good understanding of the dynamics of the
interest rates markets: interest rate models

◮ A good interest rate model should reproduce the observed dynamics
of the interest rates, in a way which is compatible with the most
liquid instruments

1The FX and IR Derivatives Markets: Turnover in the US, 2010, Federal Reserve
Bank of New York



Setup and definitions
Consider a model for interest rates defined on a set of discrete dates

0 = t0 < t1 < t2 · · · tn−1 < tn

In the simplest setting, there is one yield curve at each time point,
defined by the zero coupon bonds Pi ,j

Definition
Zero coupon bond P(ti , tj): price of bond paying $1 at time tj , as
observed at time ti

Li (ti ) = Libor rate set at time ti for the period (ti , ti+1)

Li (ti ) =
1

τ

( 1

P(ti , ti+1)
− 1

)

...0

L i

1 i i+1 n...



Interest rate products

◮ Curve instruments. Can be priced off the yield curve(s) alone

◮ Forward rate agreements (FRA)
◮ Vanilla swaps

◮ Non-callable options. Require models which capture the volatility

◮ Caps and floors
◮ CMS swaps
◮ Spread options
◮ Range accruals

◮ Callable derivatives: one party can exercise optionality to enter or
cancel

◮ Swaptions: options on swaps
◮ European swaptions (one call date)
◮ Bermudan (multiple call dates)



Model validation for curve products

The curve products are priced off the yield curve. Model validation
should validate the curve construction. This should verify that the
calibration instruments are correctly repriced.

There is a wide variety of curve construction methodologies, differing in

◮ Choice of instruments

◮ Interpolation and extrapolation techniques

◮ Bootstrapping methodology

The yield curve is constructed from the following instruments

◮ Cash (O/N , 1M , 3M , 6M , 12M): floating rate reset information

◮ Money-market futures (e.g. 3M Eurodollar futures): Most liquid
short rates

◮ Fixed-Floating Swaps: Most liquid long-term rates

◮ Basis Swaps: Long-term basis information

◮ FRAs and Short Swaps: Short-term basis information



Simplest interest rate product: vanilla swap

One of the most common interest rate products: swap

Floating leg: Pays/receives the amount (Li + spread)τi at times ti+1,
where Li is set at times ti . Accrual time τi = ti+1 − ti
Fixed leg: Receives/pays Kτi where K is a fixed rate, agreed upon in
advance

Pricing an interest rate swap - single curve pricing

floating0

L i

... ... ni+1i1

fixed

Swap Present Value = ΣN
j=1P(0, tj+1)(L

fwd
j + s)τj − KΣN

j=1P(0, tj+1)τj

Both Lfwd
j and P(0, t) are obtained from the same curve



Pricing under collateral agreements

After the 2008 credit crisis, banks started requesting collateral. This
modifies the pricing of derivatives.

collateral

Bank Counterparty

interest on collateral

Collateral agreements are regulated by CSA (Credit Support Annex)
agreements. Typically a CSA agreement will specify the following events:
1. If the net present value of the trade for Bank is positive, it posts a
collateral call in the amount of the trade value MtM

2. Counterparty (CP) posts collateral in the amount MtM

3. Bank pays interest on the collateral back to the CP at the overnight
cash rate.

The collateral rate is the greater of 0% and the Federal Funds Overnight Rate. For the purposes hereof, ”Federal Funds

Overnight Rate” means, for any day, an interest rate per annum equal to the rate published as the Federal Funds

Effective Rate that appears on Reuters Page FEDM or on Bloomberg Page FEDL01 for such day.

4. If counterparty default occurs, Bank takes ownership of collateral



Pricing under collateral agreements
A general treatment was given by Piterbarg (2010). Here we illustrate
the idea on a very simple example: fixed cash flow of $1 paid at T .
What is the value P of this cash flow at time t < T?
Assume that the bank can invest cash at the funding rate rF , and pays
interest on the collateral at the OIS rate rOIS

Without collateralization: the value of the cash flow must be such that
we get back one dollar at time T by investing at the funding rate

PNC (1 + rF τ) = 1

PNC =
1

1 + rF τ T

$1

t
With collateralization: the value of the cash flow is such that by investing
it at the funding rate we get back the dollar, plus the funding rate
accrued on the collateral, minus the interest paid back to the
counterparty

1 + (rF τ)PC − (rOISτ)PC = (1 + rF τ)PC

PC =
1

1 + rOISτ OIS

$1

t T

τr

−r τ
F



Discounting at the OIS rate

Conclusion: In the presence of collateralization, cash flows must be
discounted at the rate paid on the collateral (OIS rate), instead of the
funding rate rF

The construction of the yield curve must take this into account. A dual
curve approach is used (Bianchetti (2009))

◮ Projection curve: determines the forward rates - Libor 1M, 3M, 6M,
etc. Determined from basis swaps, e.g. a 10Y 6x3s swap exchanges
Libor6M for Libor3M + spread for 10 years.

◮ Discounting curve: gives the discount factors. Can be determined
from OIS swaps. In USD we have OIS swaps up to 10Y, and
FedFunds vs Libor3M basis swaps up to 30Y. In GBP and EUR, we
have OIS quoted to 30Y.

Additional complications when the collateral can be posted in multiple
currencies. Multiple discount curves, must deal also with the optionality
of collateral ccy.



Vanilla swap pricing - post-2009
Floating leg: The Libor rate Li is computed from the projection curve

Li =
1

τi

( 1

P
proj
i ,i+1

− 1
)

Both the floating and fixed coupons are discounted using a common

discounting curve - constructed from the OIS swaps

Pricing an interest rate swap - dual curve pricing

floating0

L i

... ... ni+1i1

fixed

Multiple curves. Bianchetti (2009)

◮ Projection curve: 1M, 3M, 6M, tenor-specific

◮ Discounting curve: single OIS curve



Interest rate options

Simplest interest rate derivatives which are sensitive to rates’ volatility:
caplets and floorlets

Caplet on the Libor Li with strike K pays at time ti+1 the amount

Pay = max(Li (ti ) − K , 0)

Similar to a call option on the Libor Li

Caplet prices are parameterized in terms of caplet volatilities σi via the
Black caplet formula

Caplet(K ) = P0,i+1CBS(Lfwd
i ,K , σi , ti )

Analogous to the Black-Scholes formula.



Swaptions
European swaptions: can decide at time t1 whether to enter into swap
(t1, tn).

floating0

L i

... ... ni+1i1

fixed

Example: payer swaption

Swaption Present Value = At1,tn(0)EA[(S t1,tn(t1) − K )+]

where At1,tn(0) is the annuity associated with the swap, and S t1,tn(t) is
the swap rate, defined as

At1,tn(t) ≡ Σn
j=1P(t, tj)τj

S t1,tn(t) =
P(t, t1) − P(t, tn)

At1,tn(t)

The expectation value is taken in the annuity (swap) measure, with
numeraire At1,tn(t)



Types of interest rate models

Construct an interest rate model compatible with a given yield curve P0,i

and caplet/swaption volatilities σi (K )

1. Short rate models. Model the distribution of the short rates Li (ti ) at
the setting time ti .

◮ Hull, White model - equivalent with the Linear Gaussian Model
(LGM)

◮ Markov Functional Models - can reproduce a given swaption/cap
smile

2. Forward rate models: Heath-Jarrow-Morton (HJM) models

◮ Generic HJM model with 1-, 2-, 3-factors.

◮ Markovian HJM models: Sankarasubramanian-Ritchken, or Cheyette
models

3. Market models. Describe the evolution of individual forward Libors
Li (t)

◮ Libor Market Model, or the BGM model.



Short rate models

Short rate models are defined by the process for the short rate r(t).

Hull-White model. Equivalent to the Linear Gaussian Model (LGM) of
Hagan and Woodward (2001).
Normally distributed short rate

dr(t) = σ(t)dW (t) + (a(t) − b(t)r(t))dt

Used for simple products, such as Bermudan swaptions. Can be
calibrated efficiently to today’s curve, and caplet or swaption volatilities.

Shortcomings

◮ No correlation among rates of different tenors. Can be remedied by
adding more factors.

◮ No skew control. The model has normal smile.

◮ Can not reproduce more than one line/column of the swaption
volatility matrix



Issues with short rate models

Can only calibrate to a limited number of volatility instruments, because
of a limited number of free adjustable parameters. Possible choices:

◮ Caplets on consecutive non-overlapping periods. Appropriate for
caps/floors, instruments sensitive only to the terminal distributions
of Libors on their setting dates, but not their correlations.

10 i i+1 n... ...

◮ Co-terminal swaptions. Appropriate for Bermudan swaptions.

10 i i+1 n... ...

◮ Swaption volatilities with same term, different expiries. Appropriate
for CMS flows, CMS caps/floors.

Difficult to use for pricing a big portfolio, containing products of different
types. Model validation should determine region of validity.



HJM type models

Fundamental variable: forward short rate f (t,T )

General dynamics of the forward short rate in the HJM model

df (t,T ) = σf (t,T , f )dW (t) + µ(t,T , f )dt

Used for path dependent products, such as multi-callable exotics. Can be
calibrated efficiently to today’s curve, and caplet or swaption volatilities.

◮ A general HJM model is not Markovian: the future evolution of the
rates depends on the past - “memory effect”. The short rate r(t)
depends on the Markov driver W (t) at all times prior to t

◮ Skew can be controlled through the choice of σf (t,T , f )

◮ An HJM model reduces to a short rate model (Markov) provided
that the volatility factorizes σf (t,T ) = σ1(t)σ2(T )



Multi-factor HJM models

More realistic models: include correlation structure among forward rates
with different maturities Ti

The shape of the forward curve is driven by several Brownian drivers,
each controlling a different feature of the curve

dt f (t,T ) = Σiσi (T − t)dWi (t) + ( drift )dt

1

Bending mode

Shift mode

Tilt mode

σ3(T− t)

σ2(T− t)

σ



Libor market models

The forward instantaneous rates f (t,T ) are not directly observable in the
market
Formulate the model in terms of the future Libor rates Li (ti ) = forward
Libor rate for the period (ti , ti+1)

Li (t) =
1

τ

( Pt,ti

P(t, ti+1)
− 1

)

...0

L i

1 i i+1 n...



The natural (forward) measure

Each Libor Li has a different “natural” measure Pi+1

Numeraire = Pt,i+1, the zero coupon bond maturing at time ti+1

...0

L i

1 i i+1 n...

The forward Libor Li (t)

Li (t) =
1

τ

( Pt,i

Pt,i+1
− 1

)

is a martingale in the Pi+1 measure

Li (0) = Lfwd
i = E[Li (ti )]

This is the analog for interest rates of the risk-neutral measure for equities



Simple Libor market model

Simplest model for the forward Libor Li(t) which is compatible with a
given yield curve P0,i and given caplet volatilities σi

Log-normal diffusion for the forward Libor Li(t): each Li (t) driven by its
own separate Brownian motion Wi (t)

dLi(t) = Li (t)σidWi(t)

with initial condition Li (0) = Lfwd
i , and Wi (t) is a Brownian motion in

the measure Pi+1

Problem: each Libor Li (t) is described in a different measure.

We would like to describe the joint dynamics of all rates in a common
measure.



Libor market model

Choosing the terminal measure with numeraire P(t, tn)

dLi(t)

Li (t)
= σi (t)dWi (t) − Σk>iσi (t)σk (t)ρik

Lk (t)τk
1 + Lk(t)τk

dt

The correlation matrix ρij is usually provided as an exogenous (external)
parameter.
Example: Rebonato parameterization

ρij = ρ∞ + (1 − ρ∞) exp
(

− βe−γ min(ti ,tj )|ti − tj |
)

The number of factors is chosen such that main components of the
correlation structure among rates are reproduced
Calibration: finding the Libor volatilities σi (t), e.g. using the cascade
algorithm of Brigo, Mercurio.
The LMM can calibrate to the entire swaption volatility matrix, since
there are more free parameters for calibration. This is better suited as a
pricing engine at portfolio level.



Practical implementation of the models



Model implementation

◮ How are the models used in practice?

◮ In a few cases we have analytical solutions

◮ Linear Gaussian Model (HW): explicit formulas for zero coupon
bonds

◮ Small volatility approximation in the LMM: Rebonato approximation
for swaption volatilities

◮ Generally numerical solutions are necessary

◮ Three main approaches:

◮ Monte Carlo implementation
◮ Tree implementation
◮ Finite difference methods



Monte Carlo methods

Statistical approach

◮ Simulate paths for the Brownian motions Wi (t) driving the
quantities of the model, e.g. short rate r(t) or the forward Libors
Li (t) for the LMM

◮ Solve the evolution equations (SDEs) of the model for zero coupon
bonds, Libors, swap rates, etc. along each path. They can be
discretized using Euler scheme, predictor-corrector scheme, etc.

Li (t + τ) = Li (t) + σi (t)∆Wi (t) + µi (t)∆t

◮ Compute the discounted cash flows along each MC path

◮ Compute the present value and its standard deviation
PV = V ± Verr of the product by averaging over paths

V = 〈V 〉 , Verr =
1√

N − 1

√

〈V 2〉 − 〈V 〉2 ≃ 1√
N



Tree implementations

Example: Black-Derman-Toy model. This is a short rate model.
Describe the joint distribution of the Libors Li(ti ) at their setting times ti

n−1

0

L i

1 i i+1 n... ...

L L L L0 1 n−2

Libors (short rate) Li(ti ) are log-normally distributed

Li (ti) = L̃ie
σix(ti )−

1
2σ

2
i ti

where L̃i are constants to be determined such that the initial yield curve
is correctly reproduced (calibration)

x(t) is a Brownian motion. A given path for x(t) describes a particular
realization of the Libors Li (ti)



BDT tree - Markov driver x(t)

0

+1

−1

+2

0

−2

�
�

�

Q
Q

Q

�
�

�

Q
Q

Q

�
�

�

Q
Q

Q

-

0 1 2

t

Inputs:

1. Zero coupon bonds P0,i

Equivalent with zero rates Ri

P0,i =
1

(1 + Ri)i

2. Caplet volatilities σi



BDT tree - the short rate r(t)
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zero coupon prices are
correctly reproduced

Zero coupon bonds P0,i

prices

P0,i = E

[ 1

Bi

]
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B0 = 1

B1 = 1 + r(1)
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Finite difference methods

Any stochastic differential equation is equivalent with a PDE, similar to
the diffusion equation

dX (t) = σ(X (t), t)dt + µ(X (t), t)dt

Knowing the distribution of X at time t = 0, its distribution f (X , t) at a
later time t is given by the solution of the Fokker-Planck (Kolmogoroff
forward equation)

∂t f (X , t) = −∂X [µ(X , t)f (X , t)] +
1

2
∂2

X [σ2(X , t)f (X , t)]

Can be solved numerically on a grid using a variety of methods: explicit,
implicit, Crank-Nicholson.



Numerical implementations of the models

◮ Finite difference methods

◮ Fast and numerically efficient
◮ Can be applied only to Markov models (all model quantities are

state-dependent, but not path-dependent), with a limited number of
factors. E.g. Vasicek-Hull-White models, Cheyette model, but not
general HJM or LMM models

◮ Numerical instabilities must be carefully avoided

◮ Tree methods

◮ Fast and numerically efficient
◮ Process specific: model changes can be difficult to accomodate. E.g.

adding mean reversion to the BDT model requires re-designing the
tree.

◮ Can become very complex - e.g. willow trees.

◮ Monte Carlo methods

◮ Versatile, generally applicable.
◮ Computationally intensive
◮ Callable features require special attention: Longstaff-Schwartz

method



Model implementation for model validation

In my own experience, Monte Carlo is the most convenient
implementation method for the purposes of model validation of interest
rates models and products

◮ Often encountered statement: MC can not deal with rates models
where we do not have closed form results for discount factors, zero
coupon bonds. Not true.

◮ Monte Carlo implementations are flexible and easy to modify, so as
to explore possible model modifications.

◮ The calibration is more difficult. Work with the front office desk to
expose calibration results, and validate them. Use them as inputs
into the validation model, and reproduce the calibration instruments.

◮ Calculation speed may be slower, but this is not an issue for model
validation.



Monte Carlo implementation of the BDT model

The Libors Li (ti ) are log-normally distributed in the spot measure

Li (ti ) = Lfwd
i eσi (x(ti )+δi )−

1
2σ

2
i ti

where δi are constants to be determined such that the initial discount
factors P(0, t) are correctly reproduced (calibration)

n−1

0

L i

1 i i+1 n... ...

L L L L0 1 n−2

Calibration conditions

P(0, ti) = E

[ 1

(1 + L0τ0)(1 + L1τ1) · · · (1 + Li−1τi )

]

, i = 1, 2, · · · , n



Monte Carlo implementation

1. Initialize δi = 0 for i = 1, · · · , n − 1.
2. Generate N paths for the Brownian motion x(t) and compute the

n × N matrix of Libors Lij ≡ [Li (ti )]path j = Lfwd
i eσi (x(ti )+δi )−

1
2σ

2
i ti .

3. Compute the matrix of path-wise discount factors for maturity ti

[D(ti )]path j =
1

(1 + L0jτ0)(1 + L1jτ1) · · · (1 + Li−1,jτi−1)

4. Compute the realized zero coupon bond P(0, tj) by averaging over the
MC paths

P(0, tj) = E[D(tj)]

starting with j = 1. Iterate over values of δj (using e.g. the bisection
method) until the two sides agree. Repeat for j = 2, 3, · · · , n − 1. The
model is now calibrated.
5. Compute all the zero coupon bonds P(ti , tj) by regressing D(tj)/D(ti )
against x(ti ), using e.g. linear regression with a polynomial basis.
6. Store the N paths for D(ti ) and P(ti , tj) and use for pricing
derivatives.



Case study: Analytical calibration for a short rate
model with log-normal rates



BDT model in the terminal measure

Keep the same log-normal distribution of the short rate Li as in the BDT
model, but work in the terminal measure

Li(ti ) = L̃ie
ψix(ti )−

1
2ψ

2
i ti

Li (ti ) = Libor rate set at time ti for the period (ti , ti+1)

Numeraire in the terminal measure: Pt,n, the zero coupon bond maturing
at the last time tn

...0

L i

1 i i+1 n...



Why the terminal measure?

Why formulate the Libor distribution in the terminal measure?

◮ Numerical convenience. The calibration of the model is simpler than
in the spot measure: no need to solve a nonlinear equation at each
time step

◮ The model is a particular parametric realization of the so-called
Market functional model (MFM), which is a short rate model aiming
to reproduce exactly the caplet smile. MFM usually formulated in
the terminal measure.

◮ More general functional distributions can be considered in the
Markov functional model Li (ti ) = L̃i f (xi ), parameterized by an
arbitrary function f (x). This allows more general Libor distributions.



Main results

1. The BDT model in the terminal measure can be solved analytically for
the case of uniform Libor volatilities ψi = ψ (Pirjol (2010)). Solution
possible (in principle) also for arbitrary ψi , but messy results.

2. The analytical solution has a surprising behaviour at large volatility:

◮ The convexity adjustment explodes at a critical volatility, such that
the average Libors in the terminal measure (convexity-adjusted
Libors) L̃i become tiny (below machine precision)

◮ This is very unusual, as the convexity adjustments are “supposed” to
be well-behaved (increasing) functions of volatility

◮ The model has two regimes, of low and large volatility, separated by
a sharp transition

◮ Practical implication: the convexity-adjusted Libors L̃i become very
small, below machine precision, and the simulation truncates them
to zero



Explanation

The size of the convexity adjustment is given by an expectation value

Ni = E[P̂i ,i+1e
ψx− 1

2ψ
2ti ]

Recall that the convexity-adjusted Libors are L̃i = Lfwd
i /Ni
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Plot of log Ni vs the volatility ψ

Simulation with n = 40 quarterly
time steps

i = 30, t = 7.5, r0 = 5%

Note the sharp increase after a critical volatility ψcr ∼ 0.33



Explanation

The expectation value as integral

Ni = E[P̂i ,i+1e
ψx− 1

2ψ
2ti ] =

∫ +∞

−∞

dx√
2πti

e
−

1
2ti

x2

P̂i ,i+1(x)eψx− 1
2ψ

2ti
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The integrand

Simulation with n = 20 quarterly
time steps i = 10, ti = 2.5

ψ =







0.4 (solid)
0.5 (dashed)
0.52 (dotted)

Note the secondary maximum which appears for super-critical volatility
at x ∼ 10

√
ti . This will be missed in usual simulations of the model.

Analytical study of the model was crucial for uncovering this shortcoming.



Concluding comments

◮ Model validation is an on-going effort. Market conditions change,
model performance may be different under changed market
environments.

◮ A good relationship with the front office group can help a lot.

◮ Need to be aware of the main assumptions going into the model.
This may be apparent from the model description, but discussions
with the modeler/FO quants will help.

◮ It is often useful to be aware of the front office testing of the models.

In general, model validation is a mix of several ingredients:

1. Process. The model validation must follow the regulatory guidance
and mandates.

2. Science. We use mathematics, financial mathematics, statistics.

3. Art. Experience plays an important role.
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