
Math 231B Partial Differential Equations

Lecture 8. Weak Derivatives.

From now on we work on an open set U ⊂ Rn.
Notation. If U and V are open in Rn we write

V ⊂⊂ U

to mean V̄ ⊂ U and V̄ is compact.

Definition. For 1 ≤ p < ∞, there are two ways to define the space Lp(U). If you
know measure theory, we consider the space of measurable functions u : U → R,
and we consider elements u and v to be equivalent if u = v almost everywhere, and
write [u] for those functions equivalent to u. Then [u] ∈ Lp(U) if and only if

∫

U

|u|p dx < ∞.

We define the norm

(*) ‖u‖p =
(∫

U

|u|p dx

)1/p

.

For [u] ∈ Lp(U), we say that [u] ∈ Ck(U) if there exists v ∈ [u] with v ∈ Ck(U).
We usually omit mention of the equivalence class.

Exercise. Cc(U) is dense in Lp(U).

Hint: Approximate Lp functions by step functions and approximate step functions
by continuous functions.

If you don’t know measure theory, then Lp(U) is the completion of Cc(U) in the
norm (*).

Definition. U is an open subset of Rn. Then L1
loc(U) is the space of functions u

such that every open subset V with V ⊂⊂ U , we have u ∈ L1(V ).

Remark. Lp(U) ⊂ L1
loc(U) for every p ≥ 1.

Definition. The set of test functions on U is the space C∞c (U) of smooth func-
tions φ : U → R with compact support.

Excercise. The function

ψ(x) =
{

e−1/t, t > 0
0 t ≤ 0

is smooth. Hence the function
ψ(r2 − |x|2)

is a smooth function supported on {|x| ≤ r}, and strictly positive on {|x| < r}.
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Lemma. C∞c (U) is dense in Lp(U).

Proof. Given u ∈ Lp(U) and ε > 0, there exists v ∈ Cc(U) with ‖u − v‖p < ε.
Choose a function φ ∈ C∞c (Rn) supported on {|x| ≤ 1} and positive on {|x| < 1}
with ∫

φdx = 1.

Set
φδ(x) =

1
δn

φ(x/δ).

Then φδ is supported on {|x| ≤ δ} and
∫

φδ dx = 1.

Then consider the convolution

v ∗ φδ(x) =
∫

U

v(y)φδ(x− y) dy.

This function is in C∞(Rn), and it is supported in U when

2δ < dist(supp(v) , Rn \ U).

Moreover,

|v(x)− v ∗ φδ(x)| =
∣∣∣∣
∫

U

(v(x)− v(y))φδ(x− y) dy

∣∣∣∣

≤
∫

U

|v(x)− v(y)|φδ(x− y) dy ≤ sup
|x−y|<δ

|v(x)− v(y)| =: ω(δ).

Since a continuous function on a compact set is uniformly continuous, ω(δ) → 0 as
δ → 0. If supp v ⊂ B(0, R), then

‖v − v ∗ φδ‖p ≤ ω(δ)|B(0, R + 2δ)|1/p → 0 as δ → 0.

Hence we can find v′ ∈ C∞c (U) with ‖u− v′‖p < 2ε.

Excercise. Suppose that v ∈ L1
loc(U) and

∫

U

vφ dx = 0 for every φ ∈ C∞c (U).

Then v = 0.

Definition. If u, v ∈ L1
loc(U), then v is the αth weak partial derivative of u, written

Dαu = v
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if ∫

U

uDαφ dx = (−1)|α|
∫

U

vφ dx

for every function φ ∈ C∞c (U).

Lemma. There is at most one function v ∈ L1
loc(U) (modulo the values on a set of

measure zero) such that v is the weak derivative of u.

Examples 1 and 2 in 5.2.1.

Dimension 1. Suppose U = R1. Suppose that u, v ∈ L1
loc(R1) and v is the weak

derivative of u, that is Du = v. Then (up to a set of measure zero)

u(x) = C +
∫ x

0

v(y) dy.

In particular, u is continuous and differentiable almost everywhere.

Proof. Certainly defining w(x) to be the integral in the right hand side, then w(x)
satisfies Dw = v. Indeed, if φ ∈ C∞c (R) is supported on [−N,N ], then

−
∫ ∞

−∞
w(x)Dφ(x) dx = −

(∫ N

0

+
∫ 0

−N

) ∫ x

0

Dφ(x)v(y) dydx

= −
∫ N

0

v(y)
∫ N

y

Dφ(x) dxdy +
∫ 0

−N

v(y)
∫ y

−N

Dφ(x) dxdy

=
∫ N

0

φ(y)v(y) dx +
∫ 0

−N

φ(y)v(y) dy =
∫ N

−N

φ(y)v(y) dy.

Now if Du = v then setting f = u − w, we have Df = 0. We wish to imply from
this that f is constant.

Choose ψ ∈ C∞c (R) with
∫

ψ = 1. Set

g := f −
∫

fψ dx

Note that
Dg = 0,

∫
gψ dx = 0.

We will show that g = 0.
Exercise. Suppose χ ∈ C∞c (R) with

∫
χ = 0. Then there exists χ̃ ∈ C∞c (R) with

χ = Dχ̃.

Now suppose φ ∈ C∞c (M). Then

χ := φ −
(∫

φψ

)
ψ
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is in C∞c (M) with
∫

χ = 0. Hence

∫
gχ dx =

∫
gDχ̃ dx = 0.

Thus ∫
gφ dx =

∫
gχ dx +

∫
gψ dx

(∫
φψ

)
= 0.

Thus g ≡ 0.

In particular we see that the function sgn(x) on R has no weak derivative in L1
loc(R),

because it is not everywhere continuous (or more precisely, it is not equal almost
everywhere to a function which is everywhere continuous).


