MATH 231B PARTIAL DIFFERENTIAL EQUATIONS

Lecture 8. Weak Derivatives.

From now on we work on an open set $U \subset \mathbb{R}^n$. Notation. If U and V are open in \mathbb{R}^n we write

$$V \subset \subset U$$

to mean $\overline{V} \subset U$ and \overline{V} is compact.

Definition. For $1 \le p < \infty$, there are two ways to define the space $L^p(U)$. If you know measure theory, we consider the space of measurable functions $u : U \to \mathbb{R}$, and we consider elements u and v to be equivalent if u = v almost everywhere, and write [u] for those functions equivalent to u. Then $[u] \in L^p(U)$ if and only if

$$\int_U |u|^p \, dx \ < \ \infty$$

We define the norm

(*)
$$||u||_p = \left(\int_U |u|^p \, dx\right)^{1/p}.$$

For $[u] \in L^p(U)$, we say that $[u] \in C^k(U)$ if there exists $v \in [u]$ with $v \in C^k(U)$. We usually omit mention of the equivalence class.

Exercise. $C_c(U)$ is dense in $L^p(U)$.

Hint: Approximate L^p functions by step functions and approximate step functions by continuous functions.

If you don't know measure theory, then $L^p(U)$ is the completion of $C_c(U)$ in the norm (*).

Definition. U is an open subset of \mathbb{R}^n . Then $L^1_{loc}(U)$ is the space of functions u such that every open subset V with $V \subset U$, we have $u \in L^1(V)$.

Remark. $L^p(U) \subset L^1_{loc}(U)$ for every $p \ge 1$.

Definition. The set of **test functions** on U is the space $C_c^{\infty}(U)$ of smooth functions $\phi: U \to \mathbb{R}$ with compact support.

Excercise. The function

$$\psi(x) = \begin{cases} e^{-1/t}, & t > 0\\ 0, & t \le 0 \end{cases}$$

is smooth. Hence the function

$$\psi(r^2 - |x|^2)$$

is a smooth function supported on $\{|x| \le r\}$, and strictly positive on $\{|x| < r\}$.

Lemma. $C_c^{\infty}(U)$ is dense in $L^p(U)$.

Proof. Given $u \in L^p(U)$ and $\varepsilon > 0$, there exists $v \in C_c(U)$ with $||u - v||_p < \varepsilon$. Choose a function $\phi \in C_c^{\infty}(\mathbb{R}^n)$ supported on $\{|x| \le 1\}$ and positive on $\{|x| < 1\}$ with

$$\int \phi \, dx = 1.$$

 Set

$$\phi_{\delta}(x) = \frac{1}{\delta^n} \phi(x/\delta).$$

Then ϕ_{δ} is supported on $\{|x| \leq \delta\}$ and

$$\int \phi_{\delta} \, dx = 1.$$

Then consider the convolution

$$v * \phi_{\delta}(x) = \int_{U} v(y) \phi_{\delta}(x-y) \, dy.$$

This function is in $C^{\infty}(\mathbb{R}^n)$, and it is supported in U when

$$2\delta < \operatorname{dist}(\operatorname{supp}(v), \mathbb{R}^n \setminus U).$$

Moreover,

$$\begin{aligned} |v(x) - v * \phi_{\delta}(x)| &= \left| \int_{U} (v(x) - v(y)) \phi_{\delta}(x - y) \, dy \right| \\ &\leq \int_{U} |v(x) - v(y)| \, \phi_{\delta}(x - y) \, dy \leq \sup_{|x - y| < \delta} |v(x) - v(y)| \; =: \; \omega(\delta). \end{aligned}$$

Since a continuous function on a compact set is uniformly continuous, $\omega(\delta) \to 0$ as $\delta \to 0$. If supp $v \subset B(0, R)$, then

$$\|v - v * \phi_{\delta}\|_p \leq \omega(\delta) |B(0, R + 2\delta)|^{1/p} \rightarrow 0 \text{ as } \delta \rightarrow 0.$$

Hence we can find $v' \in C_c^{\infty}(U)$ with $||u - v'||_p < 2\varepsilon$.

Excercise. Suppose that $v \in L^1_{loc}(U)$ and

$$\int_{U} v\phi \, dx = 0 \qquad \text{for every } \phi \in C_c^{\infty}(U).$$

Then v = 0.

Definition. If $u, v \in L^1_{loc}(U)$, then v is the α^{th} weak partial derivative of u, written

$$D^{\alpha}u = v$$

if

$$\int_U u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_U v \phi \, dx$$

for every function $\phi \in C_c^{\infty}(U)$.

Lemma. There is at most one function $v \in L^1_{loc}(U)$ (modulo the values on a set of measure zero) such that v is the weak derivative of u.

Examples 1 and 2 in 5.2.1.

Dimension 1. Suppose $U = \mathbb{R}^1$. Suppose that $u, v \in L^1_{loc}(\mathbb{R}^1)$ and v is the weak derivative of u, that is Du = v. Then (up to a set of measure zero)

$$u(x) = C + \int_0^x v(y) \, dy.$$

In particular, u is continuous and differentiable almost everywhere.

Proof. Certainly defining w(x) to be the integral in the right hand side, then w(x) satisfies Dw = v. Indeed, if $\phi \in C_c^{\infty}(\mathbb{R})$ is supported on [-N, N], then

$$\begin{aligned} -\int_{-\infty}^{\infty} w(x) D\phi(x) \, dx &= -\left(\int_{0}^{N} + \int_{-N}^{0}\right) \int_{0}^{x} D\phi(x) v(y) \, dy dx \\ &= -\int_{0}^{N} v(y) \int_{y}^{N} D\phi(x) \, dx dy \, + \, \int_{-N}^{0} v(y) \int_{-N}^{y} D\phi(x) \, dx dy \\ &= \int_{0}^{N} \phi(y) v(y) \, dx \, + \, \int_{-N}^{0} \phi(y) v(y) \, dy \, = \, \int_{-N}^{N} \phi(y) v(y) \, dy. \end{aligned}$$

Now if Du = v then setting f = u - w, we have Df = 0. We wish to imply from this that f is constant.

Choose $\psi \in C_c^{\infty}(\mathbb{R})$ with $\int \psi = 1$. Set

$$g := f - \int f \psi \, dx$$

Note that

$$Dg = 0,$$
 $\int g\psi \, dx = 0.$

We will show that g = 0.

Exercise. Suppose $\chi \in C_c^{\infty}(\mathbb{R})$ with $\int \chi = 0$. Then there exists $\tilde{\chi} \in C_c^{\infty}(\mathbb{R})$ with $\chi = D\tilde{\chi}$.

Now suppose $\phi \in C_c^{\infty}(M)$. Then

$$\chi := \phi - \left(\int \phi \psi\right) \psi$$

is in $C_c^{\infty}(M)$ with $\int \chi = 0$. Hence

$$\int g\chi \, dx = \int g D\tilde{\chi} \, dx = 0.$$

Thus

$$\int g\phi \, dx = \int g\chi \, dx + \int g\psi \, dx \left(\int \phi\psi\right) = 0.$$

Thus $g \equiv 0$.

In particular we see that the function $\operatorname{sgn}(x)$ on \mathbb{R} has no weak derivative in $L^1_{\operatorname{loc}}(\mathbb{R})$, because it is not everywhere continuous (or more precisely, it is not equal almost everywhere to a function which is everywhere continuous).