Math 231B Partial Differential Equations

Lecture 8. Weak Derivatives.

From now on we work on an open set $U \subset \mathbb{R}^n$. **Notation.** If U and V are open in \mathbb{R}^n we write

$$
V\subset\subset U
$$

to mean $\overline{V} \subset U$ and \overline{V} is compact.

Definition. For $1 \leq p < \infty$, there are two ways to define the space $L^p(U)$. If you know measure theory, we consider the space of measurable functions $u: U \to \mathbb{R}$, and we consider elements u and v to be equivalent if $u = v$ almost everywhere, and write [u] for those functions equivalent to u. Then $[u] \in L^p(U)$ if and only if

$$
\int_U |u|^p\,dx\ <\ \infty.
$$

We define the norm

(*)
$$
||u||_p = \left(\int_U |u|^p dx\right)^{1/p}
$$
.

For $[u] \in L^p(U)$, we say that $[u] \in C^k(U)$ if there exists $v \in [u]$ with $v \in C^k(U)$. We usually omit mention of the equivalence class.

Exercise. $C_c(U)$ is dense in $L^p(U)$.

Hint: Approximate L^p functions by step functions and approximate step functions by continuous functions.

If you don't know measure theory, then $L^p(U)$ is the completion of $C_c(U)$ in the norm $(*)$.

Definition. U is an open subset of \mathbb{R}^n . Then $L^1_{loc}(U)$ is the space of functions u such that every open subset V with $V \subset\subset U$, we have $u \in L^1(V)$.

Remark. $L^p(U) \subset L^1_{loc}(U)$ for every $p \geq 1$.

Definition. The set of **test functions** on U is the space $C_c^{\infty}(U)$ of smooth functions $\phi: U \to \mathbb{R}$ with compact support.

Excercise. The function

$$
\psi(x) = \begin{cases} e^{-1/t}, & t > 0 \\ 0 & t \le 0 \end{cases}
$$

is smooth. Hence the function

$$
\psi(r^2-|x|^2)
$$

is a smooth function supported on $\{|x| \leq r\}$, and strictly positive on $\{|x| < r\}$.

Lemma. $C_c^{\infty}(U)$ is dense in $L^p(U)$.

Proof. Given $u \in L^p(U)$ and $\varepsilon > 0$, there exists $v \in C_c(U)$ with $||u - v||_p < \varepsilon$. Choose a function $\phi \in C_c^{\infty}(\mathbb{R}^n)$ supported on $\{|x| \leq 1\}$ and positive on $\{|x| < 1\}$ with

$$
\int \phi \, dx = 1.
$$

Set

$$
\phi_{\delta}(x) = \frac{1}{\delta^n} \phi(x/\delta).
$$

Then ϕ_{δ} is supported on $\{|x| \leq \delta\}$ and

$$
\int \phi_{\delta} dx = 1.
$$

Then consider the convolution

$$
v * \phi_{\delta}(x) = \int_U v(y) \phi_{\delta}(x - y) dy.
$$

This function is in $C^{\infty}(\mathbb{R}^n)$, and it is supported in U when

$$
2\delta \ < \ \text{dist}(\text{supp}(v) \ , \ \mathbb{R}^n \setminus U).
$$

Moreover,

$$
|v(x) - v * \phi_{\delta}(x)| = \left| \int_{U} (v(x) - v(y)) \phi_{\delta}(x - y) dy \right|
$$

\$\leq \int_{U} |v(x) - v(y)| \phi_{\delta}(x - y) dy \leq \sup_{|x - y| < \delta} |v(x) - v(y)| =: \omega(\delta)\$.

Since a continuous function on a compact set is uniformly continuous, $\omega(\delta) \to 0$ as $\delta \to 0$. If supp $v \subset B(0, R)$, then

$$
||v - v * \phi_{\delta}||_p \leq \omega(\delta) |B(0, R + 2\delta)|^{1/p} \to 0 \text{ as } \delta \to 0.
$$

Hence we can find $v' \in C_c^{\infty}(U)$ with $||u - v'||_p < 2\varepsilon$.

Excercise. Suppose that $v \in L^1_{loc}(U)$ and

$$
\int_U v\phi \, dx = 0 \qquad \text{for every } \phi \in C_c^{\infty}(U).
$$

Then $v = 0$.

Definition. If $u, v \in L^1_{loc}(U)$, then v is the α^{th} weak partial derivative of u, written

$$
D^{\alpha}u = v
$$

if

$$
\int_U uD^{\alpha}\phi\,dx = (-1)^{|\alpha|}\int_U v\phi\,dx
$$

for every function $\phi \in C_c^{\infty}(U)$.

Lemma. There is at most one function $v \in L^1_{loc}(U)$ (modulo the values on a set of measure zero) such that v is the weak derivative of u .

Examples 1 and 2 in 5.2.1.

Dimension 1. Suppose $U = \mathbb{R}^1$. Suppose that $u, v \in L^1_{loc}(\mathbb{R}^1)$ and v is the weak derivative of u, that is $Du = v$. Then (up to a set of measure zero)

$$
u(x) = C + \int_0^x v(y) dy.
$$

In particular, u is continuous and differentiable almost everywhere.

Proof. Certainly defining $w(x)$ to be the integral in the right hand side, then $w(x)$ satisfies $Dw = v$. Indeed, if $\phi \in C_c^{\infty}(\mathbb{R})$ is supported on $[-N, N]$, then

$$
-\int_{-\infty}^{\infty} w(x)D\phi(x) dx = -\left(\int_{0}^{N} + \int_{-N}^{0}\right) \int_{0}^{x} D\phi(x)v(y) dy dx
$$

= $-\int_{0}^{N} v(y) \int_{y}^{N} D\phi(x) dx dy + \int_{-N}^{0} v(y) \int_{-N}^{y} D\phi(x) dx dy$
= $\int_{0}^{N} \phi(y)v(y) dx + \int_{-N}^{0} \phi(y)v(y) dy = \int_{-N}^{N} \phi(y)v(y) dy.$

Now if $Du = v$ then setting $f = u - w$, we have $Df = 0$. We wish to imply from this that f is constant.

Choose $\psi \in C_c^{\infty}(\mathbb{R})$ with $\int \psi = 1$. Set

$$
g \ := \ f \ - \ \int f \psi \, dx
$$

Note that

$$
Dg = 0, \qquad \qquad \int g\psi \, dx = 0.
$$

We will show that $g = 0$.

We will show that $g = 0$.
 Exercise. Suppose $\chi \in C_c^{\infty}(\mathbb{R})$ with $\int \chi = 0$. Then there exists $\tilde{\chi} \in C_c^{\infty}(\mathbb{R})$ with $\chi = D\tilde{\chi}$.

Now suppose $\phi \in C_c^{\infty}(M)$. Then

$$
\chi \ := \ \phi \ - \ \left(\int \phi \psi \right) \psi
$$

is in $C_c^{\infty}(M)$ with $\int \chi = 0$. Hence

$$
\int g\chi\,dx = \int gD\tilde{\chi}\,dx = 0.
$$

Thus

$$
\int g\phi\,dx = \int g\chi\,dx + \int g\psi\,dx\left(\int \phi\psi\right) = 0.
$$

Thus $g \equiv 0$.

In particular we see that the function $sgn(x)$ on $\mathbb R$ has no weak derivative in $L^1_{loc}(\mathbb R)$, because it is not everywhere continuous (or more precisely, it is not equal almost everywhere to a function which is everywhere continuous).