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CHAPTER 3

Sobolev spaces

We will give only the most basic results here. For more information, see Shkoller
[27], Evans [8] (Chapter 5), and Leoni [20]. A standard reference is [1].

3.1. Weak derivatives

Suppose, as usual, that Ω is an open set in Rn.

Definition 3.1. A function f ∈ L1
loc(Ω) is weakly differentiable with respect to xi

if there exists a function gi ∈ L1
loc(Ω) such that∫

Ω

f∂iφdx = −
∫

Ω

giφdx for all φ ∈ C∞c (Ω).

The function gi is called the weak ith partial derivative of f , and is denoted by ∂if .

Thus, for weak derivatives, the integration by parts formula∫
Ω

f∂iφdx = −
∫

Ω

∂ifφ dx

holds by definition for all φ ∈ C∞c (Ω). Since C∞c (Ω) is dense in L1
loc(Ω), the weak

derivative of a function, if it exists, is unique up to pointwise almost everywhere
equivalence. Moreover, the weak derivative of a continuously differentiable function
agrees with the pointwise derivative. The existence of a weak derivative is, however,
not equivalent to the existence of a pointwise derivative almost everywhere; see
Examples 3.4 and 3.5.

Unless stated otherwise, we will always interpret derivatives as weak deriva-
tives, and we use the same notation for weak derivatives and continuous pointwise
derivatives. Higher-order weak derivatives are defined in a similar way.

Definition 3.2. Suppose that α ∈ Nn0 is a multi-index. A function f ∈ L1
loc(Ω)

has weak derivative ∂αf ∈ L1
loc(Ω) if∫

Ω

(∂αf)φdx = (−1)|α|
∫

Ω

f (∂αφ) dx for all φ ∈ C∞c (Ω).

3.2. Examples

Let us consider some examples of weak derivatives that illustrate the definition.
We denote the weak derivative of a function of a single variable by a prime.

Example 3.3. Define f ∈ C(R) by

f(x) =

{
x if x > 0,
0 if x ≤ 0.
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48 3. SOBOLEV SPACES

We also write f(x) = x+. Then f is weakly differentiable, with

(3.1) f ′ = χ[0,∞),

where χ[0,∞) is the step function

χ[0,∞)(x) =

{
1 if x ≥ 0,
0 if x < 0.

The choice of the value of f ′(x) at x = 0 is irrelevant, since the weak derivative
is only defined up to pointwise almost everwhere equivalence. To prove (3.1), note
that for any φ ∈ C∞c (R), an integration by parts gives∫

fφ′ dx =

∫ ∞
0

xφ′ dx = −
∫ ∞

0

φdx = −
∫
χ[0,∞)φdx.

Example 3.4. The discontinuous function f : R→ R

f(x) =

{
1 if x > 0,
0 if x < 0.

is not weakly differentiable. To prove this, note that for any φ ∈ C∞c (R),∫
fφ′ dx =

∫ ∞
0

φ′ dx = −φ(0).

Thus, the weak derivative g = f ′ would have to satisfy

(3.2)

∫
gφ dx = φ(0) for all φ ∈ C∞c (R).

Assume for contradiction that g ∈ L1
loc(R) satisfies (3.2). By considering test

functions with φ(0) = 0, we see that g is equal to zero pointwise almost everywhere,
and then (3.2) does not hold for test functions with φ(0) 6= 0.

The pointwise derivative of the discontinuous function f in the previous ex-
ample exists and is zero except at 0, where the function is discontinuous, but the
function is not weakly differentiable. The next example shows that even a contin-
uous function that is pointwise differentiable almost everywhere need not have a
weak derivative.

Example 3.5. Let f ∈ C(R) be the Cantor function, which may be constructed
as a uniform limit of piecewise constant functions defined on the standard ‘middle-
thirds’ Cantor set C. For example, f(x) = 1/2 for 1/3 ≤ x ≤ 2/3, f(x) = 1/4 for
1/9 ≤ x ≤ 2/9, f(x) = 3/4 for 7/9 ≤ x ≤ 8/9, and so on.1 Then f is not weakly
differentiable. To see this, suppose that f ′ = g where∫

gφ dx = −
∫
fφ′ dx

1The Cantor function is given explicitly by: f(x) = 0 if x ≤ 0; f(x) = 1 if x ≥ 1;

f(x) =
1

2

∞∑
n=1

cn

2n

if x =
∑∞

n=1 cn/3
n with cn ∈ {0, 2} for all n ∈ N; and

f(x) =
1

2

N∑
n=1

cn

2n
+

1

2N+1

if x =
∑∞

n=1 cn/3
n, with cn ∈ {0, 2} for 1 ≤ n < k and ck = 1.
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for all test functions φ. The complement of the Cantor set in [0, 1] is a union of
open intervals,

[0, 1] \ C =

(
1

3
,

2

3

)
∪
(

1

9
,

2

9

)
∪
(

7

9
,

8

9

)
∪ . . . ,

whose measure is equal to one. Taking test functions φ whose supports are com-
pactly contained in one of these intervals, call it I, and using the fact that f = cI
is constant on I, we find that∫

gφ dx = −
∫
I

fφ′ dx = −cI
∫
I

φ′ dx = 0.

It follows that g = 0 pointwise a.e. on [0, 1] \ C, and hence if f is weakly differ-
entiable, then f ′ = 0. From the following proposition, however, the only functions
with zero weak derivative are the ones that are equivalent to a constant function.
This is a contradiction, so the Cantor function is not weakly differentiable.

Proposition 3.6. If f : (a, b)→ R is weakly differentiable and f ′ = 0, then f is a
constant function.

Proof. The condition that the weak derivative f ′ is zero means that

(3.3)

∫
fφ′ dx = 0 for all φ ∈ C∞c (a, b).

Choose a fixed test function η ∈ C∞c (a, b) whose integral is equal to one. We may
represent an arbitrary test function φ ∈ C∞c (a, b) as

φ = Aη + ψ′

where A ∈ R and ψ ∈ C∞c (a, b) are given by

A =

∫ b

a

φdx, ψ(x) =

∫ x

a

[φ(t)−Aη(t)] dt.

Then (3.3) implies that∫
fφ dx = A

∫
fη dx = c

∫
φdx, c =

∫
fη dx.

It follows that ∫
(f − c)φdx = 0 for all φ ∈ C∞c (a, b),

which implies that f = c pointwise almost everywhere, so f is equivalent to a
constant function. �

As this discussion illustrates, in defining ‘strong’ solutions of a differential equa-
tion that satisfy the equation pointwise a.e., but which are not necessarily contin-
uously differentiable ‘classical’ solutions, it is important to include the condition
that the solutions are weakly differentiable. For example, up to pointwise a.e.
equivalence, the only weakly differentiable functions u : R → R that satisfy the
ODE

u′ = 0 pointwise a.e.

are the constant functions. There are, however, many non-constant functions that
are differentiable pointwise a.e. and satisfy the ODE pointwise a.e., but these so-
lutions are not weakly differentiable; the step function and the Cantor function are
examples.
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Example 3.7. For a ∈ R, define f : Rn → R by

(3.4) f(x) =
1

|x|a
.

Then f is weakly differentiable if a+ 1 < n with weak derivative

∂if(x) = − a

|x|a+1

xi
|x|
.

That is, f is weakly differentiable provided that the pointwise derivative, which
is defined almost everywhere, is locally integrable. To prove this, suppose ε > 0,
and let φε ∈ C∞c (Rn) be a cut-off function that is equal to one in Bε (0) and zero
outside B2ε (0). Then

f ε(x) =
1− φε(x)

|x|a

belongs to ∈ C∞(Rn) and f ε = f in |x| ≥ 2ε. Integrating by parts, we get∫
(∂if

ε)φdx = −
∫
f ε (∂iφ) dx.

We have

∂if
ε(x) = − a

|x|a+1

xi
|x|

[1− φε(x)]− 1

|x|a
∂iφ

ε(x).

Since |∂iφε| ≤ C/ε and |∂iφε| = 0 when |x| ≤ ε or |x| ≥ 2ε, we have

|∂iφε(x)| ≤ C

|x|
.

It follows that

|∂if ε(x)| ≤ C ′

|x|a+1

where C ′ is a constant independent of ε. The result then follows from the dominated
convergence theorem.

Alternatively, instead of mollifying f , we can use the truncated function

f ε(x) =
χBε(0)(x)

|x|a
.

3.3. Distributions

Although we will not make extensive use of the theory of distributions, it is
useful to understand the interpretation of a weak derivative as a distributional
derivative. In fact, the definition of the weak derivative by Sobolev, and others, was
one motivation for the subsequent development of distribution theory by Schwartz.

Let Ω be an open set in Rn.

Definition 3.8. A sequence {φn : n ∈ N} of functions φn ∈ C∞c (Ω) converges to
φ ∈ C∞c (Ω) in the sense of test functions if:

(a) there exists Ω′ b Ω such that sptφn ⊂ Ω′ for every n ∈ N;

(b) ∂αφn → ∂αφ as n→∞ uniformly on Ω for every α ∈ Nn0 .

The topological vector space D(Ω) consists of C∞c (Ω) equipped with the topology
that corresponds to convergence in the sense of test functions.
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Note that since the supports of the φn are contained in the same compactly
contained subset, the limit has compact support; and since the derivatives of all
orders converge uniformly, the limit is smooth.

The space D(Ω) is not metrizable, but it can be shown that the sequential
convergence of test functions is sufficient to determine its topology.

A linear functional on D(Ω) is a linear map T : D(Ω) → R. We denote the
value of T acting on a test function φ by 〈T, φ〉; thus, T is linear if

〈T, λφ+ µψ〉 = λ〈T, φ〉+ µ〈T, ψ〉 for all λ, µ ∈ R and φ, ψ ∈ D(Ω).

A functional T is continuous if φn → φ in the sense of test functions implies that
〈T, φn〉 → 〈T, φ〉 in R

Definition 3.9. A distribution on Ω is a continuous linear functional

T : D(Ω)→ R.

A sequence {Tn : n ∈ N} of distributions converges to T , written Tn ⇀ T , if
〈Tn, φ〉 → 〈T, φ〉 for every φ ∈ D(Ω). The topological vector space D′(Ω) consists
of the distributions on Ω equipped with the topology corresponding to this notion
of convergence.

Thus, the space of distributions is the topological dual of the space of test
functions.

Example 3.10. The delta-function supported at a ∈ Ω is the distribution

δa : D(Ω)→ R

defined by evaluation of a test function at a:

〈δa, φ〉 = φ(a).

This functional is continuous since φn → φ in the sense of test functions implies,
in particular, that φn(a)→ φ(a)

Example 3.11. Any function f ∈ L1
loc(Ω) defines a distribution Tf ∈ D′(Ω) by

〈Tf , φ〉 =

∫
Ω

fφ dx.

The linear functional Tf is continuous since if φn → φ in D(Ω), then

sup
Ω′
|φn − φ| → 0

on a set Ω′ b Ω that contains the supports of the φn, so

|〈T, φn〉 − 〈T, φ〉| =
∣∣∣∣∫

Ω′
f (φn − φ) dx

∣∣∣∣ ≤ (∫
Ω′
|f | dx

)
sup
Ω′
|φn − φ| → 0.

Any distribution associated with a locally integrable function in this way is called
a regular distribution. We typically regard the function f and the distribution Tf
as equivalent.

Example 3.12. If µ is a Radon measure on Ω, then

〈Iµ, φ〉 =

∫
Ω

φdµ
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defines a distribution Iµ ∈ D′(Ω). This distribution is regular if and only if µ is
locally absolutely continuous with respect to Lebesgue measure λ, in which case
the Radon-Nikodym derivative

f =
dµ

dλ
∈ L1

loc(Ω)

is locally integrable, and

〈Iµ, φ〉 =

∫
Ω

fφ dx

so Iµ = Tf . On the other hand, if µ is singular with respect to Lebesgue measure
(for example, if µ = δa is the unit point measure supported at a ∈ Ω), then Iµ is
not a regular distribution.

One of the main advantages of distributions is that, in contrast to functions,
every distribution is differentiable. The space of distributions may be thought of
as the smallest extension of the space of continuous functions that is closed under
differentiation.

Definition 3.13. For 1 ≤ i ≤ n, the ith partial derivative of a distribution T ∈
D′(Ω) is the distribution ∂iT ∈ D′(Ω) defined by

〈∂iT, φ〉 = −〈T, ∂iφ〉 for all φ ∈ D(Ω).

For α ∈ Nn0 , the derivative ∂αT ∈ D′(Ω) of order |α| is defined by

〈∂αT, φ〉 = (−1)|α|〈T, ∂αφ〉 for all φ ∈ D(Ω).

Note that if T ∈ D′(Ω), then it follows from the linearity and continuity of the
derivative ∂α : D(Ω)→ D(Ω) on the space of test functions that ∂αT is a continuous
linear functional on D(Ω). Thus, ∂αT ∈ D′(Ω) for any T ∈ D′(Ω). It also follows
that the distributional derivative ∂α : D′(Ω) → D′(Ω) is linear and continuous on
the space of distributions; in particular if Tn ⇀ T , then ∂αTn ⇀ ∂αT .

Let f ∈ L1
loc(Ω) be a locally integrable function and Tf ∈ D′(Ω) the associ-

ated regular distribution defined in Example 3.11. Suppose that the distributional
derivative of Tf is a regular distribution

∂iTf = Tgi gi ∈ L1
loc(Ω).

Then it follows from the definitions that∫
Ω

f∂iφdx = −
∫

Ω

giφdx for all φ ∈ C∞c (Ω).

Thus, Definition 3.1 of the weak derivative may be restated as follows: A locally
integrable function is weakly differentiable if its distributional derivative is regu-
lar, and its weak derivative is the locally integrable function corresponding to the
distributional derivative.

The distributional derivative of a function exists even if the function is not
weakly differentiable.

Example 3.14. If f is a function of bounded variation, then the distributional
derivative of f is a finite Radon measure, which need not be regular. For example,
the distributional derivative of the step function is the delta-function, and the dis-
tributional derivative of the Cantor function is the corresponding Lebesgue-Stieltjes
measure supported on the Cantor set.
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Example 3.15. The derivative of the delta-function δa supported at a, defined in
Example 3.10, is the distribution ∂iδa defined by

〈∂iδa, φ〉 = −∂iφ(a).

This distribution is neither regular nor a Radon measure.

Differential equations are typically thought of as equations that relate functions.
The use of weak derivatives and distribution theory leads to an alternative point of
view of linear differential equations as linear functionals acting on test functions.
Using this perspective, given suitable estimates, one can obtain simple and general
existence results for weak solutions of linear PDEs by the use of the Hahn-Banach,
Riesz representation, or other duality theorems for the existence of bounded linear
functionals.

While distribution theory provides an effective general framework for the anal-
ysis of linear PDEs, it is less useful for nonlinear PDEs because one cannot define a
product of distributions that extends the usual product of smooth functions in an
unambiguous way. For example, what is Tfδa if f is a locally integrable function
that is discontinuous at a? There are difficulties even for regular distributions. For
example, f : x 7→ |x|−n/2 is locally integrable on Rn but f2 is not, so how should
one define the distribution (Tf )2?

3.4. Properties of weak derivatives

We collect here some properties of weak derivatives. The first result is a product
rule.

Proposition 3.16. If f ∈ L1
loc(Ω) has weak partial derivative ∂if ∈ L1

loc(Ω) and
ψ ∈ C∞(Ω), then ψf is weakly differentiable with respect to xi and

(3.5) ∂i(ψf) = (∂iψ)f + ψ(∂if).

Proof. Let φ ∈ C∞c (Ω) be any test function. Then ψφ ∈ C∞c (Ω) and the
weak differentiability of f implies that∫

Ω

f∂i(ψφ) dx = −
∫

Ω

(∂if)ψφdx.

Expanding ∂i(ψφ) = ψ(∂iφ) + (∂iψ)φ in this equation and rearranging the result,
we get ∫

Ω

ψf(∂iφ) dx = −
∫

Ω

[(∂iψ)f + ψ(∂if)]φdx for all φ ∈ C∞c (Ω).

Thus, ψf is weakly differentiable and its weak derivative is given by (3.5). �

The commutativity of weak derivatives follows immediately from the commu-
tativity of derivatives applied to smooth functions.

Proposition 3.17. Suppose that f ∈ L1
loc(Ω) and that the weak derivatives ∂αf ,

∂βf exist for multi-indices α, β ∈ Nn0 . Then if any one of the weak derivatives
∂α+βf , ∂α∂βf , ∂β∂αf exists, all three derivatives exist and are equal.

Proof. Using the existence of ∂αu, and the fact that ∂βφ ∈ C∞c (Ω) for any
φ ∈ C∞c (Ω), we have ∫

Ω

∂αu∂βφdx = (−1)|α|
∫

Ω

u∂α+βφdx.
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This equation shows that ∂α+βu exists if and only if ∂β∂αu exists, and in that case
the weak derivatives are equal. Using the same argument with α and β exchanged,
we get the result. �

Example 3.18. Consider functions of the form

u(x, y) = f(x) + g(y).

Then u ∈ L1
loc(R2) if and only if f, g ∈ L1

loc(R). The weak derivative ∂xu exists if
and only if the weak derivative f ′ exists, and then ∂xu(x, y) = f ′(x). To see this,
we use Fubini’s theorem to get for any φ ∈ C∞c (R2) that∫

u(x, y)∂xφ(x, y) dxdy

=

∫
f(x)∂x

[∫
φ(x, y) dy

]
dx+

∫
g(y)

[∫
∂xφ(x, y) dx

]
dy.

Since φ has compact support, ∫
∂xφ(x, y) dx = 0.

Also, ∫
φ(x, y) dy = ξ(x)

is a test function ξ ∈ C∞c (R). Moreover, by taking φ(x, y) = ξ(x)η(y), where
η ∈ C∞c (R) is an arbitrary test function with integral equal to one, we can get
every ξ ∈ C∞c (R). Since∫

u(x, y)∂xφ(x, y) dxdy =

∫
f(x)ξ′(x) dx,

it follows that ∂xu exists if and only if f ′ exists, and then ∂xu = f ′.
In that case, the mixed derivative ∂y∂xu also exists, and is zero, since using

Fubini’s theorem as before∫
f ′(x)∂yφ(x, y) dxdy =

∫
f ′(x)

[∫
∂yφ(x, y) dy

]
dx = 0.

Similarly ∂yu exists if and only if g′ exists, and then ∂yu = g′ and ∂x∂yu = 0.
The second-order weak derivative ∂xyu exists without any differentiability as-

sumptions on f, g ∈ L1
loc(R) and is equal to zero. For any φ ∈ C∞c (R2), we have∫

u(x, y)∂xyφ(x, y) dxdy

=

∫
f(x)∂x

(∫
∂yφ(x, y) dy

)
dx+

∫
g(y)∂y

(∫
∂xφ(x, y) dx

)
dy

= 0.

Thus, the mixed derivatives ∂x∂yu and ∂y∂xu are equal, and are equal to the
second-order derivative ∂xyu, whenever both are defined.

Weak derivatives combine well with mollifiers. If Ω is an open set in Rn and
ε > 0, we define Ωε as in (1.7) and let ηε be the standard mollifier (1.6).
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Theorem 3.19. Suppose that f ∈ L1
loc(Ω) has weak derivative ∂αf ∈ L1

loc(Ω).
Then ηε ∗ f ∈ C∞(Ωε) and

∂α (ηε ∗ f) = ηε ∗ (∂αf) .

Moreover,

∂α (ηε ∗ f)→ ∂αf in L1
loc(Ω) as ε→ 0+.

Proof. From Theorem 1.28, we have ηε ∗ f ∈ C∞(Ωε) and

∂α (ηε ∗ f) = (∂αηε) ∗ f.
Using the fact that y 7→ ηε(x − y) defines a test function in C∞c (Ω) for any fixed
x ∈ Ωε and the definition of the weak derivative, we have

(∂αηε) ∗ f(x) =

∫
∂αx η

ε(x− y)f(y) dy

= (−1)|α|
∫
∂αy η

ε(x− y)f(y)

=

∫
ηε(x− y)∂αf(y) dy

= ηε ∗ (∂αf) (x)

Thus (∂αηε) ∗ f = ηε ∗ (∂αf). Since ∂αf ∈ L1
loc(Ω), Theorem 1.28 implies that

ηε ∗ (∂αf)→ ∂αf

in L1
loc(Ω), which proves the result. �

The next result gives an alternative way to characterize weak derivatives as
limits of derivatives of smooth functions.

Theorem 3.20. A function f ∈ L1
loc(Ω) is weakly differentiable in Ω if and only if

there is a sequence {fn} of functions fn ∈ C∞(Ω) such that fn → f and ∂αfn → g
in L1

loc(Ω). In that case the weak derivative of f is given by g = ∂αf ∈ L1
loc(Ω).

Proof. If f is weakly differentiable, we may construct an appropriate sequence
by mollification as in Theorem 3.19. Conversely, suppose that such a sequence
exists. Note that if fn → f in L1

loc(Ω) and φ ∈ Cc(Ω), then∫
Ω

fnφdx→
∫

Ω

fφ dx as n→∞,

since if K = sptφ b Ω∣∣∣∣∫
Ω

fnφdx−
∫

Ω

fφ dx

∣∣∣∣ =

∣∣∣∣∫
K

(fn − f)φdx

∣∣∣∣ ≤ sup
K
|φ|
∫
K

|fn − f | dx→ 0.

Thus, for any φ ∈ C∞c (Ω), the L1
loc-convergence of fn and ∂αfn implies that∫

Ω

f∂αφdx = lim
n→∞

∫
Ω

fn∂
αφdx

= (−1)|α| lim
n→∞

∫
Ω

∂αfnφdx

= (−1)|α|
∫

Ω

gφ dx.

So f is weakly differentiable and ∂αf = g. �
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We can use this approximation result to derive properties of the weak derivative
as a limit of corresponding properties of smooth functions. The following weak
versions of the product and chain rule, which are not stated in maximum generality,
may be derived in this way.

Proposition 3.21. Let Ω be an open set in Rn.

(1) Suppose that a ∈ C1(Ω) and u ∈ L1
loc(Ω) is weakly differentiable. Then

au is weakly differentiable and

∂i(au) = a (∂iu) + (∂ia)u.

(2) Suppose that f : R → R is a continuously differentiable function with
f ′ ∈ L∞(R) bounded, and u ∈ L1

loc(Ω) is weakly differentiable. Then
v = f ◦ u is weakly differentiable and

∂iv = f ′(u)∂iu.

(3) Suppose that φ : Ω→ Ω̃ is a C1-diffeomorphism of Ω onto Ω̃ = φ(Ω) ⊂ Rn.

For u ∈ L1
loc(Ω), define v ∈ L1

loc(Ω̃) by v = u ◦ φ−1. Then v is weakly

differentiable in Ω̃ if and only if u is weakly differentiable in Ω, and

∂u

∂xi
=

n∑
j=1

∂φj
∂xi

∂v

∂yj
◦ φ.

Proof. We prove (2) as an example. Since f ′ ∈ L∞, f is globally Lipschitz
and there exists a constant M such that

|f(s)− f(t)| ≤M |s− t| for all s, t ∈ R.
Choose un ∈ C∞(Ω) such that un → u and ∂iun → ∂iu in L1

loc(Ω), where un → u
pointwise almost everywhere in Ω. Let v = f ◦ u and vn = f ◦ un ∈ C1(Ω), with

∂ivn = f ′(un)∂iun ∈ C(Ω).

If Ω′ b Ω, then∫
Ω′
|vn − v| dx =

∫
Ω′
|f(un)− f(u)| dx ≤M

∫
Ω′
|un − u| dx→ 0

as n→∞. Also, we have∫
Ω′
|∂ivn − f ′(u)∂iu| dx =

∫
Ω′
|f ′(un)∂iun − f ′(u)∂iu| dx

≤
∫

Ω′
|f ′(un)| |∂iun − ∂iu| dx

+

∫
Ω′
|f ′(un)− f ′(u)| |∂iu| dx.

Then ∫
Ω′
|f ′(un)| |∂iun − ∂iu| dx ≤M

∫
Ω′
|∂iun − ∂iu| dx→ 0.

Moreover, since f ′(un)→ f ′(u) pointwise a.e., and

|f ′(un)| |∂iun − ∂iu| ≤ 2M |∂iu|
the dominated convergence theorem implies that∫

Ω′
|f ′(un)| |∂iun − ∂iu| dx→ 0 as n→∞.
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It follows that vn → f ◦ u and ∂ivn → f ′(u)∂iu in L1
loc. Then Theorem 3.20, in

which it is sufficient but not necessary that the approximating functions are C∞,
implies that f ◦ u is weakly differentiable with the weak derivative stated. �

In fact, (2) remains valid if f ∈ W 1,∞(R) is globally Lipschitz but not neces-
sarily C1. We will prove this is the useful special case that f(u) = |u|.

Proposition 3.22. If u ∈ L1
loc(Ω) has the weak derivative ∂iu ∈ L1

loc(Ω), then
|u| ∈ L1

loc(Ω) is weakly differentiable and

(3.6) ∂i|u| =

 ∂iu if u > 0,
0 if u = 0,

−∂iu if u < 0.

Proof. Let

f ε(t) =
√
t2 + ε2.

Since f ε is C1 and globally Lipschitz, Proposition 3.21 implies that f ε(u) is weakly
differentiable, and for every φ ∈ C∞c (Ω)∫

Ω

f ε(u)∂iφdx = −
∫

Ω

u∂iu√
u2 + ε2

φdx.

Taking the limit of this equation as ε → 0 and using the dominated convergence
theorem, we conclude that∫

Ω

|u|∂iφdx = −
∫

Ω

(∂i|u|)φdx

where ∂i|u| is given by (3.6). �

It follows immediately from this result that the positive and negative parts of
u = u+ − u−, given by

u+ =
1

2
(|u|+ u) , u− =

1

2
(|u| − u) ,

are weakly differentiable if u is weakly differentiable, with

∂iu
+ =

{
∂iu if u > 0,

0 if u ≤ 0,
∂iu
− =

{
0 if u ≥ 0,

−∂iu if u < 0,

3.5. Sobolev spaces

Sobolev spaces consist of functions whose weak derivatives belong to Lp. These
spaces provide one of the most useful settings for the analysis of PDEs.

Definition 3.23. Suppose that Ω is an open set in Rn, k ∈ N, and 1 ≤ p ≤ ∞.
The Sobolev space W k,p(Ω) consists of all locally integrable functions f : Ω → R
such that

∂αf ∈ Lp (Ω) for 0 ≤ |α| ≤ k.
We write W k,2(Ω) = Hk(Ω).

The Sobolev space W k,p (Ω) is a Banach space when equipped with the norm

‖f‖Wk,p(Ω) =

∑
|α|≤k

∫
Ω

|∂αf |p dx

1/p
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for 1 ≤ p <∞ and

‖f‖Wk,∞(Ω) = max
|α|≤k

sup
Ω
|∂αf | .

As usual, we identify functions that are equal almost everywhere. We will use these
norms as the standard ones on W k,p(Ω), but there are other equivalent norms e.g.

‖f‖Wk,p(Ω) =
∑
|α|≤k

(∫
Ω

|∂αf |p dx
)1/p

,

‖f‖Wk,p(Ω) = max
|α|≤k

(∫
Ω

|∂αf |p dx
)1/p

.

The space Hk(Ω) is a Hilbert space with the inner product

〈f, g〉 =
∑
|α|≤k

∫
Ω

(∂αf) (∂αg) dx.

We will consider the following properties of Sobolev spaces in the simplest
settings.

(1) Approximation of Sobolev functions by smooth functions;
(2) Embedding theorems;
(3) Boundary values of Sobolev functions and trace theorems;
(4) Compactness results.

3.6. Approximation of Sobolev functions

To begin with, we consider Sobolev functions defined on all of Rn. They may
be approximated in the Sobolev norm by by test functions.

Theorem 3.24. For k ∈ N and 1 ≤ p < ∞, the space C∞c (Rn) is dense in
W k,p(Rn)

Proof. Let ηε ∈ C∞c (Rn) be the standard mollifier and f ∈ W k,p(Rn). Then
Theorem 1.28 and Theorem 3.19 imply that ηε ∗ f ∈ C∞(Rn) ∩W k,p(Rn) and for
|α| ≤ k

∂α (ηε ∗ f) = ηε ∗ (∂αf)→ ∂αf in Lp(Rn) as ε→ 0+.

It follows that ηε ∗ f → f in W k,p(Rn) as ε→ 0. Therefore C∞(Rn)∩W k,p(Rn) is
dense in W k,p(Rn).

Now suppose that f ∈ C∞(Rn) ∩W k,p(Rn), and let φ ∈ C∞c (Rn) be a cut-off
function such that

φ(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2.

Define φR(x) = φ(x/R) and fR = φRf ∈ C∞c (Rn). Then, by the Leibnitz rule,

∂αfR = φR∂αf +
1

R
hR

where hR is bounded in Lp uniformly in R. Hence, by the dominated convergence
theorem

∂αfR → ∂αf in Lp as R→∞,
so fR → f in W k,p(Rn) as R→∞. It follows that C∞c (Ω) is dense in W k,p(Rn). �
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If Ω is a proper open subset of Rn, then C∞c (Ω) is not dense in W k,p(Ω).

Instead, its closure is the space of functions W k,p
0 (Ω) that ‘vanish on the boundary

∂Ω.’ We discuss this further below. The space C∞(Ω)∩W k,p(Ω) is dense inW k,p(Ω)
for any open set Ω (Meyers and Serrin, 1964), so that W k,p(Ω) may alternatively be
defined as the completion of the space of smooth functions in Ω whose derivatives
of order less than or equal to k belong to Lp(Ω). Such functions need not extend
to continuous functions on Ω or be bounded on Ω.

3.7. Sobolev embedding: p < n

G. H. Hardy reported Harald Bohr as saying ‘all analysts spend
half their time hunter through the literature for inequalities
which they want to use but cannot prove.’2

Let us first consider the following basic question: Can we estimate the Lq(Rn)-
norm of a smooth, compactly supported function in terms of the Lp(Rn)-norm of
its derivative? As we will show, given 1 ≤ p < n, this is possible for a unique value
of q, called the Sobolev conjugate of p.

We may motivate the answer by means of a scaling argument. We are looking
for an estimate of the form

(3.7) ‖f‖Lq ≤ C‖Df‖Lp for all f ∈ C∞c (Rn)

for some constant C = C(p, q, n). For λ > 0, let fλ denote the rescaled function

fλ(x) = f
(x
λ

)
.

Then, changing variables x 7→ λx in the integrals that define the Lp, Lq norms,
with 1 ≤ p, q <∞, and using the fact that

Dfλ =
1

λ
(Df)λ

we find that (∫
Rn
|Dfλ|p dx

)1/p

= λn/p−1

(∫
Rn
|Df |p dx

)1/p

,(∫
Rn
|fλ|q dx

)1/q

= λn/q
(∫

Rn
|f |q dx

)1/q

.

These norms must scale according to the same exponent if we are to have an
inequality of the desired form, otherwise we can violate the inequality by taking
λ→ 0 or λ→∞. The equality of exponents implies that q = p∗ where p∗ satifies

(3.8)
1

p∗
=

1

p
− 1

n
.

Note that we need 1 ≤ p < n to ensure that p∗ > 0, in which case p < p∗ < ∞.
We assume that n ≥ 2. Writing the solution of (3.8) for p∗ explicitly, we make the
following definition.

Definition 3.25. If 1 ≤ p < n, the Sobolev conjugate p∗ of p is

p∗ =
np

n− p
.

2From the Introduction of [13].
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Thus, an estimate of the form (3.7) is possible only if q = p∗; we will show
that (3.7) is, in fact, true when q = p∗. This result was obtained by Sobolev
(1938), who used potential-theoretic methods (c.f. Section 5.D). The proof we give
is due to Nirenberg (1959). The inequality is usually called the Gagliardo-Nirenberg
inequality or Sobolev inequality (or Gagliardo-Nirenberg-Sobolev inequality . . . ).

Before describing the proof, we introduce some notation, explain the main idea,
and establish a preliminary inequality.

For 1 ≤ i ≤ n and x = (x1, x2, . . . , xn) ∈ Rn, let

x′i = (x1, . . . , x̂i, . . . xn) ∈ Rn−1,

where the ‘hat’ means that the ith coordinate is omitted. We write x = (xi, x
′
i)

and denote the value of a function f : Rn → R at x by

f(x) = f (xi, x
′
i) .

We denote the partial derivative with respect to xi by ∂i.
If f is smooth with compact support, the fundamental theorem of calculus

implies that

f(x) =

∫ xi

−∞
∂if(t, x′i) dt.

Taking absolute values, we get

|f(x)| ≤
∫ ∞
−∞
|∂if(t, x′i)| dt.

We can improve the constant in this estimate by using the fact that∫ ∞
−∞

∂if(t, x′i) dt = 0.

Lemma 3.26. Suppose that g : R → R is an integrable function with compact
support such that

∫
g dt = 0. If

f(x) =

∫ x

−∞
g(t) dt,

then

|f(x)| ≤ 1

2

∫
|g| dt.

Proof. Let g = g+ − g− where the nonnegative functions g+, g− are defined
by g+ = max(g, 0), g− = max(−g, 0). Then |g| = g+ + g− and∫

g+ dt =

∫
g− dt =

1

2

∫
|g| dt.

It follows that

f(x) ≤
∫ x

−∞
g+(t) dt ≤

∫ ∞
−∞

g+(t) dt ≤ 1

2

∫
|g| dt,

f(x) ≥ −
∫ x

−∞
g−(t) dt ≥ −

∫ ∞
−∞

g−(t) dt ≥ −1

2

∫
|g| dt,

which proves the result. �
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Thus, for 1 ≤ i ≤ n we have

|f(x)| ≤ 1

2

∫ ∞
−∞
|∂if(t, x′i)| dt.

The idea of the proof is to average a suitable power of this inequality over the
i-directions and integrate the result to estimate f in terms of Df . In order to do
this, we use the following inequality, which estimates the L1-norm of a function of
x ∈ Rn in terms of the Ln−1-norms of n functions of x′i ∈ Rn−1 whose product
bounds the original function pointwise.

Theorem 3.27. Suppose that n ≥ 2 and{
gi ∈ C∞c (Rn−1) : 1 ≤ i ≤ n

}
are nonnegative functions. Define g ∈ C∞c (Rn) by

g(x) =
n∏
i=1

gi(x
′
i).

Then

(3.9)

∫
g dx ≤

n∏
i=1

‖gi‖n−1 .

Before proving the theorem, we consider what it says in more detail. If n = 2,
the theorem states that∫

g1(x2)g2(x1) dx1dx2 ≤
(∫

g1(x2) dx2

)(∫
g2(x1) dx1

)
,

which follows immediately from Fubini’s theorem. If n = 3, the theorem states that∫
g1(x2, x3)g2(x1, x3)g3(x1, x2) dx1dx2dx3

≤
(∫

g2
1(x2, x3) dx2dx3

)1/2(∫
g2

2(x1, x3) dx1dx3

)1/2(∫
g2

3(x1, x2) dx1dx2

)1/2

.

To prove the inequality in this case, we fix x1 and apply the Cauchy-Schwartz
inequality to the x2x3-integral of g1 · g2g3. We then use the inequality for n = 2 to
estimate the x2x3-integral of g2g3, and integrate the result over x1. An analogous
approach works for higher n.

Note that under the scaling gi 7→ λgi, both sides of (3.9) scale in the same way,∫
g dx 7→

(
n∏
i=1

λi

)∫
g dx,

n∏
i=1

‖gi‖n−1 7→

(
n∏
i=1

λi

)
n∏
i=1

‖gi‖n−1

as must be true for any inequality involving norms. Also, under the spatial rescaling
x 7→ λx, we have ∫

g dx 7→ λ−n
∫
g dx,

while ‖gi‖p 7→ λ−(n−1)/p‖gi‖p, so
n∏
i=1

‖gi‖p 7→ λ−n(n−1)/p
n∏
i=1

‖gi‖p

Thus, if p = n− 1 the two terms scale in the same way, which explains the appear-
ance of the Ln−1-norms of the gi’s on the right hand side of (3.9).
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Proof. We use proof by induction. The result is true when n = 2. Suppose
that it is true for n− 1 where n ≥ 3.

For 1 ≤ i ≤ n, let gi : Rn−1 → R and g : Rn → R be the functions given in the
theorem. Fix x1 ∈ R and define gx1

: Rn−1 → R by

gx1
(x′1) = g(x1, x

′
1).

For 2 ≤ i ≤ n, let x′i =
(
x1, x

′
1,i

)
where

x′1,i = (x̂1, . . . , x̂i, . . . xn) ∈ Rn−2.

Define gi,x1
: Rn−2 → R and g̃i,x1

: Rn−1 → R by

gi,x1

(
x′1,i
)

= gi
(
x1, x

′
1,i

)
.

Then

gx1(x′1) = g1(x′1)

n∏
i=2

gi,x1

(
x′1,i
)
.

Using Hölder’s inequality with q = n− 1 and q′ = (n− 1)/(n− 2), we get∫
gx1

dx′1 =

∫
g1

(
n∏
i=2

gi,x1

(
x′1,i
))

dx′1

≤ ‖g1‖n−1

∫ ( n∏
i=2

gi,x1

(
x′1,i
))(n−1)/(n−2)

dx′1

(n−2)/(n−1)

.

The induction hypothesis implies that∫ ( n∏
i=2

gi,x1

(
x′1,i
))(n−1)/(n−2)

dx′1 ≤
n∏
i=2

∥∥∥g(n−1)/(n−2)
i,x1

∥∥∥
n−2

≤
n∏
i=2

‖gi,x1
‖(n−1)/(n−2)
n−1 .

Hence, ∫
gx1 dx

′
1 ≤ ‖g1‖n−1

n∏
i=2

‖gi,x1‖n−1 .

Integrating this equation over x1 and using the generalized Hölder inequality with
p2 = p3 = · · · = pn = n− 1, we get∫

g dx ≤ ‖g1‖n−1

∫ ( n∏
i=2

‖gi,x1‖n−1

)
dx1

≤ ‖g1‖n−1

(
n∏
i=2

∫
‖gi,x1

‖n−1
n−1 dx1

)1/(n−1)

.

Thus, since ∫
‖gi,x1

‖n−1
n−1 dx1 =

∫ (∫ ∣∣gi,x1
(x′1,i)

∣∣n−1
dx′1,i

)
dx1

=

∫
|gi(x′i)|

n−1
dx′i

= ‖gi‖n−1
n−1 ,
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we find that ∫
g dx ≤

n∏
i=1

‖gi‖n−1 .

The result follows by induction. �

We now prove the main result.

Theorem 3.28. Let 1 ≤ p < n, where n ≥ 2, and let p∗ be the Sobolev conjugate
of p given in Definition 3.25. Then

‖f‖p∗ ≤ C ‖Df‖p , for all f ∈ C∞c (Rn)

where

(3.10) C(n, p) =
p

2n

(
n− 1

n− p

)
.

Proof. First, we prove the result for p = 1. For 1 ≤ i ≤ n, we have

|f(x)| ≤ 1

2

∫
|∂if(t, x′i)| dt.

Multiplying these inequalities and taking the (n− 1)th root, we get

|f |n/(n−1) ≤ 1

2n/(n−1)
g, g =

n∏
i=1

g̃i

where g̃i(x) = gi(x
′
i) with

gi(x
′
i) =

(∫
|∂if(t, x′i)| dt

)1/(n−1)

.

Theorem 3.27 implies that ∫
g dx ≤

n∏
i=1

‖gi‖n−1 .

Since

‖gi‖n−1 =

(∫
|∂if | dx

)1/(n−1)

it follows that ∫
|f |n/(n−1) dx ≤ 1

2n/(n−1)

(
n∏
i=1

∫
|∂if | dx

)1/(n−1)

.

Note that n/(n− 1) = 1∗ is the Sobolev conjugate of 1.
Using the arithmetic-geometric mean inequality,(

n∏
i=1

ai

)1/n

≤ 1

n

n∑
i=1

ai,

we get ∫
|f |n/(n−1) dx ≤

(
1

2n

n∑
i=1

∫
|∂if | dx

)n/(n−1)

,

or

‖f‖1∗ ≤
1

2n
‖Df‖1 ,
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which proves the result when p = 1.
Next suppose that 1 < p < n. For any s > 1, we have

d

dx
|x|s = s sgnx|x|s−1.

Thus,

|f(x)|s =

∫ xi

−∞
∂i |f(t, x′i)|

s
dt

= s

∫ xi

−∞
|f(t, x′i)|

s−1
sgn [f(t, x′i)] ∂if(t, x′i) dt.

Using Lemma 3.26, it follows that

|f(x)|s ≤ s

2

∫ ∞
−∞

∣∣fs−1(t, x′i)∂if(t, x′i)
∣∣ dt,

and multiplication of these inequalities gives

|f(x)|sn ≤
(s

2

)n n∏
i=1

∫ ∞
−∞

∣∣fs−1(t, x′i)∂if(t, x′i)
∣∣ dt.

Applying Theorem 3.27 with the functions

gi(x
′
i) =

[∫ ∞
−∞

∣∣fs−1(t, x′i)∂if(t, x′i)
∣∣ dt]1/(n−1)

we find that

‖f‖snsn/(n−1) ≤
s

2

n∏
i=1

∥∥fs−1∂if
∥∥

1
.

From Hölder’s inequality,∥∥fs−1∂if
∥∥

1
≤
∥∥fs−1

∥∥
p′
‖∂if‖p .

We have ∥∥fs−1
∥∥
p′

= ‖f‖s−1
p′(s−1)

We choose s > 1 so that

p′(s− 1) =
sn

n− 1
,

which holds if

s = p

(
n− 1

n− p

)
,

sn

n− 1
= p∗.

Then

‖f‖p∗ ≤
s

2

(
n∏
i=1

‖∂if‖p

)1/n

.

Using the arithmetic-geometric mean inequality, we get

‖f‖p∗ ≤
s

2n

(
n∑
i=1

‖∂if‖pp

)1/p

,

which proves the result. �
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We can interpret this result roughly as follows: Differentiation of a function
increases the strength of its local singularities and improves its decay at infinity.
Thus, if Df ∈ Lp, it is reasonable to expect that f ∈ Lp∗ for some p∗ > p since
Lp
∗
-functions have weaker singularities and can decay more slowly at infinity than

Lp-functions.

Example 3.29. For a > 0, let fa : Rn → R be the function

fa(x) =
1

|x|a

considered in Example 3.7. This function does not belong to Lq(Rn) for any a since
the integral at infinity diverges whenever the integral at zero converges. Let φ be a
smooth cut-off function that is equal to one for |x| ≤ 1 and zero for |x| ≥ 2. Then
ga = φfa is an unbounded function with compact support. We have ga ∈ Lq(Rn)
if aq < n, and Dga ∈ Lp(Rn) if p(a + 1) < n or ap∗ < n. Thus if Dga ∈ Lp(Rn),
then ga ∈ Lq(Rn) for 1 ≤ q ≤ p∗. On the other hand, the function ha = (1− φ)fa
is smooth and decays like |x|−a as x → ∞. We have ha ∈ Lq(Rn) if qa > n and
Dha ∈ Lp(Rn) if p(a+1) > n or p∗a > n. Thus, if Dha ∈ Lp(Rn), then f ∈ Lq(Rn)
for p∗ ≤ q < ∞. The function fab = ga + hb belongs to Lp

∗
(Rn) for any choice of

a, b > 0 such that Dfab ∈ Lp(Rn). On the other hand, for any 1 ≤ q ≤ ∞ such that
q 6= p∗, there is a choice of a, b > 0 such that Dfab ∈ Lp(Rn) but fab /∈ Lq(Rn).

The constant in Theorem 3.28 is not optimal. For p = 1, the best constant is

C(n, 1) =
1

nα
1/n
n

where αn is the volume of the unit ball, or

C(n, 1) =
1

n
√
π

[
Γ
(

1 +
n

2

)]1/n
where Γ is the Γ-function. Equality is obtained in the limit of functions that
approach the characteristic function of a ball. This result for the best Sobolev
constant is equivalent to the isoperimetric inequality that a sphere has minimal
area among all surfaces enclosing a given volume.

For 1 < p < n, the best constant is (Talenti, 1976)

C(n, p) =
1

n1/p
√
π

(
p− 1

n− p

)1−1/p [
Γ(1 + n/2)Γ(n)

Γ(n/p)Γ(1 + n− n/p)

]1/n

.

Equality holds for functions of the form

f(x) =
(
a+ b|x|p/(p−1)

)1−n/p

where a, b are positive constants.
The Sobolev inequality in Theorem 3.28 does not hold in the limiting case

p→ n, p∗ →∞.

Example 3.30. If φ(x) is a smooth cut-off function that is equal to one for |x| ≤ 1
and zero for |x| ≥ 2, and

f(x) = φ(x) log log

(
1 +

1

|x|

)
,

then Df ∈ Ln(Rn), and f ∈W 1,n(R), but f /∈ L∞(Rn).
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We can use the Sobolev inequality to prove various embedding theorems. In
general, we say that a Banach space X is continuously embedded, or embedded for
short, in a Banach space Y if there is a one-to-one, bounded linear map ı : X → Y .
We often think of ı as identifying elements of the smaller space X with elements
of the larger space Y ; if X is a subset of Y , then ı is the inclusion map. The
boundedness of ı means that there is a constant C such that ‖ıx‖Y ≤ C‖x‖X for
all x ∈ X, so the weaker Y -norm of ıx is controlled by the stronger X-norm of x.

We write an embedding as X ↪→ Y , or as X ⊂ Y when the boundedness is
understood.

Theorem 3.31. Suppose that 1 ≤ p < n and p ≤ q ≤ p∗ where p∗ is the Sobolev
conjugate of p. Then W 1,p(Rn) ↪→ Lq(Rn) and

‖f‖q ≤ C‖f‖W 1,p for all f ∈W 1,p(Rn)

for some constant C = C(n, p, q).

Proof. If f ∈W 1,p(Rn), then by Theorem 3.24 there is a sequence of functions
fn ∈ C∞c (Rn) that converges to f in W 1,p(Rn). Theorem 3.28 implies that fn → f
in Lp

∗
(Rn). In detail: {Dfn} converges to Df in Lp so it is Cauchy in Lp; since

‖fn − fm‖p∗ ≤ C‖Dfn −Dfm‖p
{fn} is Cauchy in Lp

∗
; therefore fn → f̃ for some f̃ ∈ Lp∗ since Lp

∗
is complete;

and f̃ is equivalent to f since a subsequence of {fn} converges pointwise a.e. to f̃ ,
from the Lp

∗
convergence, and to f , from the Lp-convergence.

Thus, f ∈ Lp∗(Rn) and
‖f‖p∗ ≤ C‖Df‖p.

Since f ∈ Lp(Rn), Lemma 1.11 implies that for p < q < p∗

‖f‖q ≤ ‖f‖θp‖f‖1−θp∗

where 0 < θ < 1 is defined by

1

q
=
θ

p
+

1− θ
p∗

.

Therefore, using Theorem 3.28 and the inequality

aθb1−θ ≤
[
θθ(1− θ)1−θ]1/p (ap + bp)

1/p
,

we get

‖f‖q ≤ C1−θ‖f‖θp‖Df‖1−θp

≤ C1−θ [θθ(1− θ)1−θ]1/p (‖f‖pp + ‖Df‖pp
)1/p

≤ C1−θ [θθ(1− θ)1−θ]1/p ‖f‖W 1,p .

�

Sobolev embedding gives a stronger conclusion for sets Ω with finite measure.
In that case, Lp

∗
(Ω) ↪→ Lq(Ω) for every 1 ≤ q ≤ p∗, so W 1,p(Ω) ↪→ Lq(Ω) for

1 ≤ q ≤ p∗, not just p ≤ q ≤ p∗.
Theorem 3.28 does not, of course, imply that f ∈ Lp

∗
(Rn) whenever Df ∈

Lp(Rn), since constant functions have zero derivative. To ensure that f ∈ Lp∗(Rn),
we also need to impose a decay condition on f that eliminates the constant func-
tions. In Theorem 3.31, this is provided by the assumption that f ∈ Lp(Rn) in
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addition to Df ∈ Lp(Rn). The weakest decay condition we can impose is the
following one.

Definition 3.32. A Lebesgue measurable function f : Rn → R vanishes at infinity
if for every ε > 0 the set {x ∈ Rn : |f(x)| > ε} has finite Lebesgue measure.

If f ∈ Lp(Rn) for some 1 ≤ p <∞, then f vanishes at infinity. Note that this
does not imply that lim|x|→∞ f(x) = 0.

Example 3.33. Define f : R→ R by

f =
∑
n∈N

χIn , In =

[
n, n+

1

n2

]
where χI is the characteristic function of the interval I. Then∫

f dx =
∑
n∈N

1

n2
<∞,

so f ∈ L1(R). The limit of f(x) as |x| → ∞ does not exist since f(x) takes on the
values 0 and 1 for arbitrarily large values of x. Nevertheless, f vanishes at infinity
since for any ε < 1,

|{x ∈ R : |f(x)| > ε}| =
∑
n∈N

1

n2
,

which is finite.

Example 3.34. The function f : R→ R defined by

f(x) =

{
1/log x if x ≥ 2
0 if x < 2

vanishes at infinity, but f /∈ Lp(R) for any 1 ≤ p <∞.

The Sobolev embedding theorem remains true for functions that vanish at
infinity.

Theorem 3.35. Suppose that f ∈ L1
loc(Rn) is weakly differentiable with Df ∈

Lp(Rn) where 1 ≤ p < n and f vanishes at infinity. Then f ∈ Lp∗(Rn) and

‖f‖p∗ ≤ C‖Df‖p

where C is given in (3.10).

As before, we prove this by approximating f with smooth compactly supported
functions. We omit the details.

3.8. Sobolev embedding: p > n

Friedrichs was a great lover of inequalities, and that affected me
very much. The point of view was that the inequalities are more
interesting than the equalities, the identities.3

3Louis Nirenberg on K. O. Friedrichs, from Notices of the AMS, April 2002.
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In the previous section, we saw that if the weak derivative of a function that
vanishes at infinity belongs to Lp(Rn) with p < n, then the function has improved
integrability properties and belongs to Lp

∗
(Rn). Even though the function is weakly

differentiable, it need not be continuous. In this section, we show that if the deriva-
tive belongs to Lp(Rn) with p > n then the function (or a pointwise a.e. equivalent
version of it) is continuous, and in fact Hölder continuous. The following result is
due to Morrey (1940). The main idea is to estimate the difference |f(x)− f(y)| in
terms of Df by the mean value theorem, average the result over a ball Br (x) and
estimate the result in terms of ‖Df‖p by Hölder’s inequality.

Theorem 3.36. Let n < p <∞ and

α = 1− n

p
,

with α = 1 if p =∞. Then there are constants C = C(n, p) such that

[f ]α ≤ C ‖Df‖p for all f ∈ C∞c (Rn),(3.11)

sup
Rn
|f | ≤ C ‖f‖W 1,p for all f ∈ C∞c (Rn),(3.12)

where [·]α denotes the Hölder seminorm [·]α,Rn defined in (1.1).

Proof. First we prove that there exists a constant C depending only on n
such that for any ball Br (x)

(3.13) −
∫
Br(x)

|f(x)− f(y)| dy ≤ C
∫
Br(x)

|Df(y)|
|x− y|n−1

dy

Let w ∈ ∂B1 (0) be a unit vector. For s > 0

f(x+ sw)− f(x) =

∫ s

0

d

dt
f(x+ tw) dt =

∫ s

0

Df(x+ tw) · w dt,

and therefore since |w| = 1

|f(x+ sw)− f(x)| ≤
∫ s

0

|Df(x+ tw)| dt.

Integrating this inequality with respect to w over the unit sphere, we get∫
∂B1(0)

|f(x)− f(x+ sw)| dS(w) ≤
∫
∂B1(0)

(∫ s

0

|Df(x+ tw)| dt
)
dS(w).

From Proposition 1.45,∫
∂B1(0)

(∫ s

0

|Df(x+ tw)| dt
)
dS(w) =

∫
∂B1(0)

∫ s

0

|Df(x+ tw)|
tn−1

tn−1 dtdS(w)

=

∫
Bs(x)

|Df(y)|
|x− y|n−1

dy,

Thus, ∫
∂B1(0)

|f(x)− f(x+ sw)| dS(w) ≤
∫
Bs(x)

|Df(y)|
|x− y|n−1

dy.
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Using Proposition 1.45 together with this inequality, and estimating the integral
over Bs (x) by the integral over Br (x) for s ≤ r, we find that∫

Br(x)

|f(x)− f(y)| dy =

∫ r

0

(∫
∂B1(0)

|f(x)− f(x+ sw)| dS(w)

)
sn−1 ds

≤
∫ r

0

(∫
Bs(x)

|Df(y)|
|x− y|n−1

dy

)
sn−1 ds

≤
(∫ r

0

sn−1 ds

)(∫
Br(x)

|Df(y)|
|x− y|n−1

dy

)

≤ rn

n

∫
Br(x)

|Df(y)|
|x− y|n−1

dy

This gives (3.13) with C = (nαn)−1.
Next, we prove (3.11). Suppose that x, y ∈ Rn. Let r = |x − y| and Ω =

Br (x) ∩Br (y). Then averaging the inequality

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(y)− f(z)|

with respect to z over Ω, we get

(3.14) |f(x)− f(y)| ≤ −
∫

Ω

|f(x)− f(z)| dz +−
∫

Ω

|f(y)− f(z)| dz.

From (3.13) and Hölder’s inequality,

−
∫

Ω

|f(x)− f(z)| dz ≤ −
∫
Br(x)

|f(x)− f(z)| dz

≤ C
∫
Br(x)

|Df(y)|
|x− y|n−1

dy

≤ C

(∫
Br(x)

|Df |p dz

)1/p(∫
Br(x)

dz

|x− z|p′(n−1)

)1/p′

.

We have (∫
Br(x)

dz

|x− z|p′(n−1)

)1/p′

= C

(∫ r

0

rn−1dr

rp′(n−1)

)1/p′

= Cr1−n/p

where C denotes a generic constant depending on n and p. Thus,

−
∫

Ω

|f(x)− f(z)| dz ≤ Cr1−n/p ‖Df‖Lp(Rn) ,

with a similar estimate for the integral in which x is replaced by y. Using these
estimates in (3.14) and setting r = |x− y|, we get

(3.15) |f(x)− f(y)| ≤ C|x− y|1−n/p ‖Df‖Lp(Rn) ,

which proves (3.11).
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Finally, we prove (3.12). For any x ∈ Rn, using (3.15), we find that

|f(x)| ≤ −
∫
B1(x)

|f(x)− f(y)| dy +−
∫
B1(x)

|f(y)| dy

≤ C ‖Df‖Lp(Rn) + C ‖f‖Lp(B1(x))

≤ C ‖f‖W 1,p(Rn) ,

and taking the supremum with respect to x, we get (3.12). �

Combining these estimates for

‖f‖C0,α = sup |f |+ [f ]α

and using a density argument, we get the following theorem. We denote by C0,α
0 (Rn)

the space of Hölder continuous functions f whose limit as x→∞ is zero, meaning
that for every ε > 0 there exists a compact set K ⊂ Rn such that |f(x)| < ε if
x ∈ Rn \K.

Theorem 3.37. Let n < p <∞ and α = 1− n/p. Then

W 1,p(Rn) ↪→ C0,α
0 (Rn)

and there is a constant C = C(n, p) such that

‖f‖C0,α ≤ C ‖f‖W 1,p for all f ∈ C∞c (Rn).

Proof. From Theorem 3.24, the mollified functions ηε ∗ f ε → f in W 1,p(Rn)
as ε→ 0+, and by Theorem 3.36

|f ε(x)− f ε(y)| ≤ C|x− y|1−n/p ‖Df ε‖Lp .
Letting ε→ 0+, we find that

|f(x)− f(y)| ≤ C|x− y|1−n/p ‖Df‖Lp
for all Lebesgue points x, y ∈ Rn of f . Since these form a set of measure zero, f
extends by uniform continuity to a uniformly continuous function on Rn.

Also from Theorem 3.24, the function f ∈ W 1,p(Rn) is a limit of compactly
supported functions, and from (3.12), f is the uniform limit of compactly supported
functions, which implies that its limit as x→∞ is zero. �

We state two results without proof (see §5.8 of [8]).
For p = ∞, the same proof as the proof of (3.11), using Hölder’s inequality

with p =∞ and p′ = 1, shows that f ∈W 1,∞(Rn) is Lipschitz continuous, with

[f ]1 ≤ C ‖Df‖L∞ .
A function in W 1,∞(Rn) need not approach zero at infinity. We have in this case
the following characterization of Lipschitz functions.

Theorem 3.38. A function f ∈ L1
loc(Rn) is Lipschitz continuous if and only if it

is weakly differentiable and Df ∈ L∞(Rn).

When n < p ≤ ∞, the above estimates can be used to prove that pointwise
derivative of a Sobolev function exists almost everywhere and agrees with the weak
derivative.

Theorem 3.39. If f ∈ W 1,p
loc (Rn) for some n < p ≤ ∞, then f is differentiable

pointwise a.e. and the pointwise derivative coincides with the weak derivative.



3.9. BOUNDARY VALUES OF SOBOLEV FUNCTIONS 71

3.9. Boundary values of Sobolev functions

If f ∈ C(Ω) is a continuous function on the closure of a smooth domain Ω,
we can define the boundary values of f pointwise as a continuous function on the
boundary ∂Ω. We can also do this when Sobolev embedding implies that a function
is Hölder continuous. In general, however, a Sobolev function is not equivalent
pointwise a.e. to a continuous function and the boundary of a smooth open set has
measure zero, so the boundary values cannot be defined pointwise. For example,
we cannot make sense of the boundary values of an Lp-function as an Lp-function
on the boundary.

Example 3.40. Suppose T : C∞([0, 1])→ R is the map defined by T : φ 7→ φ(0).

If φε(x) = e−x
2/ε, then ‖φε‖L1 → 0 as ε → 0+, but φε(0) = 1 for every ε > 0.

Thus, T is not bounded (or even closed) and we cannot extend it by continuity to
L1(0, 1).

Nevertheless, we can define the boundary values of a Sobolev function at the
expense of a loss of smoothness in restricting the function to the boundary. To do
this, we show that the linear map on smooth functions that gives their boundary
values is bounded with respect to appropriate Sobolev norms. We then extend the
map by continuity to Sobolev functions, and the resulting trace map defines their
boundary values.

We consider the basic case of a half-space Rn+. We write x = (x′, xn) ∈ Rn+
where xn > 0 and (x′, 0) ∈ ∂Rn+ = Rn−1.

The Sobolev space W 1,p(Rn+) consists of functions f ∈ Lp(Rn+) that are weakly
differentiable in Rn+ with Df ∈ Lp(Rn+). We begin with a result which states that
we can extend functions f ∈W 1,p(Rn+) to functions in W 1,p(Rn) without increasing
their norm. An extension may be constructed by reflecting a function across the
boundary ∂Rn+ in a way that preserves its differentiability. Such an extension map
E is not, of course, unique.

Theorem 3.41. There is a bounded linear map

E : W 1,p(Rn+)→W 1,p(Rn)

such that Ef = f pointwise a.e. in Rn+ and for some constant C = C(n, p)

‖Ef‖W 1,p(Rn) ≤ C ‖f‖W 1,p(Rn+) .

The following approximation result may be proved by extending a Sobolev
function from Rn+ to Rn, mollifying the extension, and restricting the result to the
half-space.

Theorem 3.42. The space C∞c (Rn+) of smooth functions is dense in W k,p(Rn+).

Functions f : Rn+ → R in C∞c (Rn+) need not vanish on the boundary ∂Rn+. On
the other hand, functions in the space C∞c (Rn+) of smooth functions whose support
is contained in the open half space Rn+ do vanish on the boundary, and it is not true

that this space is dense in W k,p(Rn+). Roughly speaking, we can only approximate
by functions in C∞c (Rn+) Sobolev functions that ‘vanish on the boundary’. We make
the following definition.

Definition 3.43. The space W k,p
0 (Rn+) is the closure of C∞c (Rn+) in W k,p(Rn+).
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The interpretation of W 1,p
0 (Rn+) as the space of Sobolev functions that vanish

on the boundary is made more precise in the following theorem, which shows the
existence of a trace map T that maps a Sobolev function to its boundary values,
and states that functions in W 1,p

0 (Rn+) are the ones whose trace is equal to zero.

Theorem 3.44. For 1 ≤ p <∞, there is a bounded linear operator

T : W 1,p(Rn+)→ Lp(∂Rn+)

such that for any f ∈ C∞c (Rn+)

(Tf) (x′) = f (x′, 0)

and

‖Tf‖Lp(Rn−1) ≤ C ‖f‖W 1,p(Rn+)

for some constant C depending only on p. Furthermore, f ∈W k,p
0 (Rn+) if and only

if Tf = 0.

Proof. First, we consider f ∈ C∞c (Rn+). For x′ ∈ Rn−1 and p ≥ 1, we have

|f (x′, 0)|p ≤ p
∫ ∞

0

|f (x′, t)|p−1 |∂nf (x′, t)| dt.

Hence, using Hölder’s inequality and the identity p′(p− 1) = p, we get∫
|f (x′, 0)|p dx′ ≤ p

∫ ∞
0

|f (x′, t)|p−1 |∂nf (x′, t)| dx′dt

≤ p
(∫ ∞

0

|f (x′, t)|p
′(p−1)

dx′dt

)1/p′ (∫ ∞
0

|∂nf (x′, t)|p dx′dt
)1/p

≤ p ‖f‖p−1
p ‖∂nf‖p

≤ p‖f‖p
Wk,p .

The trace map

T : C∞c (Rn+)→ C∞c (Rn−1)

is therefore bounded with respect to the W 1,p(Rn+) and Lp(∂Rn+) norms, and ex-
tends by density and continuity to a map between these spaces.

It follows immediately that Tf = 0 if f ∈ W k,p
0 (Rn+). We omit the proof that

Tf = 0 implies that f ∈W k,p
0 (Rn+) (see [8]). �

If p = 1, the trace T : W 1,1(Rn+) → L1(Rn−1) is onto, but if 1 < p < ∞
the range of T is not all of Lp. In that case, T : W 1,p(Rn+) → B1−1/p,p(Rn−1)

maps W 1,p onto a Besov space B1−1/p,p; roughly speaking, this is a Sobolev space
of functions with fractional derivatives, and there is a loss of 1/p derivatives in
restricting a function to the boundary [20].

Note that if f ∈ W 2,p
0 (Rn+), then ∂if ∈ W 1,p

0 (Rn+), so T (∂if) = 0. Thus, both
f and Df vanish on the boundary. The correct way to formulate the condition that
f has weak derivatives of order less than or equal to two and satisfies the Dirichlet
condition f = 0 on the boundary is that f ∈W 2,p(Rn+) ∩W 1,p

0 (Rn+).
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3.10. Compactness results

A Banach spaceX is compactly embedded in a Banach space Y , writtenX b Y ,
if the embedding ı : X → Y is compact. That is, ı maps bounded sets in X to
precompact sets in Y ; or, equivalently, if {xn} is a bounded sequence in X, then
{ıxn} has a convergent subsequence in Y .

An important property of the Sobolev embeddings is that they are compact on
domains with finite measure. This corresponds to the rough principle that uniform
bounds on higher derivatives imply compactness with respect to lower derivatives.
The compactness of the Sobolev embeddings, due to Rellich and Kondrachov, de-
pend on the Arzelà-Ascoli theorem. We will prove a version for W 1,p

0 (Ω) by use of
the Lp-compactness criterion in Theorem 1.15.

Theorem 3.45. Let Ω be a bounded open set in Rn, 1 ≤ p < n, and 1 ≤ q < p∗.
If F is a bounded set in W 1,p

0 (Ω), then F is precompact in Lq(Rn).

Proof. By a density argument, we may assume that the functions in F are
smooth and spt f b Ω. We may then extend the functions and their derivatives by
zero to obtain smooth functions on Rn, and prove that F is precompact in Lq(Rn).

Condition (1) in Theorem 1.15 follows immediately from the boundedness of Ω
and the Sobolev embeddeding theorem: for all f ∈ F ,

‖f‖Lq(Rn) = ‖f‖Lq(Ω) ≤ C‖f‖Lp∗ (Ω) ≤ C‖Df‖Lp(Rn) ≤ C

where C denotes a generic constant that does not depend on f . Condition (2) is
satisfied automatically since the supports of all functions in F are contained in the
same bounded set.

To verify (3), we first note that since Df is supported inside the bounded open
set Ω,

‖Df‖L1(Rn) ≤ C ‖Df‖Lp(Rn) .

Fix h ∈ Rn and let fh(x) = f(x+ h) denote the translation of f by h. Then

|fh(x)− f(x)| =
∣∣∣∣∫ 1

0

h ·Df(x+ th) dt

∣∣∣∣ ≤ |h|∫ 1

0

|Df(x+ th)| dt.

Integrating this inequality with respect to x and using Fubini’s theorem to exchange
the order of integration on the right-hand side, together with the fact that the inner
x-integral is independent of t, we get∫

Rn
|fh(x)− f(x)| dx ≤ |h| ‖Df‖L1(Rn) ≤ C|h| ‖Df‖Lp(Rn) .

Thus,

(3.16) ‖fh − f‖L1(Rn) ≤ C|h| ‖Df‖Lp(Rn) .

Using the interpolation inequality in Lemma 1.11, we get for any 1 ≤ q < p∗ that

(3.17) ‖fh − f‖Lq(Rn) ≤ ‖fh − f‖
θ
L1(Rn) ‖fh − f‖

1−θ
Lp∗ (Rn)

where 0 < θ ≤ 1 is given by
1

q
= θ +

1− θ
p∗

.

The Sobolev embedding theorem implies that

‖fh − f‖Lp∗ (Rn) ≤ C ‖Df‖Lp(Rn) .
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Using this inequality and (3.16) in (3.17), we get

‖fh − f‖Lq(Rn) ≤ C|h|
θ ‖Df‖Lp(Rn) .

It follows that F is Lq-equicontinuous if the derivatives of functions in F are uni-
formly bounded in Lp, and the result follows. �

Equivalently, this theorem states that if {f:k ∈ N} is a sequence of functions in

W 1,p
0 (Ω) such that

‖fk‖W 1,p ≤ C for all k ∈ N,
for some constant C, then there exists a subsequence fki and a function f ∈ Lq(Ω)
such that

fki → f as i→∞ in Lq(Ω).

The assumptions that the domain Ω satisfies a boundedness condition and that
q < p∗ are necessary.

Example 3.46. If φ ∈W 1,p(Rn) and fm(x) = φ(x− cm), where cm →∞ as m→
∞, then ‖fm‖W 1,p = ‖φ‖W 1,p is constant, but {fm} has no convergent subsequence
in Lq since the functions ‘escape’ to infinity. Thus, compactness does not hold
without some limitation on the decay of the functions.

Example 3.47. For 1 ≤ p < n, define fk : Rn → R by

fk(x) =

{
kn/p

∗
(1− k|x|) if |x| < 1/k,

0 if |x| ≥ 1/k.

Then spt fk ⊂ B1 (0) for every k ∈ N and {fk} is bounded in W 1,p(Rn), but no
subsequence converges strongly in Lp

∗
(Rn).

The loss of compactness in the critical case q = p∗ has received a great deal of
study (for example, in the concentration compactness principle of P.L. Lions).

If Ω is a smooth and bounded domain, the use of an extension map implies that
W 1,p(Ω) b Lq(Ω). For an example of the loss of this compactness in a bounded
domain with an irregular boundary, see [20].

Theorem 3.48. Let Ω be a bounded open set in Rn, and n < p < ∞. Suppose
that F is a set of functions whose weak derivative belongs to Lp(Rn) such that: (a)
spt f b Ω; (b) there exists a constant C such that

‖Df‖Lp ≤ C for all f ∈ F .

Then F is precompact in C0(Rn).

Proof. Theorem 3.36 implies that the set F is bounded and equicontinuous,
so the result follows immediately from the Arzelà-Ascoli theorem. �

In other words, if {fm : m ∈ N} is a sequence of functions in W 1,p(Rn) such
that spt fm ⊂ Ω, where Ω b Rn, and

‖fm‖W 1,p ≤ C for all m ∈ N

for some constant C, then there exists a subsequence fmk such that fnk → f
uniformly, in which case f ∈ Cc(Rn).
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3.11. Sobolev functions on Ω ⊂ Rn

Here, we briefly outline how ones transfers the results above to Sobolev spaces
on domains other than Rn or Rn+.

Suppose that Ω is a smooth, bounded domain in Rn. We may cover the closure
Ω by a collection of open balls contained in Ω and open balls with center x ∈ ∂Ω.
Since Ω is compact, there is a finite collection {Bi : 1 ≤ i ≤ N} of such open balls
that covers Ω. There is a partition of unity {ψi : 1 ≤ i ≤ N} subordinate to this
cover consisting of functions ψi ∈ C∞c (Bi) such that 0 ≤ ψi ≤ 1 and

∑
i ψi = 1 on

Ω.
Given any function f ∈ L1

loc(Ω), we may write f =
∑
i fi where fi = ψif

has compact support in Bi for balls whose center belongs to Ω, and in Bi ∩ Ω for
balls whose center belongs to ∂Ω. In these latter balls, we may ‘straighten out the
boundary’ by a smooth map. After this change of variables, we get a function fi
that is compactly supported in Rn+. We may then apply the previous results to the
functions {fi : 1 ≤ i ≤ N}.

Typically, results about W k,p
0 (Ω) do not require assumptions on the smooth-

ness of ∂Ω; but results about W k,p(Ω) — for example, the existence of a bounded
extension operator E : W k,p(Ω)→W k,p(Rn) — only hold if ∂Ω satisfies an appro-
priate smoothness or regularity condition e.g. a Ck, Lipschitz, segment, or cone
condition [1].

The statement of the embedding theorem for higher order derivatives extends
in a straightforward way from the one for first order derivatives. For example,

W k,p(Rn) ↪→ Lq(Rn) if
1

q
=

1

p
− k

n
.

The result for smooth bounded domains is summarized in the following theorem.
As before, X ⊂ Y denotes a continuous embedding of X into Y , and X b Y denotes
a compact embedding.

Theorem 3.49. Suppose that Ω is a bounded open set in Rn with C1 boundary,
k,m ∈ N with k ≥ m, and 1 ≤ p <∞.

(1) If kp < n, then

W k,p(Ω) b Lq(Ω) for 1 ≤ q < np/(n− kp);

W k,p(Ω) ⊂ Lq(Ω) for q = np/(n− kp).

More generally, if (k −m)p < n, then

W k,p(Ω) bWm,q(Ω) for 1 ≤ q < np/ (n− (k −m)p);

W k,p(Ω) ⊂Wm,q(Ω) for q = np/ (n− (k −m)p).

(2) If kp = n, then

W k,p(Ω) b Lq(Ω) for 1 ≤ q <∞.

(3) If kp > n, then

W k,p(Ω) b C0,µ
(
Ω
)

for 0 < µ < k− n/p if k− n/p < 1, for 0 < µ < 1 if k− n/p = 1, and for
µ = 1 if k − n/p > 1; and

W k,p(Ω) ⊂ C0,µ
(
Ω
)
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for µ = k − n/p if k − n/p < 1. More generally, if (k −m)p > n, then

W k,p(Ω) b Cm,µ
(
Ω
)

for 0 < µ < k−m−n/p if k−m−n/p < 1, for 0 < µ < 1 if k−m−n/p = 1,
and for µ = 1 if k −m− n/p > 1; and

W k,p(Ω) ⊂ Cm,µ
(
Ω
)

for µ = k −m− n/p if k −m− n/p = 0.

These results hold for arbitrary bounded open sets Ω if W k,p(Ω) is replaced by

W k,p
0 (Ω).

Example 3.50. If u ∈ Wn,1(Rn), then u ∈ C0(Rn). This can be seen from the
equality

u(x) =

∫ x1

0

. . .

∫ xn

0

∂1 · · · ∂nu(x′)dx′1 . . . dx
′
n,

which holds for all u ∈ C∞c (Rn) and a density argument. In general, however, it is
not true that u ∈ L∞ in the critical case kp = n c.f. Example 3.30.
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