
Chapter 1: Sobolev Spaces

Introduction

In many problems of mathematical physics and variational calculus it is not
sufficient to deal with the classical solutions of differential equations. It is
necessary to introduce the notion of weak derivatives and to work in the so
called Sobolev spaces.
Let us consider the simplest example — the Dirichlet problem for the Laplace
equation in a bounded domain Ω ⊂ R

n:

4u = 0, x ∈ Ω
u(x) = ϕ(x), x ∈ ∂Ω,

}
(∗)

where ϕ(x) is a given function on the boundary ∂Ω. It is known that the
Laplace equation is the Euler equation for the functional

l(u) =

∫

Ω

n∑

j=1

∣∣∣∣
∂u

∂xj

∣∣∣∣
2

dx.

We can consider (∗) as a variational problem: to find the minimum of l(u)
on the set of functions satisfying condition u|∂Ω = ϕ. It is much easier to
minimize this functional not in C1(Ω), but in a larger class.
Namely, in the Sobolev class W 1

2 (Ω).
W 1

2 (Ω) consists of all functions u ∈ L2(Ω), having the weak derivatives

∂ju ∈ L2(Ω), j = 1, . . . , n. If the boundary ∂Ω is smooth, then the trace of
u(x) on ∂Ω is well defined and relation u|∂Ω = ϕ makes sense. (This follows
from the so called

”
boundary trace theorem“ for Sobolev spaces.)

If we consider l(u) on W 1
2 (Ω), it is easy to prove the existence and uniquen-

ess of solution of our variational problem.
The function u ∈ W 1

2 (Ω), that gives minimum to l(u) under the condition
u|∂Ω = ϕ, is called the weak solution of the Dirichlet problem (∗).

We’ll study the Sobolev spaces, the extension theorems, the boundary trace
theorems and the embedding theorems.
Next, we’ll apply this theory to elliptic boundary value problems.
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§1: Preliminaries

Let us recall some definitions and notation.

Definition
An open connected set Ω ⊂ R

n is called a domain.
By Ω we denote the closure of Ω; ∂Ω is the boundary.

Definition

We say that a domain Ω′ ⊂ Ω ⊂ R
n is a strictly interior subdomain

of Ω and write Ω′ ⊂⊂ Ω, if Ω′ ⊂ Ω.

If Ω′ is bounded and Ω′ ⊂⊂ Ω, then dist {Ω′, ∂Ω} > 0. We use the following
notation:

x = (x1, x2, . . . , xn) ∈ R
n, ∂ju =

∂u

∂xj
,

α = (α1, α2, . . . , αn) ∈ Z
n
+ is a multi–index

|α| = α1 + α2 + . . . + αn, ∂αu =
∂|α|u

∂xα1
1 ∂xα2

2 ...∂xαn
n

Next, ∇u = (∂1u, . . . , ∂nu) , |∇u| =




n∑

j=1

|∂ju|2



1/2

Definition

Lq(Ω), 1 ≤ q < ∞ , is the set of all measurable functions u(x) in Ω
such that the norm

‖u‖q,Ω =

(∫

Ω
|u(x)|qdx

)1/q

is finite.

Lq(Ω) is a Banach space. We’ll use the following property :
Let u ∈ Lq(Ω), 1 ≤ q <∞. We denote

Jρ(u;Lq) = sup
|z|≤ρ

(∫
�

n

|u(x+ z) − u(x)|q dx
)1/q

.

Here u(x) is extended by zero on R
n\Ω. Jρ(u;Lq) is called the modulus of

continuity of a function u in Lq(Ω). Then

Jρ(u;Lq) → 0 as ρ→ 0.
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Definition

Lq,loc(Ω), 1 ≤ q < ∞, is the set of all measurable functions u(x) in Ω
such that

∫
Ω′ |u(x)|p dx < ∞ for any bounded strictly interior subdo-

main Ω′ ⊂⊂ Ω.

Lq,loc(Ω) is a topological space (but not a Banach space).

We say that uk
k→∞−→ u in Lq,loc(Ω), if ‖uk − u‖q,Ω′

k→∞−→ 0 for any bounded
Ω′ ⊂⊂ Ω

Definition

L∞(Ω) is the set of all bounded measurable functions in Ω; the norm
is defined by

‖u‖∞,Ω = ess sup
x∈Ω

|u(x)|

Definition

C l(Ω) is the Banach space of all functions in Ω such that u(x) and
∂αu(x) with |α| ≤ l are uniformly continuous in Ω and the norm

‖u‖Cl(Ω) =
∑

|α|≤l

sup
x∈Ω

|∂αu(x)|

is finite. If l = 0, we denote C0(Ω) = C(Ω).

Remark

If Ω is bounded, then ‖u‖Cl(Ω) <∞ follows from the uniform continui-

ty of u, ∂αu, |α| ≤ l

Definition

C l(Ω) is the class of functions in Ω such that u(x) and ∂αu, |α| ≤ l,
are continuous in Ω.

Remark
Even if Ω is bounded, a function u ∈ C l(Ω) may be not bounded; it may
grow near the boundary.

Definition

C∞
0 (Ω) is the class of the functions u(x) in Ω such that

a) u(x) is infinitely smooth, which means that ∂αu is uniformly con-
tinuous in Ω, ∀α;

b) u(x) is compactly supported: supp u is a compact subset of Ω.
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§2: Mollification of functions

1. Definition of mollification

The procedure of mollification allows us to approximate function u ∈ Lq(Ω)
by smooth functions.
Let ω(x), x ∈ R

n, be a function such that

ω ∈ C∞
0 (Rn), ω(x) ≥ 0, ω(x) = 0 if |x| ≥ 1, and

∫
�
ω(x)dx = 1. (1)

For example, we may take

ω(x) =

{
c exp

{
− 1

1−|x|2

}
if |x| < 1

0 if |x| ≥ 1

where constant c is chosen so that condition (1) is satisfied.
For ρ > 0 we put

ωρ(x) = ρ−nω

(
x

ρ

)
, x ∈ R

n. (2)

Then ωρ ∈ C∞
0 (Rn), ωρ(x) ≥ 0,

ωρ(x) = 0 if |x| ≥ ρ, (3)∫
�

n

ωρ(x)dx = 1. (4)

Definition

wρ is called a mollifier.

Let Ω ⊂ R
n be a domain, and let u ∈ Lq(Ω) with some 1 ≤ q ≤ ∞. We

extend u(x) by zero on R
n\Ω and consider the convolution ωρ ∗ u =: uρ

uρ(x) =

∫
�

n

ωρ(x− y)u(y)dy. (5)

In fact, the integral is over Ω ∩ {y : |x− y| < ρ}.

Definition

uρ(x) is called a mollification or regularization of u(x).
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2. Properties of mollification

1) uρ ∈ C∞(Rn), and
∂αuρ(x) =

∫
�

n ∂
α
xωρ(x− y)u(y)dy.

This follows from ωρ ∈ C∞.

2) uρ(x) = 0 if dist {x; Ω} ≥ ρ, since ωρ(x− y) = 0, y ∈ Ω.

3) Let u ∈ Lq(Ω) with some q ∈ [1,∞]. Then

‖uρ‖q,
�

n ≤ ‖u‖q,Ω . (6)

In other words, the operator Yρ : u 7→ uρ is a linear continuous opera-
tor from Lq(Ω) to Lq(R

n) and
‖Yρ‖Lq(Ω)→Lq(

�
n) ≤ 1.

Proof:
Case 1 : 1 < q <∞.
Let 1

q + 1
q′ = 1. By the Hölder inequality and (4), we have

|uρ(x)| =

∣∣∣∣
∫
�

n

ωρ(x− y)1/qωρ(x− y)1/q′u(y)dy

∣∣∣∣

≤
(∫

�
n

ωρ(x− y)

)1/q′

︸ ︷︷ ︸
=1

(∫
�

n

ωρ(x− y)|u(y)|qdy
)1/q

⇒ |uρ(x)|q ≤
∫
�

n

ωρ(x− y)|u(y)|qdy

By (4), we obtain
∫
�

n

|uρ(x)|q dx ≤
∫
�

n

dx

∫
�

n

ωρ(x− y) |u(y)|q dy

=

∫
�

n

dy |u(y)|q
(∫

�
n

ωρ(x− y)dx

)

︸ ︷︷ ︸
=1

=

∫
�

n

|u(y)|q dy

Case 2 : q = ∞. We have

|uρ(x)| ≤
∫
�

n

ωρ(x− y)|u(y)|dy

≤ ‖u‖∞
∫
�

n

ωρ(x− y)dy

︸ ︷︷ ︸
=1
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⇒ ‖uρ‖∞ ≤ ‖u‖∞

Case 3 : q = 1.

We integrate the inequality

|uρ(x)| ≤
∫
�

n

ωρ(x− y)|u(y)|dy

and obtain:
∫
�

n

|uρ(x)| dx ≤
∫
�

n

dx

∫
�

n

ωρ(x− y)|u(y)|dy =

∫
�

n

|u(y)|dy

�

4) Let u ∈ Lq(Ω), 1 ≤ q <∞. Then

‖uρ − u‖q,
�

n → 0 as ρ→ 0. (7)

Consequently,
‖uρ − u‖q,Ω → 0 as ρ→ 0.

Proof
The proof is based on the following property: if u ∈ Lq(Ω) (and u(x)
is extended by 0), then

sup
|z|≤ρ

(∫
�

n

|u(x+ z) − u(x)|q dx
)1/q

=: Jρ(u;Lq) → 0 as ρ→ 0.

(Jρ(u;Lq) is called the modulus of continuity of u in Lq.)

Case 1 : 1 < q <∞. By (4) and (5) we have

|uρ(x) − u(x)| ≤
∫
�

n

ωρ(x− y) (u(y) − u(x)) dy

=

∫
�

n

ωρ(x− y)1/q′ωρ(x− y)1/q (u(y) − u(x)) dy

Then, by the Hölder inequality, it follows that

|uρ(x) − u(x)| ≤
(∫

�
n

ωρ(x− y)dy

)1/q′

︸ ︷︷ ︸
=1

(∫
�

n

ωρ(x− y) |u(y) − u(x)|q dy
)1/q
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Hence,

∫
�

n

|uρ(x) − u(x)|q dx ≤
∫
�

n

dx

∫
�

n

ωρ(x− y) |u(y) − u(x)|q dy

x−y=z
=

∫

|z|<ρ
dz ωρ(z)

∫
�

n

|u(y + z) − u(y)|q dy

≤ sup
|z|≤ρ

∫
�

n

|u(y + z) − u(y)|q dy
∫

|z|<ρ
dz ωρ(z)

︸ ︷︷ ︸
=1

= (Jρ(u;Lq))
q .

⇒ ‖uρ − u‖q,
�

n ≤ Jρ(u;Lq) → 0 as ρ→ 0.

Case 2 : q = 1. We have

|uρ(x) − u(x)| ≤
∫
�

n

ωρ(x− y) |u(y) − u(x)| dy

⇒
∫
�

n

|uρ(x) − u(x)| dx ≤
∫
�

n

dx

∫
�

n

ωρ(x− y) |u(y) − u(x)| dy

x−y=z
=

∫

|z|<ρ
dz ωρ(z)

∫
�

n

|u(y + z) − u(y)| dy

≤ Jρ(u;L1)

→ 0 as ρ→ 0.

�

Remark

If q = ∞, there is NO such property, since L∞–limit of smooth
functions uρ(x) must be a continuous function.
If u ∈ C(Ω) and we extend u(x) by zero, then we may loose
continuity.
In general, ‖uρ − u‖C(Ω) 9 0 as ρ→ 0.

However, we have the following property:

5) If u ∈ C(Ω) , Ω′ ⊂⊂ Ω and Ω′ is bounded, then

‖uρ − u‖C(Ω′) → 0 as ρ→ 0
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Proof
Let ρ < dist {Ω′; ∂Ω}. Then

uρ(x) − u(x) =

∫
�

n

ωρ(x− y) (u(y) − u(x)) dy

x−y=z
=

∫
�

n

ωρ(z) (u(x− z) − u(x)) dz

⇒ sup
x∈Ω′

|uρ(x) − u(x)| ≤ sup
x∈Ω′

sup
|z|≤ρ

|u(x− z) − u(x)|

→ 0 as ρ→ 0

(since u(x) is continuous in Ω).

�
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§3: Class C∞
0 (Ω)

By C∞
0 (Ω) we denote the class of infinitely smooth functions in Ω with

compact support:

u ∈ C∞
0 (Ω) ⇔ u ∈ C∞(Ω) and supp u ⊂ Ω.

Theorem 1

C∞
0 (Ω) is dense in Lq(Ω), 1 ≤ q <∞

Proof
Let u ∈ Lq(Ω) and ε > 0. Let Ω′ be a bounded domain, Ω′ ⊂⊂ Ω, and

‖u‖q,Ω\Ω′ ≤
ε

2
.

We put

u(ε)(x) =

{
u(x) if x ∈ Ω′

0 if x ∈ Ω\Ω′

Then
∥∥u− u(ε)

∥∥
q,Ω

≤ ε
2 . Let u

(ε)
ρ (x) be the mollification of u(ε)(x). By

property 4) of mollification,
∥∥∥u(ε)

ρ − u(ε)
∥∥∥

q,Ω
≤ ε

2 for sufficiently small ρ.

Hence,
∥∥∥u(ε)

ρ − u
∥∥∥

q,Ω
≤ ε for sufficiently small ρ.

Note that u
(ε)
ρ ∈ C∞

0 (Ω) if ρ < dist {Ω′, ∂Ω} .

�

Theorem 2

Let u ∈ L1,loc(Ω), and suppose that

∫

Ω
u(x)η(x)dx = 0, ∀η ∈ C∞

0 (Ω). (8)

Then u(x) = 0, a. e. x ∈ Ω.

Theorem 2 is an analog of the Main Lemma of variational calculus.

Proof

1) First, let us prove that

∫

Ω
u(x)η(x)dx = 0
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for any η ∈ L∞(Ω) with compact support supp η ⊂ Ω. Suppose that
supp η ⊂ Ω′, where Ω′ is a bounded domain and Ω′ ⊂⊂ Ω. Then

ηρ ∈ C∞
0 (Ω) if ρ < dist

{
Ω′; ∂Ω

}
=: 2ρ0.

Let Ω′
ρ0

= {x : dist {x; Ω′} < ρ0}, and let

χρ0(x) =

{
1 if x ∈ Ω′

ρ0

0 otherwise

By (8),
∫

Ω
u(x)ηρ(x)dx = 0, ρ < ρ0. (9)

Since η ∈ L1(Ω), by property 4) of mollification,
‖ηρ − η‖1,Ω → 0 as ρ→ 0.
Then there exists a sequence {ρk}k∈� , ρk → 0, ρk < ρ0, such that

ηρk
(x)

k→∞−→ η(x) for almost every x ∈ Ω.

Then also ηρk
(x)u(x)

k→∞−→ η(x)u(x) for a. e. x ∈ Ω.
Using property 3) (that ‖ηρ‖∞ ≤ ‖η‖∞), we have

|u(x)ηρk
(x)| ≤ χρ0(x)|u(x)| ‖η‖∞ , (10)

and the right-hand side in (10) belongs to L1(Ω).
Then, by the Lebesgue Theorem,∫

Ω
u(x)ηρk

(x)dx
k→∞−→

∫

Ω
u(x)η(x)dx.

By (9), the left-hand side is equal to zero.
Hence,

∫
Ω u(x)η(x)dx = 0.

2) Now, let Ω′ be a bounded domain such that Ω′ ⊂⊂ Ω. We put

η(x) =

{
u(x)
|u(x)| , if u(x) 6= 0, x ∈ Ω′

0 , otherwise

Then

u(x)η(x) =

{
|u(x)| , x ∈ Ω′

0 , x ∈ Ω\Ω′

Since η(x) is L∞–function with compact support supp η ⊂ Ω′ ⊂ Ω,
then, by part 1),

0 =

∫

Ω
u(x)η(x)dx =

∫

Ω′

|u(x)|dx.

It follows that u(x) = 0 for a. e. x ∈ Ω′. Since Ω′ is an arbitrary

bounded domain such that Ω′ ⊂⊂ Ω, then

u(x) = 0, a.e. x ∈ Ω

�
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§4: Weak derivatives

1. Definition and properties of weak derivatives

Definition 1

Let α be a multi–index. Suppose that u, v ∈ L1,loc(Ω), and

∫

Ω
u(x)∂αη(x)dx = (−1)|α|

∫

Ω
v(x)η(x)dx, ∀η ∈ C∞

0 (Ω). (11)

Then v is called the weak ( or distributional ) partial derivative of u
in Ω, and is denoted by ∂αu.

If u(x) is sufficiently smooth to have continuous derivative ∂αu, we can
integrate by parts:

∫

Ω
u(x)∂αη(x)dx =

∫

Ω
(−1)|α| ∂αu(x)η(x)dx.

Hence, the classical derivative ∂αu is also the weak derivative. Of course,
∂αu may exist in the weak sense wihout existing in the classical sense.

Remark

1) To define the weak derivative ∂αu, we don’t need the existence of
derivatives of the smaller order (like in the classical definition).

2) The weak derivative is defined as an element of L1,loc(Ω), so we
can change it on some set of measure zero.

Properties of ∂αu

1) Uniqueness
Proof
Uniqueness of the weak derivative follows from Theorem 2. Suppose
that u ∈ L1,loc(Ω) and v,w ∈ L1,loc(Ω) are both weak derivatives of u.
Then, by (11),

∫

Ω
(v(x) − w(x)) η(x)dx = 0, ∀η ∈ C∞

0 (Ω).

By Theorem 2, v(x) = w(x), a.e. x ∈ Ω.

�
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2) Linearity
If u1, u2 ∈ L1,loc(Ω) and there exist weak derivatives v1 = ∂αu1,
v2 = ∂αu2 ∈ L1,loc(Ω), then there exists ∂α (c1u1 + c2u2) and

∂α (c1u1 + c2u2) = c1∂
αu1 + c2∂

αu2, c1, c2 ∈ C.

Proof
Obviously,
∫

Ω
(c1u1 + c2u2) ∂

αηdx = c1

∫

Ω
u1∂

αηdx+ c2

∫

Ω
u2∂

αηdx

= (−1)|α|c1

∫

Ω
v1ηdx+ (−1)|α|c2

∫

Ω
v2ηdx

= (−1)|α|
∫

Ω
(c1v1 + c2v2)︸ ︷︷ ︸
=∂α(c1u1+c2u2)

ηdx.

�

3) If v = ∂αu in Ω , then v = ∂αu in Ω′ for any Ω′ ⊂ Ω.
Obvious

4) Mollification of the weak derivative

”
Derivative of mollification is equal to mollification of derivative“. This

is true in any bounded strictly interior domain Ω′ ⊂⊂ Ω.
Suppose that u, v ∈ L1,loc(Ω) and v = ∂αu. Then

vρ(x) = ∂αuρ(x) if ρ < dist {x, ∂Ω} . (12)

The functions uρ and vρ are smooth; the derivative ∂αuρ in (12) is
understood in the classical sense.
Proof
Let ρ < dist {x, ∂Ω}. We have

uρ(x) =

∫

Ω
ωρ(x− y)u(y)dy

Then ∂αuρ(x) =
∫
Ω ∂

α
xωρ(x− y)u(y)dy.

Note that ∂α
xωρ(x− y) = (−1)|α|∂α

y ωρ(x− y).
Hence,

∂αuρ(x) = (−1)|α|
∫

Ω
∂α

y ωρ(x− y)u(y)dy.

Since ρ < dist {x, ∂Ω}, then for η(y) := ωρ(x−y) we have η ∈ C∞
0 (Ω).

By definition of the weak derivative ∂αu = v, we obtain

∂αuρ(x) =

∫

Ω
ωρ(x− y)v(y)dy = vρ(x).

�
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5) Suppose that u ∈ L1,loc(Ω) and there exists the weak derivative ∂αu
such that
∂αu ∈ Lq(Ω), 1 ≤ q <∞.
Then ‖∂αuρ − ∂αu‖q,Ω′ → 0 as ρ→ 0, for any bounded strictly interi-

or domain Ω′ ⊂⊂ Ω.

Proof
This follows from property 4) of mollification and property 4) of weak
derivatives:

∂αu = v ∈ Lq(Ω); ∂αuρ = vρ in Ω′ ( for sufficiently small ρ) ;

‖vρ − v‖q,Ω′ → 0 as ρ→ 0.

�

Remark

If we extend u(x) by zero on R
n\Ω, then, in general, the weak

derivative ∂αu in R
n does not exist. Hence, we have convergence

∂αuρ
ρ→0−→ ∂αu in Lq(Ω

′) only for bounded strictly interior domain

Ω′.

Exclusion:
if u(x) = 0, if dist {x; ∂Ω} < ρo, and ∂αu ∈ Lq(Ω),

then ‖∂αuρ − ∂αu‖q,Ω

ρ→0−→ 0.

2. Another definition of the weak derivative

Definition 2

Suppose that u, v ∈ L1,loc(Ω) and there exists a sequence um ∈ C l(Ω),

m ∈ N, such that um
m→∞−→ u and ∂αum

m→∞−→ v in L1,loc(Ω).
Here α is a multi–index and |α| = l. Then v is called the weak deriva-
tive of u in Ω : ∂αu = v.

Definition 1 ⇔ Definition 2
Proof

1) Definition 1 ⇐ Definition 2.
Since um ∈ C l(Ω), then

∫

Ω
um∂

αηdx = (−1)|α|
∫

Ω
∂αumηdx, ∀η ∈ C∞

0 (Ω). (13)
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For η fixed, the left–hand side of (13) tends to
∫
Ω u∂

αηdx as m→ ∞:

∣∣∣∣
∫

Ω
(um − u) ∂αηdx

∣∣∣∣ ≤ max |∂αη|
∫

suppη
|um − u| dx m→∞−→ 0.

Similarly, the right–hand side of (13) tends to (−1)|α|
∫
Ω vηdx. Conse-

quently,

∫

Ω
u∂αηdx = (−1)|α|

∫

Ω
vηdx, ∀η ∈ C∞

0 (Ω).

It means that v = ∂αu in the sense of Definition 1.

2) Definition 1 ⇒ Definition 2.
Let u, v ∈ L1,loc(Ω), and let v = ∂αu in the sense of Definition 1.

We want to find a sequence um ∈ C∞(Ω) such that um
m→∞−→ u and

∂αum
m→∞−→ v in L1,loc(Ω).

Let {Ω′
m} ,m ∈ N, be a sequence of bounded domains such that

Ω′
m ⊂⊂ Ω, Ω′

m ⊂ Ω′
m+1 and

⋃

m∈�
Ω′

m = Ω.

We put

u(m)(x) =

{
u(x) if x ∈ Ω′

m

0 otherwise

Then u(m) ∈ L1(Ω). Consider the mollification of u(m) : u
(m)
ρ ∈ C∞(Ω).

Let {ρm}m∈� be a sequence of positive numbers such that ρm → 0 as
m→ ∞.
We put

um(x) = u(m)
ρm

(x), x ∈ Ω.

Then um ∈ C∞(Ω) and um
m→∞−→ u in L1,loc(Ω). Prove this yourself,

using property 4) of mollification.
Next, by property 5) of ∂αu, prove that ∂αum

m→∞−→ v in L1,loc(Ω).
Thus, v = ∂αu in the sense of Definition 2.

�
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Theorem 3

Let um ∈ L1,loc(Ω) and um
m→∞−→ u in L1,loc(Ω). Suppose that there

exist weak derivatives ∂αum ∈ L1,loc(Ω) and ∂αum
m→∞−→ v in L1,loc(Ω).

Then v = ∂αu.
In other words, the operator ∂α is closed.

Proof
By Definition 1, for ∂αum we have

∫

Ω
um∂

αηdx = (−1)|α|
∫

Ω
∂αumηdx, ∀η ∈ C∞

0 (Ω)

↓ m→ ∞ ↓ m→ ∞∫

Ω
u∂αηdx = (−1)|α|

∫

Ω
vηdx, ∀η ∈ C∞

0 (Ω)

⇒ v = ∂αu in the sense of Definition 1.

�

Remark

The conclusion of Theorem 3 remains true under weaker assumptions
that
∫

Ω
umηdx

m→∞−→
∫

Ω
uηdx and

∫

Ω
∂αumηdx

m→∞−→
∫

Ω
vηdx, ∀η ∈ C∞

0 (Ω).

(It means that um → u and ∂αum → v in D′(Ω).)

3. Weak derivatives of the product of functions

Proposition

If u, ∂ju ∈ Lq,loc(Ω), and v, ∂jv ∈ Lq′,loc(Ω) with some
1 < q <∞, 1

q + 1
q′ = 1 or if u, ∂ju ∈ L1,loc(Ω) and v, ∂jv ∈ C(Ω), then

∂j (uv) = (∂ju) v + u (∂jv) .

Proof

1) Case 1: 1 < q <∞
Let us fix η ∈ C∞

0 (Ω). Let Ω′ be a bounded domain such that
supp η ⊂ Ω′ ⊂⊂ Ω. We put

ũ(x) =

{
u(x) , x ∈ Ω′

0 otherwise
ṽ(x) =

{
v(x) , x ∈ Ω′

0 otherwise

15



Then ũ ∈ Lq(Ω
′), ṽ ∈ Lq′(Ω

′). By property 4) of mollifications,

‖ũρ − ũ‖q,Ω′ → 0, ‖ṽρ − ṽ‖q′,Ω′ → 0 as ρ→ 0

Next, ∂jũ = ∂ju in Ω′, ∂j ṽ = ∂jv in Ω′ (it is clear from Definition 1).
So, ∂jũ ∈ Lq(Ω

′), ∂j ṽ ∈ Lq′(Ω
′).

By property 5) of weak derivatives,

‖∂j ũρ − ∂j ũ‖q,suppη → 0, as ρ→ 0,

‖∂j ṽρ − ∂j ṽ‖q′,suppη → 0, as ρ→ 0.

Since ũρ, ṽρ are smooth functions, we have
∫

Ω′

ũρṽρ∂jηdx = −
∫

Ω′

∂j (ũρṽρ) ηdx

= −
∫

Ω′

(∂j ũρ) ṽρηdx−
∫

Ω′

ũρ (∂j ṽρ) ηdx. (14)

Let us show that∫

Ω′

ũρṽρ∂jηdx
ρ→0−→

∫

Ω′

ũṽ∂jηdx =

∫

Ω
uv∂jηdx (15)

We have∣∣∣∣
∫

Ω′

(ũρṽρ − ũṽ) ∂jηdx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω′

(ũρ − ũ) ṽρ∂jηdx

∣∣∣∣+
∣∣∣∣
∫

Ω′

ũ (ṽρ − ṽ) ∂jηdx

∣∣∣∣
≤ ‖ũρ − ũ‖q,Ω′︸ ︷︷ ︸

→0

‖ṽρ‖q′,Ω′︸ ︷︷ ︸
bounded

max |∂jη| +

+ ‖ũ‖q,Ω′ ‖ṽρ − ṽ‖q′,Ω′︸ ︷︷ ︸
→0

max |∂jη|

→ 0 as ρ→ 0

Similarly, we can show that∫

Ω′

((∂j ũρ) ṽρ + ũρ (∂j ṽρ)) ηdx
ρ→0→

∫

Ω′

((∂j ũ) ṽ + ũ (∂j ṽ)) ηdx

=

∫

Ω
((∂ju) v + u (∂jv)) ηdx (16)

From (14) - (16) it follows that
∫

Ω
uv∂jηdx = −

∫

Ω
((∂ju) v + u (∂jv)) ηdx

This identity is proved for any η ∈ C∞
0 (Ω). It means (by Definition 1)

that there exists the weak derivative ∂j(uv) and

∂j(uv) = (∂ju) v + u (∂jv)

2) Case q=1.
Prove yourself

�
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4. Change of variables

Suppose that u ∈ L1,loc(Ω) and there exist weak derivatives
∂ju ∈ L1,loc(Ω), j = 1, . . . , n.
Let y = f(x) be a diffeomorphism of class C1 and f(Ω) = Ω̃.
We put ũ(y) = u(f−1(y)). Then ũ ∈ L1,loc(Ω̃). Let us show that there exist
weak derivatives ∂ũ

∂yκ
, κ = 1, . . . , n, and

∂ũ

∂yk
=

n∑

j=1

∂u

∂xj

∂xj

∂yκ

Proof
Since there exist weak derivatives ∂u

∂xj
∈ L1,loc(Ω), j = 1, . . . , n, then there

exists a sequence um ∈ C1(Ω) such that um
m→∞−→ u and ∂um

∂xj

m→∞−→ ∂u
∂xj

in

L1,loc(Ω) for all j = 1, . . . , n.
(We can construct this sequence like in the proof, that Definition 1 and
Definition 2 are equivalent ).
We denote ũm(y) = um(f−1(y)). Then ũm ∈ C1(Ω̃), and, by usual rule (for
classical derivatives),

∂ũm

∂yk
=

n∑

j=1

∂um

∂xj

∂xj

∂yκ

Let us check that ũm
m→∞−→ ũ in L1,loc(Ω̃). Indeed, for every bounded domain

Ω̃′ ⊂⊂ Ω̃ we have
∫

Ω̃′

|ũm(y) − ũ(y)| dy =

∫

Ω̃′

∣∣um(f−1(y)) − u(f−1(y))
∣∣ dy

=

∫

Ω′

|um(x) − u(x)| |J(x)| dx
→ 0 as m→ ∞

Here Ω′ = f−1′(Ω̃′) and J(x) is the Jacobian of the transformation f(x)(
J(x) = det

{
∂y
∂x

})
.

Here the right-hand side tends to zero, since |J(x)| is bounded in Ω′;
Ω′ is a bounded domain such that Ω′ ⊂⊂ Ω; and um

m→∞−→ u in L1,loc(Ω).

Similarly, using that ∂um
∂xj

m→∞−→ ∂u
∂xj

in L1,loc(Ω), one can show that

∂ũm

∂yk
=

n∑

j=1

∂um

∂xj

∂xj

∂yκ

m→∞−→
n∑

j=1

∂u

∂xj

∂xj

∂yκ
in L1,loc(Ω̃)

Then, by Definition 2, there exist weak derivatives

∂ũ

∂yk
and

∂ũ

∂yk
=

n∑

j=1

∂u

∂xj

∂xj

∂yk

17



�

Thus, for weak derivatives we have the usual rule of change of variables. The
same is true for derivatives of higher order.

5.

For ordinary derivatives we have the following property:
if ∂u

∂xj
= 0 in Ω, j = 1, . . . , n, then u = const. The same is true for weak

derivatives.

Theorem 4

Suppose that u ∈ L1,loc(Ω) and there exist weak derivatives ∂αu for
any multi-index α such that |α| = l (l ∈ N) and ∂αu = 0 in Ω,
|α| = l. Then u(x) is a polynomial of order ≤ l − 1 in Ω.

Proof

1) Let Ω′ be a bounded domain such that Ω′ ⊂⊂ Ω. Let Ω′′ be another
bounded domain such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. We put

ũ(x) =

{
u(x) , x ∈ Ω′′

0 otherwise

Then ũ ∈ L1(Ω
′′) , and ∂αũ = ∂αu = 0, |α| = l, in Ω′′. Consider

the mollification ũρ(x). If ρ < dist {Ω′, ∂Ω′′}, then, by property 4) of
∂αu,

∂αũρ(x) = (∂αũ)ρ (x), x ∈ Ω′, |α| = l.

Hence, ∂αũρ = 0 in Ω′. Thus, ũρ(x) is a smooth function in Ω′ and all
its derivatives of order l are equal to zero. It follows that

ũρ(x) = P
(ρ)
l−1(x), x ∈ Ω′, where P

(ρ)
l−1 is a polynomial of order ≤ l−1.

By property 4) of mollification,

‖ũρ − u‖1,Ω′ → 0 as ρ→ 0, i. e. , P
(ρ)
l−1

ρ→0−→ u in L1(Ω
′).

The set of all polynomials in Ω′ of order ≤ l− 1 is a finite-dimensional
(and, so, closed !) subspace in L1(Ω

′). Therefore, the limit u(x) must
be also a polynomial of order ≤ l − 1:

u(x) = Pl−1(x), x ∈ Ω′.

2) Now it is easy to complete the proof by the standard procedure. Let
{Ω′

k}k∈� be a sequence of bounded domains such that

Ω′
k ⊂⊂ Ω, Ω′

k ⊂ Ω′
k+1, and

⋃

k∈�
Ω′

k = Ω.

18



We have poved that for each domain Ω′
k

u(x) = P
(k)
l−1(x), x ∈ Ω′

k

Then P
(k+1)
l−1 (x) is continuation of P

(k)
l−1(x), but continuation of a poly-

nomial is unique.
⇒ There exists a polynomial Pl−1(x) such that

u(x) = Pl−1(x), x ∈ Ω.

�

6. Absolute continuity property

The existence of the weak derivative is related to the absolute continuity
property. Recall the definition of absolute continuity for function of one
variable.

Definition

Function u : [a, b] → R is called absolutely continuous, if for any ε > 0
there exists δ > 0 such that for any finite set of disjoint intervals

(
x1, x

′
1

)
,
(
x2, x

′
2

)
, . . . ,

(
xm, x

′
m

)
(⊂ [ a, b ])

with
∑m

j=1

∣∣∣x′j − xj

∣∣∣ < δ, one has

m∑

j=1

∣∣u(x′j) − u(xj)
∣∣ < ε.

We’ll use the following facts:

1) u : [a, b] → R is absolutely continuous if and only if there exists a
function v ∈ L1(a, b) such that

u(x) = u(a) +

∫ x

a
v(t)dt, x ∈ [a, b] .

2) If u : [a, b] → R is absolutely continuous, then there exists derivative
du
dx for almost every x ∈ (a, b) and du

dx = v (∈ L1(a, b)).

Theorem 5

Let n = 1. A measurable function u(x) is absolutely continuous on [a, b]
if and only if there exists the weak derivative du

dx ∈ L1(a, b). The weak
derivative coincides with the classical derivative almost everywhere.
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Remark

When we speak about measurable functions, we mean not just one
function but a class of functions, that are equal to each other almost
everywhere. So, when we say that a measurable function u(x) is abso-
lutely continuous, it means that in the class of functions equivalent to
u, there exists an absolutely continuous representative.

Proof

1) u(x) is absolutely continuous. ⇒∃ weak derivative du
dx ∈ L1. If u(x) is a.

c., then there exists the classical derivative du
dx = v almost everywhere

and v ∈ L1(a, b). Next, let η ∈ C∞
0 (a, b). Then the product η u is also

absolutely continuous. There exists the classical derivative d(η u)
dx for

almost every x ∈ (a, b). We have the usual rule:

d (η u)

dx
= vη + u

dη

dx
.

Integrate this identity over (a, b). Then
∫ b
a

d(η u)
dx dx = 0.

(Since η(x) = 0 near a and b). Hence,
∫ b

a

(
vη + u

dη

dx

)
dx = 0.

The obtained identity
∫ b

a
u
dη

dx
= −

∫ b

a
vηdx, ∀η ∈ C∞

0 (a, b),

by Definition 1, means that v is the weak derivative du
dx

2) ∃ weak derivative v = du
dx ∈ L1(a, b) ⇒ u is a. c.

Consider w(x) =
∫ x
a v(t)dt.

Then w(x) is absolutely continuous. There exists classical derivative
dw
dx = v, a.e. x ∈ (a, b).

By statement 1) (already proved), there exists the weak derivative dw
dx

which coincides with the classical one and with v.
Thus,

du

dx
=
dw

dx
, i. e.

d (u− w)

dx
= 0.

(the weak derivative is equal to zero.)
By Theorem 4, u − w = const. Since w(x) is absolutely consinuous,
then u = c+ w is also absolutely continuous.
If x = a, we have u(a) = c+ w(a)︸︷︷︸

=0

= c. Thus,

u(x) = u(a) +

∫ x

a
v(t)dt.
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u(x) is absolutely continuous; it has classical derivative for a. e. x ∈
(a, b);
classical derivative = weak derivative = v ∈ L1(a, b).

�

Theorem 6

Let Ω ⊂ R
n, n > 1. We denote x′ = (x1, . . . , xj−1, xj+1, . . . , xn) and

write x = {x′, xj}. Suppose that [a(x′), b(x′)] are some intervals such
that {x′} × [a(x′), b(x′)] ⊂ Ω.
Let u ∈ L1,loc(Ω) and there exists the weak derivative ∂u

∂xj
∈ L1,loc(Ω).

Then for almost every x′ the function u(x′, xj) is absolutely continuous
on interval [a(x′), b(x′)] (as a function of one variable xj).

Exercise: Prove Theorem 6.

7. Examples

1) Let Ω = (0, 1)2 and u(x1, x2) = ϕ(x1) +ψ(x2), where ϕ and ψ are not

absolutely continuous on [0, 1], but ϕ,ψ ∈ L1(0, 1).
Then, by Theorem 6, u(x1, x2) does not have weak derivatives ∂u

∂x1
, ∂u

∂x2

in Ω. (Since, if they exist, then u(x) must be also absolutely continuous
in x1 for x2 fixed, and in x2 for x1 fixed.)

However, there exists the weak derivative ∂2u
∂x1∂x2

= 0.
Indeed, for ∀ η ∈ C∞

0 (Ω),

∫

Ω
u

∂2 η

∂x1∂x2
dx =

∫ 1

0

∫ 1

0
ϕ(x1)

∂2 η

∂x1∂x2
dx1dx2 +

∫ 1

0

∫ 1

0
ψ(x2)

∂2 η

∂x1∂x2
dx1dx2

=

∫ 1

0
dx1ϕ(x1)

(∫ 1

0

∂2 η

∂x1∂x2

)
dx2

︸ ︷︷ ︸
=0

+

∫ 1

0
dx2ψ(x2)

(∫ 1

0

∂2 η

∂x1∂x2
dx1

)

︸ ︷︷ ︸
=0

= 0.

By Definition 1 of weak derivative, it means that there exists weak
derivative ∂2u

∂x1∂x2
and ∂2u

∂x1∂x2
=0. This example shows that functions

may have derivative of higher order, not having derivatives of lower
order.

2) Suppose that the domain Ω ⊂ R
n is devided by a smooth

(n-1)–dimensional surface Γ into two parts Ω1 and Ω2. So, Ω = Ω1 ∪
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Ω2 ∪ Γ.
Let u1 ∈ C1(Ω1), u2 ∈ C1(Ω2),

u(x) =

{
u1(x) , x ∈ Ω1

u2(x) , x ∈ Ω2

If u1|Γ 6= u2|Γ, then, in general, weak derivatives do not exist.
Let ~n(x) be the unit normal vector to Γ exterior with respect to Ω1.
Since uk(x), k = 1, 2, is a C1–function in Ωk, we can integrate by
parts in Ωk: for η ∈ C∞

0 (Ω) we have:
∫

Ω
u
∂η

∂xj
dx =

∫

Ω1

u1
∂η

∂xj
dx+

∫

Ω2

u2
∂η

∂xj
dx

= −
∫

Ω1

∂u1

∂xj
η dx−

∫

Ω2

∂u2

∂xj
η dx+

+

∫

Γ
(u1(x) − u2(x)) η cos (∠(~n, 0xj)) dS(x)

If u1 = u2 on Γ (we have NO jump on Γ), then the integral over Γ is
equal to zero. In this case, there exists the weak derivative ∂u

∂xj
and

∂u

∂xj
=

{
∂u1
∂xj

in Ω1
∂u2
∂xj

in Ω2

Also, if cos (∠(~n, 0xj)) = 0, then there exists ∂u
∂xj

. For example, if Γ is

parallel to the axis 0xj , then cos (∠(~n, 0xj)) = 0.
⇒ Even if u1|Γ 6= u2|Γ, the tangential derivative exists.
If
∫
Γ (u1(x) − u2(x)) η cos (∠(~n, 0xj)) dS(x) 6= 0, then ∂u

∂xj
does not

exist.

Exercise
Let Ω = {x ∈ R

n : |x| < 1}, and let u(x) = |x|α , α > −n+ 1.
Prove that there exist the weak derivatives

∂u

∂xj
and

∂u

∂xj
= αxj |x|α−2 , j = 1, . . . , n.

For this consider continuous functions

u(δ)(x) =

{
|x|α , |x| > δ
δα , |x| ≤ δ

From the previous example we know that

∃ ∂u(δ)

∂xj
=

{
αxj |x|α−2 , |x| > δ

0 , |x| ≤ δ

Check that u(δ) L1(Ω)−→ u and ∂u(δ)

∂xj

L1(Ω)−→ vj := αxj |x|α−2.

Then, by Theorem 3, it follows that ∃ ∂u
∂xj

= vj
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§5: The Sobolev spaces W l
p(Ω) and

◦
W l

p(Ω)

1. Definition of W l
p(Ω) (1 ≤ p < ∞, l ∈ Z+)

Definition

Suppose that u ∈ Lp(Ω) and there exist weak derivatives ∂αu for any
α with |α| ≤ l (all derivatives up to order l), such that

∂αu ∈ Lp(Ω), |α| ≤ l.

Then we say that u ∈W l
p(Ω).

We introduce the (standard) norm in W l
p(Ω):

‖u‖W l
p(Ω) =



∫

Ω

∑

|α|≤l

|∂αu|p dx




1/p

.

Remark

1) The norm
∑

|α|≤l ‖∂αu‖p,Ω is equivalent to the standard norm.

2) W 0
p (Ω) = Lp(Ω).

Proposition

W l
p(Ω) is complete.

In other words, W l
p(Ω) is a Banach space.

Proof
Let {um} be a fundamental sequence in W l

p(Ω). It is equivalent to the fact
that all sequences {∂αum} for |α| ≤ l are fundamental sequences in Lp(Ω).
Since the space Lp(Ω) is complete , there exist functions u, vα ∈ Lp(Ω) such
that

um
Lp(Ω)−→ u, ∂αum

Lp(Ω)−→ vα as m→ ∞.

Then also um → u, ∂αum → vα in L1,loc(Ω).
By Theorem 3, vα = ∂αu. Hence,

um

W l
p(Ω)−→ u as m→ ∞.

�

If p = 2, the space W l
2(Ω) is a Hilbert space with the inner product

(u, v)W l
2(Ω) =

∫

Ω

∑

|α|≤l

∂αu(x)∂αv(x)dx.
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For W l
2(Ω) another notation H l(Ω) is often used: W l

2(Ω) = H l(Ω).

Using the properties of weak derivatives (see section 4
”
Change of varia-

bles“ in § 4), we can show that the class W l
p(Ω) is invariant with respect to

smooth (C l-class) change of variables.

Theorem 7
Let f : Ω → Ω̃ be a diffeomorphism of class C l, so that

f ∈ C l(Ω), f−1 ∈ C l(Ω̃).
Then, if u ∈W l

p(Ω) , then ũ = u ◦ f−1 ∈W l
p(Ω̃), and

c1 ‖u‖W l
p(Ω) ≤ ‖ũ‖W l

p(Ω̃) ≤ c2 ‖u‖W l
p(Ω) . (17)

The constants c1, c2 do not depend on u; they depend only on ‖f‖Cl(Ω)

and
∥∥f−1

∥∥
Cl(Ω̃)

.

Proof:
For simplicity, let us prove Theorem 7 in the case l = 1. We have

u ∈W 1
p (Ω), ũ(y) = u(f−1(y)).

By section 4 in §4, there exist the weak derivatives

∂ũ

∂yk
=

n∑

j=1

∂u

∂xj

∂xj

∂yk
.

Let us check that ∂ũ
∂yk

∈ Lp(Ω̃):

(∫

Ω̃

∣∣∣∣
∂ũ

∂yk

∣∣∣∣
p

dy

)1/p

=



∫

Ω

∣∣∣∣∣∣

n∑

j=1

∂u

∂xj

∂xj

∂yk

∣∣∣∣∣∣

p

|J(x)| dx




1/p

≤
n∑

j=1

(
max
x∈Ω

∣∣∣∣
∂xj

∂yk

∣∣∣∣ |J(x)|1/p

)(∫

Ω

∣∣∣∣
∂u

∂xj

∣∣∣∣
p

dx

)1/p

≤ c
n∑

j=1

(∫

Ω

∣∣∣∣
∂u

∂xj

∣∣∣∣
p

dx

)1/p

.

Here J(x) = det f ′(x) and the constant c := maxj,k

(
maxx∈Ω

∣∣∣∂xj

∂yk

∣∣∣ |J(x)|1/p
)

depends only on the norms ‖f‖C1(Ω) and
∥∥f−1

∥∥
C1(Ω̃)

.

Also we have∫

Ω̃
|ũ(y)|p dy =

∫

Ω
|u(x)|p |J(x)| dx ≤ (max |J(x)|)

∫

Ω
|u(x)|p dx.

Thus, ‖ũ‖W 1
p (Ω̃) ≤ c2 ‖u‖W 1

p (Ω) with the constant c2 depending only on

‖f‖C1 and
∥∥f−1

∥∥
C1 . Prove the lower estimate in (17) yourself (for this

change the roles of u and ũ in the argument).

�
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2. Definition of
◦

W l
p(Ω)

Definition

The closure of C∞
0 (Ω) in the norm of W l

p(Ω) is denoted by
◦

W l
p(Ω).

So,
◦

W l
p(Ω) is a subspace in the space W l

p(Ω).

Proposition

Let u ∈
◦

W l
p(Ω), and let

ũ(x) =

{
u(x) x ∈ Ω

0 x ∈ R
n\Ω.

Then ũ ∈W l
p(Ω1) for any Ω1 such that Ω ⊂ Ω1. In particular,

ũ ∈W l
p(R

n).

Proof

By definition of
◦

W l
p(Ω), there exists a sequence um ∈ C∞

0 (Ω) such that

um

W l
p(Ω)−→ u as m→ ∞. We put

ũm(x) =

{
um(x) x ∈ Ω

0 otherwise .

Then ũm ∈ C∞
0 (Ω1) and ũm

W l
p(Ω1)−→ ũ as m→ ∞

(since ‖ũm − ũ‖W l
p(Ω1) = ‖um − u‖W l

p(Ω)).

Hence, ũ ∈
◦

W l
p(Ω1).

�

Theorem 8

Let u ∈
◦

W l
p(Ω) and let

ũ(x) =

{
u(x) x ∈ Ω

0 x ∈ R
n\Ω.

Then for mollifications uρ(x) we have uρ
ρ→0−→ u in W l

p(Ω).
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Proof
We have already proved that ũ ∈W l

p(R
n). Then ∂αũ ∈ Lp(R

n), |α| ≤ l. By
property 4) and 5) of ∂αu (mollification of the weak derivative),

∂αũρ
ρ→0−→ ∂αũ in Lp(Ω), |α| ≤ l.

It means that ũρ
ρ→0−→ ũ in W l

p(Ω). But, by definition of ũ and definition

of mollification, ũ = u in Ω, and ũρ = uρ. So, uρ
ρ→0−→ u in W l

p(Ω).

�

Remark
If u(x) is an arbitrary function in W l

p(Ω), and ũ(x) is defined as above,
then, in general, ũ(x) does not have weak derivatives in R

n. (See example 2

in Section 7 of §4). So, in general,
◦

W l
p(Ω) 6= W l

p(Ω).

3. Integration by parts

Proposition

Let u ∈W l
p(Ω) and v ∈

◦

W l
p(Ω), where 1

p + 1
p′ = 1. Then

∫

Ω
∂αuvdx = (−1)|α|

∫

Ω
u ∂αvdx, |α| ≤ l. (18)

Proof

Let vm ∈ C∞
0 (Ω) and vm → v as m → ∞ in

◦

W l
p(Ω). By Definition 1 of the

weak derivative ∂αu, we have
∫

Ω
∂αuvmdx = (−1)|α|

∫

Ω
u ∂αvmdx. (19)

Let us show that
∫

Ω
∂αu vm dx

m→∞−→
∫

Ω
∂αu v dx,

∫

Ω
u ∂αvm dx

m→∞−→
∫

Ω
u ∂αv dx.

We have
∣∣∣∣
∫

Ω
∂αu (vm − v) dx

∣∣∣∣ ≤
(∫

Ω
|∂αu|p dx

)1/p(∫

Ω
|vm − v|p′ dx

)1/p′

≤ ‖u‖W l
p(Ω) ‖vm − v‖W l

p′
(Ω)

→ 0 as m→ ∞;
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∣∣∣∣
∫

Ω
u (∂αvm − ∂αv) dx

∣∣∣∣ ≤
(∫

Ω
|u|p dx

)1/p (∫

Ω
|∂αvm − ∂αv|p′ dx

)1/p′

≤ ‖u‖W l
p(Ω) ‖vm − v‖W l

p′
(Ω)

→ 0 as m→ ∞.

Tending to the limit in (19) as m→ ∞, we obtain (18).

�

4. Separability

By V l
p(Ω) we denote the linear space of all vector–valued functions

v = {vα}|α|≤l such that vα ∈ Lp(Ω), |α| ≤ l. We introduce the norm in

V l
p(Ω):

‖v‖V l
p(Ω) =

∑

|α|≤l

‖vα‖p,Ω .

Then V l
p(Ω) is the direct product of a finite number (equal to the number of

multi–indices α with |α| ≤ l) of Lp(Ω). We know that Lp(Ω) is a separable

Banach space if 1 ≤ p <∞. Then so is V l
p(Ω).

Now, consider the transformation J from W l
p(Ω) (equipped with the norm

||u||W l
p(Ω) =

∑
|α|≤l ‖∂αu‖p,Ω, which is equivalent to the standard norm) to

V l
p(Ω):

J : W l
p(Ω) → V l

p(Ω), Ju = {∂αu}|α|≤l .

Then J is a linear operator; it preserves the norm: ‖Ju‖V l
p(Ω) = ||u||W l

p(Ω);

and J is injective. Such an operator is called isometric.
The range Ran J = Ṽ l

p(Ω) is a linear set in V l
p(Ω) consisting of

vector–valued functions v of the form v = {∂αu}|α|≤l , u ∈W l
p(Ω).

From Theorem 3 it follows that Ṽ l
p(Ω) is a closed subspace of V l

p(Ω). Hence,

Ṽ l
p(Ω) is separable together with V l

p (Ω). (Since any subspace of some sepa-
rable space is also separable.)
Since J is isometric, we can identifyW l

p(Ω) with Ṽ l
p(Ω). It follows thatW l

p(Ω)
is separable if 1 ≤ p <∞.

5. The space W l
p(R

n)

Proposition

◦

W l
p(R

n) = W l
p(R

n) . In other words, C∞
0 (Rn) is dense in W l

p(R
n).
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Proof
Let ζ ∈ C∞(R+) be such that

0 ≤ ζ(t) ≤ 1, ζ(t) = 1 if 0 ≤ t ≤ 1, ζ(t) = 0 if t ≥ 2.

Let u ∈W l
p(R

n). We put u(R)(x) = u(x)ζ
(
|x|
R

)
. Then

u(R)(x) = u(x) if |x| ≤ R, u(R)(x) = 0 if |x| ≥ 2R.

Note that derivatives ∂β
x ζ
(
|x|
R

)
are uniformly bounded with respect to

R ≥ 1. Calculating the derivatives of u(R)(x), we obtain the inequality

∣∣∣∂αu(R)(x)
∣∣∣ ≤ c

∑

|β|≤|α|

∣∣∣∂βu(x)
∣∣∣ , a.e. x ∈ R

n.

Then for |α| ≤ l we have

∥∥∥∂αu(R) − ∂αu
∥∥∥

p,
�

n
=



∫
�

n

∣∣∣∂αu(R)(x) − ∂αu(x)
∣∣∣
p

︸ ︷︷ ︸
=0 for |x|≤R

dx




1/p

=

(∫

|x|>R

∣∣∣∂αu(R)(x) − ∂αu(x)
∣∣∣
p
dx

)1/p

≤ c
∑

|β|≤|α|

(∫

|x|>R

∣∣∣∂βu(x)
∣∣∣
p
dx

)1/p

→ 0 as R→ ∞

This expression tends to zero as R→ ∞, since u ∈W l
p(R

n), and so,∣∣∂βu
∣∣p ∈ L1. Thus, u(R) → u as R→ ∞ in W l

p(R
n).

Now, we consider mollification u
(R)
ρ of u(R).

Then u
(R)
ρ ∈ C∞

0 (Rn) and u
(R)
ρ → u(R) as ρ→ 0 in W l

p(R
n).

It follows that C∞
0 (Rn) is dense in W l

p(R
n). Indeed, let u ∈W l

p(R
n) and let

ε > 0. We find R so large that
∥∥u(R) − u

∥∥
W l

p(
�

n)
< ε

2 . Next, we find ρ so

small that
∥∥∥u(R)

ρ − u(R)
∥∥∥

W l
p(
�

n)
< ε

2 . Then
∥∥∥u(R)

ρ − u
∥∥∥

W l
p(
�

n)
< ε.

�
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6. The Friedrichs inequality

Theorem 9

If Ω is a bounded domain in R
n, then for any function u ∈

◦

W l
p(Ω) we

have

‖u‖p,Ω ≤ (diamΩ)l —u—p,l,Ω. (20)

Here

—u—p,l,Ω =


∑

|α|=l

‖∂αu‖p
p,Ω




1/p

. (21)

Proof

Since C∞
0 (Ω) is dense in

◦

W l
p(Ω), it suffices to prove (20) for u ∈ C∞

0 (Ω).

1) So, let u ∈ C∞
0 (Ω). Let Q be a cube with the edge d = diamΩ, such

that Ω ⊂ Q. We extend u(x) by zero to Q\Ω. We can choose the
coordinate system so that Q = {x : 0 < xj < d, j = 1, . . . n}.
Obviously,

u(x) =

∫ xn

0

∂u

∂xn
(x′, y)dy, x ∈ Q.

Here x = (x1, . . . , xn−1︸ ︷︷ ︸
x′

, xn) = (x′, xn).

Then, by the Hölder inequality,

|u(x)|p ≤
(∫ xn

0

∣∣∣∣
∂u

∂xn
(x′, y)

∣∣∣∣
p

dy

)(∫ xn

0
1dy

)p/p′

︸ ︷︷ ︸
≤ dp/p′

≤ dp/p′
∫ d

0

∣∣∣∣
∂u(x′, xn)

∂xn

∣∣∣∣
p

dxn

Here 1
p + 1

p′ = 1.
We integrate both sides of this inequality:

∫

Ω
|u|pdx =

∫

Q
|u|pdx ≤ dp/p′

(∫ d

0
dxn

)(∫

Q

∣∣∣∣
∂u

∂xn

∣∣∣∣
p

dx

)

p
p′

+1=p
= dp

∫

Ω

∣∣∣∣
∂u

∂xn

∣∣∣∣
p

dx.

We have proved that

‖u‖p,Ω ≤ (diamΩ)

(∫

Ω

∣∣∣∣
∂u

∂xn

∣∣∣∣
p

dx

)1/p

≤ (diamΩ)—u—p,1,Ω. (22)

This is inequality (20) for l = 1.
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2) In order to prove (20) with l > 1, we iterate (22):

∫

Ω

∣∣∣∣
∂u

∂xn

∣∣∣∣
p

dx ≤ dp

∫

Ω

∣∣∣∣
∂2u

∂x2
n

∣∣∣∣
p

dx, etc.

⇒
∫

Ω
|u|pdx ≤ dlp

∫

Ω

∣∣∣∣
∂lu

∂xl
n

∣∣∣∣
p

dx ≤ dlp—u—p
p,l,Ω.

�

Remark

Inequality (20) is not valid for all u ∈W l
p(Ω).

Example
If Ω is a bounded domain and u(x) = Pl−1(x)(6= 0) is a polynomial of
order ≤ l − 1, then —u—p,l,Ω = 0, but ‖u‖p,Ω 6= 0.
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§6. Domains of star type

A natural question:
Can we approximate functions in W l

p(Ω) by smooth functions?
The answer depends on domain Ω. We’ll consider the class of domains for
which the answer is

”
YES, we can“.

Definition
We say that a bounded domain Ω is of star type with respect to a
point 0, if any half–line starting at point 0 intersects ∂Ω only in one
point.

Theorem 10

Let Ω be a bounded domain of star type with respect to a point 0.
Then C∞(Ω) is dense in W l

p(Ω).

Proof
Let us use the coordinate system with origin 0. Consider a sequence of
domains Ωk =

{
x : k−1

k x ∈ Ω
}
, k ∈ N.

Then Ωk+1 ⊂ Ωk and Ω ⊂ Ωk.
Let u ∈W l

p(Ω). We put uk(x) = u(k−1
k x).

Clearly, uk ∈W l
p(Ωk). Let us show that ‖uk − u‖W l

p(Ω) → 0 as k → ∞.

We have

‖uk − u‖p,Ω =

(∫

Ω

∣∣∣∣u
(
k − 1

k
x

)
− u(x)

∣∣∣∣
p

dx

)1/p

−→ 0 as k → ∞.

This follows from the property of Lp–functions: if u ∈ Lp(Ω), then

sup
|z(x)|≤ c

k

∫

Ω
|u(x+ z(x)) − u(x)|p dx k→∞−→ 0.

(In our case z(x) = −x
k and |x| ≤ diamΩ = d⇒ |z(x)| ≤ d

k .)
Let α be a multi–index with |α| ≤ l. Then

‖∂αuk − ∂αu‖p,Ω =

(∫

Ω

∣∣∣∣∣

(
k − 1

k

)|α|

∂αu

(
k − 1

k
x

)
− ∂αu(x)

∣∣∣∣∣ dx
)1/p

≤
(

1 −
(
k − 1

k

)|α|
)

︸ ︷︷ ︸
→0 as k→∞

(∫

Ω

∣∣∣∣∂αu

(
k − 1

k
x

)∣∣∣∣
p

dx

)1/p

︸ ︷︷ ︸
≤c‖u‖

Wl
p(Ω)

+

+

(∫

Ω

∣∣∣∣∂αu

(
k − 1

k
x

)
− ∂αu(x)

∣∣∣∣
p

dx

)1/p

︸ ︷︷ ︸
→0 as k→∞

.
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Hence, uk
k→∞−→ u in W l

p(Ω). Consider mollifications uk,ρ(x). Then

uk,ρ ∈ C∞(Ω) and uk,ρ
ρ→0−→ uk in W l

p(Ω) (since Ω is bounded and Ω ⊂⊂ Ωk).
We can choose a sequence {ρk}, so that ρk → 0 as k → ∞, and a sequence
ũk(x) := uk,ρk

(x) tends to u(x) in W l
p(Ω):

ũk ∈ C∞(Ω) and

‖ũk − u‖W l
p(Ω)

k→∞−→ 0.

�

Remark

Let Ω = {x : |x| < 1, xn > 0} be a half–ball. Ω is of star type with
respect to any interior point 0′. Suppose that u ∈W l

p(Ω) and u(x) = 0

if |x| > 1 − ε. Then ũk ∈ C∞(Ω) and ũk(x) = 0 if |x| > 1 − ε
2 for

sufficiently large k.
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§7: Extension theorems

We can always extend a function u ∈
◦

W l
p(Ω) by zero and the extended

function ∈ W l
p(Ω̃) in Ω̃ (⊃ Ω). It is a natural question if we can extend

functions of class W l
p(Ω). We start with the case l = 1.

Theorem 11
Suppose that Ω ⊂ R

n is a bounded domain such that Ω is a compact
manifold of class C1. Let Ω̃ be a domain in R

n such that Ω ⊂ Ω̃.
Then there exists a linear bounded extension operator

Π : W 1
p (Ω) →

◦

W 1
p (Ω̃) such that (Πu) (x) = u(x), x ∈ Ω.

Proof
We proceed in three steps:
Step 1
Let Ω = K+ = {x : |x| < 1, xn > 0} be a half–ball, and let u ∈W 1

p (K+) and
u(x) = 0 near Σ+ = {x ∈ ∂K+ : |x| = 1}. We extend u to the left half–ball
K− = {x : |x| < 1, xn < 0} as follows:

v(x) =

{
u(x) x ∈ K+

u(x′,−xn) x ∈ K−.

Let us show that v ∈W 1
p (K) and

‖v‖W 1
p (K) = 21/p ‖u‖W 1

p (K+) . (23)

Here K = {x : |x| < 1}. Using construction of Theorem 10 (and Remark
after Theorem 10), we can find a sequence um(x) such that um ∈ C∞(K+),
um(x) = 0 near Σ+, and ‖um − u‖W 1

p (K+) → 0 as m→ ∞. We put

vm(x) =

{
um(x) x ∈ K+

um(x′,−xn) x ∈ K−.

Then vm ∈ C(K), vm(x) = 0 near ∂K, vm ∈ C∞(K+), vm ∈ C∞(K−). It

follows that vm ∈
◦

W 1
p (K) (see §4, Subsection 7, Example 2). For the norm

of vm we have:

‖vm‖p
W 1

p (K)
=

∫

K
(|vm(x)|p + |∇vm(x)|p) dx

= 2

∫

K+

(|um(x)|p + |∇um(x)|p) dx

⇒ ‖vm‖W 1
p (K) = 21/p ‖um‖W 1

p (K+) . (24)
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Next,

∂vm(x)

∂xj
=

{
∂um(x)

∂xj
x ∈ K+

∂
∂xj

(um(x′,−xn)) x ∈ K−.

Since um
m→∞−→ u in W 1

p (K+), it follows that vm
m→∞−→ v in Lp(K) and

∂vm
∂xj

m→∞−→ wj in Lp(K), where

wj(x) =

{
∂u(x)
∂xj

x ∈ K+
∂u
∂xj

(x′,−xn) x ∈ K−
, j = 1, . . . , n− 1;

wn(x) =

{ ∂u(x)
∂xn

x ∈ K+

−
(

∂u
∂xn

)
(x′,−xn) x ∈ K−.

By Theorem 3, there exist weak derivatives ∂v
∂xj

in K and ∂v
∂xj

= wj . Thus,

vm
m→∞−→ v in W 1

p (K). Relation (23) follows from (24) by the limit procedure
(as m→ ∞).

Step 2
Suppose that u ∈ W 1

p (Ω) and suppu ⊂ U , where U is a neighbourhood of

x0 ∈ ∂Ω, such that U ⊂ Ω̃ and ∃ diffeomorphism
f : U → K, f ∈ C1(U), f−1 ∈ C1(K), f(U) = K,
f(U ∩ Ω) = K+, f(U ∩ ∂Ω) = ∂K+\Σ+.
We consider the function ũ(y) = u(f−1(y)), y ∈ K+. Then ũ ∈ W 1

p (K+)
and ũ(y) = 0 near Σ+.
We extend ũ(y) on K− like in step 1:

ṽ(y) =

{
ũ(y) y ∈ K+

ũ(y′,−yn) y ∈ K−.

As it was proved in step 1, ṽ ∈
◦

W 1
p (K), and

‖ṽ‖W 1
p (K) = 21/p ‖ũ‖W 1

p (K+) .

Consider the function v(x) = ṽ(f(x)), x ∈ U . Then v ∈
◦

W 1
p (U). We extend

v(x) by zero on Ω̃\U . Then v ∈
◦

W 1
p (Ω̃), v|Ω = u, and

‖v‖W 1
p (Ω̃) = ‖v‖W 1

p (U) ≤ c1 ‖ṽ‖W 1
p (K) ≤ c12

1/p ‖ũ‖W 1
p (K+) ≤ c2c12

1/p

︸ ︷︷ ︸
=c

‖u‖W 1
p (Ω) .

The constant c depends on ‖f‖C1 ,
∥∥f−1

∥∥
C1 and on p.

Step 3 (general case)

Let Ω be a bounded domain such that Ω is a compact manifold of class
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C1 with boundary ∂Ω. Then (by definition of such manifolds) there exists
a finite number of open sets U1, U2, . . . , UN such that either Uj ⊂ Ω or
Uj is a neighbourhood of some point x(j) ∈ ∂Ω, and ∃ a diffeomorphism
fj ∈ C1(Uj), f−1

j ∈ C1(K), fj(Uj) = K, fj(Uj ∩ Ω) = K+,

fj(Uj ∩ ∂Ω) = ∂K+\Σ+. Finally, Ω ⊂ ⋃N
j=1Uj .

We can choose the sets U1, U2, . . . , UN so that
⋃N

j=1 Uj ⊂ Ω̃.
There exists a partition of unity {ζj(x)}j=1,...,N such that

ζj ∈ C∞
0 (Rn), supp ζj ⊂ Uj ,

∑N
j=1 ζj(x) = 1, x ∈ Ω.

Let u ∈W 1
p (Ω). We represent u(x) as u(x) =

∑N
j=1 uj(x), where

uj(x) = ζj(x)u(x).

If Uj ⊂ Ω, then uj ∈
◦

W 1
p (Ω) (since supp ζj ⊂ Uj) and we can extend uj(x)

by zero to Ω̃\Ω :

vj(x) =

{
uj(x) x ∈ Ω

0 x ∈ Ω̃\Ω.

If U ∩ ∂Ω 6= ∅, then uj(x) satisfies assumptions of step 2. By the result

of step 2, we can extend uj(x) to some function vj ∈
◦

W 1
p (Ω̃) such that

vj(x) = uj(x), x ∈ Ω, and ‖vj‖W 1
p (Ω̃) ≤ cj ‖uj‖W 1

p (Ω).

The constant cj depends on ‖fj‖C1 ,
∥∥∥f−1

j

∥∥∥
C1

and on p. We put

Πu = v =

N∑

j=1

vj.

Then v ∈
◦

W 1
p (Ω̃), v(x) =

∑N
j=1 vj(x) =

∑N
j=1 uj(x) = u(x), x ∈ Ω, and

‖v‖W 1
p (Ω̃) ≤

N∑

j=1

‖vj‖W 1
p (Ω̃) ≤

N∑

j=1

cj ‖uj‖W 1
p (Ω) ≤ c

N∑

j=1

‖uj‖W 1
p (Ω) ,

where c = max1≤j≤N {cj}. Finally,

‖uj‖W 1
p (Ω) = ‖ζju‖W 1

p (Ω) ≤ ĉj ‖u‖W 1
p (Ω) .

The constant ĉj depends on ‖ζj‖C1. Hence,

‖v‖W 1
p (Ω̃) ≤ cĉ ‖u‖W 1

p (Ω) , ĉ =

N∑

j=1

ĉj.

Thus, we constructed the linear continuous extension operator
Π : W 1

p (Ω) → W 1
p (Ω̃).

�
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Remark

It is clear from the proof that for the constructed extension operator
Π we have

‖v‖Lp(Ω̃) ≤ c ‖u‖Lp(Ω) , v = Πu.

The constant c depends on p,Ω and Ω̃.

2.

Similar extension theorem is true for unbounded domain Ω ⊂ R
n satisfy-

ing the following condition. Suppose that there exist bounded open sets
{Uj} , j ∈ N, such that Ω ⊂ ⋃∞

j=1 Uj. Here either Uj ⊂ Ω or Uj is a neigh-

bourhood of a point x(j) ∈ ∂Ω and ∃ a diffeomorphism fj ∈ C1(Uj),
f−1

j ∈ C1(K), fj(Uj) = K, fj(Ω ∩ Uj) = K+, fj(∂Ω ∩ Uj) = ∂K+\Σ+.

Moreover, suppose that the norms ‖fj‖C1(Uj)
and

∥∥∥f−1
j

∥∥∥
C1(K)

are uniformly

bounded for all j ∈ N. Suppose also that each point x ∈ Ω belongs only to
a finite number N(x) of sets Uj , and that N(x) ≤ N <∞, ∀x ∈ Ω.
(This means that the multiplicity of covering is finite.)

Theorem 12

Under the above conditions on Ω ⊂ R
n, let Ω̃ be a domain in R

n

such that
⋃∞

j=1 Uj ⊂ Ω̃. Then there exists a linear bounded extension
operator

Π : W 1
p (Ω) →

◦

W 1
p (Ω̃)

such that (Πu) (x) = u(x), x ∈ Ω.

We omit the proof.

3. Now we consider the case l > 1

Theorem 13

Suppose that Ω ⊂ R
n is a bounded domain such that Ω is a compact

manifold of class C l. Let Ω̃ be a domain in R
n such that Ω ⊂ Ω̃. Then

there exists a linear bounded extension operator

Π : W l
p(Ω) →

◦

W l
p(Ω̃), i. e., (Πu) (x) = u(x), for x ∈ Ω

and ‖Πu‖W l
p(Ω̃) ≤ c1 ‖u‖W l

p(Ω).

Besides, ‖Πu‖Lp(Ω̃) ≤ c2 ‖u‖Lp(Ω).

The constants c1, c2 depend on l, p,Ω and Ω̃.
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Proof
Like in the proof of Theorem 11, the question reduces to the case, where
Ω = K+ and u(x) = 0 near Σ+. Moreover, it suffices to consider smooth
functions u ∈ C∞(K+). So, let u ∈ C∞(K+) and u(x) = 0 near Σ+. We
extend u(x) by zero to R

n
+\K+. We put

v(x) =

{
u(x) x ∈ K+∑l−1

j=0 cj u(x
′,−2jxn) x ∈ K−.

The constants cj , j = 0, . . . , l − 1, are chosen so that

∂mv

∂xm
n

(x′,+0) =
∂mv

∂xm
n

(x′,−0), m = 0, . . . , l − 1.

These conditions are equivalent to the following system of linear equations
for c0, c1, . . . , cl−1:

l−1∑

j=0

(
−2j

)m
cj = 1, m = 0, 1, . . . , l − 1.

The determinant of this system is not zero.
Hence, such constants c0, . . . , cl−1 exist. It is easy to check that v ∈W l

p(K),
and

‖∂αv‖p,K ≤ cα ‖∂αu‖p,K+
, |α| ≤ l.

(We use that v ∈ C∞(K+), v ∈ C∞(K−) and v ∈ C l−1(K).
Then v ∈W l

p(K).) Hence , ‖v‖W l
p(K) ≤ c1 ‖u‖W l

p(K+).

Obviously, v(x) = 0 near ∂K. So, v ∈
◦

W l
p(K).

Next, for arbitrary domain Ω, we use the covering Ω ⊂ ⋃N
j=1 Uj and the

partition of unity. The argument is the same as in proof of Theorem 11. The
only difference is that we consider diffeomorphisms of class C l.

�

Remark

1) The conclusion of Theorem 13 remains true under weaker assumptions
on the domain Ω. It suffices to assume that Ω is domain of class C1

(for arbitrary l!) or, even that Ω is Lipschitz domain (it means that
diffeomorphisms fj, f

−1
j ∈ Lip1).

2) Extension theorems allow us to reduce the study of functions in W l
p(Ω)

to the study of functions in
◦

W l
p(Ω̃). In particular, from the fact that

C∞
0 (Ω̃) is dense in

◦

W l
p(Ω̃) it follows that C∞(Ω) is dense in W l

p(Ω), if

domain Ω satisfies conditions of Theorem 13.
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Chapter 2: Embedding Theorems

Introduction

Embedding theorems give relations between different functional spaces.

Definition
Let B1 and B2 be two Banach spaces. We say that B1 is embedded

into B2 and write B1 ↪→ B2, if for any u ∈ B1 we have u ∈ B2 and
‖u‖B2

≤ c ‖u‖B1
, where the constant c does not depend on u ∈ B1.

We define the embedding operator J : B1 → B2, which takes u ∈ B1

into the same element u considered as an element of B2.

The fact that B1 ↪→ B2 is equivalent to the fact that the embedding operator
J : B1 → B2 is continuous linear operator.
If ‖u‖B2

≤ c ‖u‖B1
, ∀u ∈ B1, then ‖J‖B1→B2

≤ c.

Definition

If B1 ↪→ B2 and the embedding operator J : B1 → B2 is a compact

operator, then we say that B1 is compactly embedded into B2.

The compactness of operator J is equivalent to the fact that any bounded

set in B1 is a compact set in B2.
Some embeddings are obvious.
For example, it is obvious that W l1

p (Ω) ↪→ W l2
p (Ω), if l1 > l2. In particu-

lar, W l
p(Ω) ↪→ Lp(Ω), l > 0. But the fact that for bounded domain Ω, these

embeddings are compact, is non–trivial. (This is the Rellich embedding theo-
rem.)
More general is the Sobolev embedding theorem : W l

p(Ω) ↪→ W r
q (Ω) under

some conditions on p, l, q, r (with q > p and r < l).
Another embedding theorem is that, if pl > n, then a function u ∈ W l

p(Ω)
is continuous (precisely, u(x) coincides with a continuous function for a. e.
x ∈ Ω).
The trace embedding theorems show that functions in W l

p(Ω) have traces
on some surfaces of lower dimension.
The embedding theorems are very important for the modern analysis and
boundary value problems.
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§1: Integral operators in Lp(Ω)

In order to prove embedding theorems, we need some auxiliary material
about integral operators.

1.

Let Ω ⊂ R
n and D ⊂ R

m be some bounded domains. We consider the integral
operator

(Ku) (x) = v(x) =

∫

Ω
K(x, y)u(y)dy, x ∈ D, u ∈ Lp(Ω) (1 ≤ p <∞).

We’ll show that under some conditions on the kernel K(x, y), the operator
K is continuous or, even, compact from Lp(Ω) to Lq(D), or from Lp(Ω) to
C(D).
We always assume that K(x, y) is a measurable function on D × Ω, and K
satisfies one or several of the following conditions:

a) ∫

Ω
|K(x, y)|t dy ≤M for a. e. x ∈ D, where t ≥ 1.

b) ∫

D
|K(x, y)|s dx ≤ N for a. e. y ∈ Ω, where s > 0.

c)
ess sup

x∈D,y∈Ω
|K(x, y)| ≤ L <∞ (K is bounded).

d)
sup

x,z∈D

|x−y|≤ρ

sup
y∈Ω

|K(x, y) −K(z, y)| ≤ ε(ρ) → 0 as ρ→ 0

(K is continuous in x).

Lemma 1

If K(x, y) satisfies conditions c) and d) , then K : Lp(Ω) → C(D) is
compact operator. Here 1 ≤ p <∞.

Proof
Let u ∈ Lp(Ω) and v(x) = (Ku) (x). Then, by condition c),

|v(x)| ≤ L

∫

Ω
|u(y)| dy ≤ L

(∫

Ω
|u(y)|p dy

)1/p(∫

Ω
1p′dy

)1/p′

= L|Ω|1/p′ ‖u‖p,Ω , (1)
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where 1
p + 1

p′ = 1. (If p = 1 then (1) is also true with p′ = ∞, |Ω|1/p′ = 1.)
Next, if |x− z| ≤ ρ (x, z ∈ D), then, by condition d),

|v(x) − v(z)| =

∣∣∣∣
∫

Ω
(K(x, y) −K(z, y)) u(y)dy

∣∣∣∣

≤ ε(ρ)

∫

Ω
|u(y)| dy

≤ ε(ρ)|Ω|1/p′ ‖u‖p,Ω . (2)

From (1) and (2) it follows that, if u belongs to some bounded set in Lp(Ω):
‖u‖p,Ω ≤ c, then the set of functions {v} is uniformly bounded

(‖v‖C(D) ≤ L|Ω|1/p′c) and equicontinuous (|v(x) − v(z)| ≤ ε(ρ)|Ω|1/p′c,

if |x− z| ≤ ρ).
By the Arzela Theorem, this set is compact in C(D). It means that the
operator K : Lp(Ω) → C(D) is compact.

�

Lemma 2

1) If p > 1, 1
p + 1

p′ = 1, and K(x, y) satisfies conditions a) and b) with

some t < p′ and s
p + t

p′ ≥ 1, then v = Ku ∈ Lq(D) (for u ∈ Lp(Ω)),

where q ≥ p is defined from the relation s
q + t

p′ = 1.
We have

‖v‖q,D ≤M1/p′N1/q ‖u‖p,Ω , u ∈ Lp(Ω). (3)

2) If p = 1, and K(x, y) satisfies condition b) with s = q ≥ 1. Then
v = Ku ∈ Lq(D) and

‖v‖q,D ≤ N1/q ‖u‖1,Ω , u ∈ L1(Ω). (4)

3) If p > 1, and K(x, y) satisfies condition a) with t = p′, then
v = Ku ∈ L∞(D) and

‖v‖∞,D ≤M1/p′ ‖u‖p,Ω , u ∈ Lp(Ω). (5)

4) If p = 1, and K(x, y) satisfies condition c), then v = Ku ∈ L∞(D) and

‖v‖∞,D ≤ L ‖u‖1,Ω , u ∈ L1(Ω). (6)
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Proof

1) Let p > 1. Using that s
q + t

p′ = 1, we obtain:

|K(x, y)u(y)| =
(
|K(x, y)|s/q |u(y)|p/q

)
|u(y)|1−

p
q |K(x, y)|t/p′

We apply the Hölder inequality for the product of three functions:

∫

Ω
|f1(y)f2(y)f3(y)| dy ≤

(∫

Ω
|f1|p1 dy

) 1
p1

(∫

Ω
|f2|p2 dy

) 1
p2

(∫

Ω
|f3|p3 dy

) 1
p3

with 1
p1

+ 1
p2

+ 1
p3

= 1.

We take p1 = q, p2 = pq
q−p , p3 = p′. Then

|v(x)| ≤
∫

Ω
|K(x, y)u(y)| dy

≤
(∫

Ω
|K(x, y)|s |u(y)|p dy

) 1
q
(∫

Ω
|u(y)|p dy

) 1
p
− 1

q
(∫

Ω
|K(x, y)|t dy

) 1
p′

︸ ︷︷ ︸
≤M1/p′ ( by cond. a) )

≤ M
1
p′ ‖u‖1− p

q

p,Ω

(∫

Ω
|K(x, y)|s |u(y)|p dy

) 1
q

.

Note that in the case q = p, we simply apply the ordinary Hölder
inequality and obtain the same result. We have

|v(x)|q ≤ M q/p′ ‖u‖q−p
p,Ω

∫

Ω
|K(x, y)|s |u(y)|p dy

⇒
∫

D
|v(x)|q dx ≤ M q/p′ ‖u‖q−p

p,Ω

∫

D
dx

∫

Ω
|K(x, y)|s |u(y)|p dy

= M q/p′ ‖u‖q−p
p,Ω

∫

Ω
|u(y)|p dy

(∫

D
|K(x, y)|s dx

)

︸ ︷︷ ︸
≤N( by cond b ))

≤ NM q/p′ ‖u‖q
p,Ω .

This gives estimate (3).

2) Let p = 1 and s = q ≥ 1. If q > 1, we have

|K(x, y)u(y)| = (|K(x, y)|q |u(y)|)1/q |u(y)|1/q′ ,
1

q
+

1

q′
= 1.

Then, by the Hölder inequality,

|v(x)| ≤
∫

Ω
|K(x, y)u(y)| dy

≤
(∫

Ω
|K(x, y)|q |u(y)| dy

)1/q (∫

Ω
|u(y)| dy

)1/q′
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⇒
∫

D
|v(x)|q dx ≤

(∫

D
dx

∫

Ω
|K(x, y)q| |u(y)| dy

)
‖u‖q/q′

1,Ω

=

∫

Ω
|u(y)| dy

(∫

D
|K(x, y)|q dx

)

︸ ︷︷ ︸
≤N( by cond b) with s=q)

‖u‖q/q′

1,Ω

≤ N ‖u‖q
1,Ω .

This implies (4) (in the case q > 1).
If q = 1, then

|v(x)| ≤
∫

Ω
|K(x, y)| |u(y)| dy

⇒
∫

D
|v(x)| dx ≤

∫

D
dx

∫

Ω
|K(x, y)| |u(y)| dy

=

∫

Ω
|u(y)| dy

∫

D
|K(x, y)| dx

︸ ︷︷ ︸
≤N

≤ N ‖u‖1,Ω .

This implies (4) (in the case q = 1).

3) Let p > 1, and condition a) is satisfied with t = p′. Then, by the
Hölder inequality,

|v(x)| ≤
∫

Ω
|K(x, y)u(y)| dy

≤
(∫

Ω
|K(x, y)|p′ dy

)1/p′

︸ ︷︷ ︸
≤M1/p′

(∫

Ω
|u(y)|p

)1/p

≤ M1/p′ ‖u‖p,Ω .

This yields (5).

4) Let p = 1 and K satisfies condition c). Then

|v(x)| ≤
∫

Ω
|K(x, y)| |u(y)| dy ≤ L

∫

Ω
|u(y)| dy = L ‖u‖1,Ω ,

which gives (6).
�
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Remark

Statements 1) and 2) mean that the operator K : Lp(Ω) → Lq(D) is
continuous, and

‖K‖Lp(Ω)→Lq(D) ≤ M1/p′N1/q, p > 1; (7)

‖K‖Lp(Ω)→Lq(D) ≤ N1/q, p = 1. (8)

Under conditions of 3) and 4) the operator K : Lp(Ω) → L∞(D) is
continuous and

‖K‖Lp(Ω)→L∞(D) ≤ M1/p′ , p > 1; (9)

‖K‖Lp(Ω)→L∞(D) ≤ L, p = 1. (10)

2.

Now, we’ll show that under some additional assumptions on K(x, y), the
operator K is compact. We’ll assume that K(x, y) can be approximated by
Kh(x, y) (as h→ 0) and Kh(x, y) are bounded and continuous in x.

Lemma 3

Suppose that Kh(x, y), 0 < h < h0, satisfies conditions c) and d)
(where L = L(h) and ε(ρ) = ε(ρ;h) depend on h).

1) Suppose that K(x, y) and Kh(x, y), 0 < h < h0, satisfy conditions of
Lemma 2(1) with common t, s,M,N , and

∫

Ω
|Kh(x, y) −K(x, y)|t dy ≤ mh

h→0−→ 0, for a. e. x ∈ D; (11)

∫

D
|Kh(x, y) −K(x, y)|s dx ≤ nh

h→0−→ 0, for a. e. y ∈ Ω. (12)

Then the operator K : Lp(Ω) → Lq(D) is compact.

2) Suppose that K(x, y), Kh(x, y), 0 < h < h0, satisfy conditions of
Lemma 2(2) with common s = q,N , and

∫

D
|Kh(x, y) −K(x, y)|q dx ≤ nh

h→0−→ 0, for a. e. y ∈ Ω. (13)

Then the operator K : L1(Ω) → Lq(D) is compact.

3) Suppose that K(x, y),Kh(x, y) satisfy conditions of Lemma 2(3) with
common t = p′,M , and condition (11) is satisfied with t = p′. Then
the operator K : Lp(Ω) → C(D) is compact. (Here p > 1.)
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Proof
We denote

(Khu) (x) = vh(x) =

∫

Ω
Kh(x, y)u(y)dy.

By Lemma 1, the operator Kh : Lp(Ω) → C(D) is compact.
Obviously, the embedding C(D) ↪→ Lq(D) (for a bounded domain D) is
continuous. Hence, the operator Kh : Lp(Ω) → Lq(D) is also compact.

1) From conditions (11), (12) and the estimate (7) it follows that

‖Kh −K‖Lp(Ω)→Lq(D) ≤ m
1/p′

h n
1/q
h → 0 as h→ 0.

Thus, K is the limit in the operator norm of compact operators Kh.
Hence, K : Lp(Ω) → Lq(D) is compact.

2) Similarly, if p = 1, from condition (13) and estimate (8) it follows that

‖Kh −K‖L1(Ω)→Lq(D) ≤ n
1/q
h → 0 as h→ 0.

It follows that K : L1(Ω) → Lq(D) is compact.

3) From condition (11) with t = p′ and estimate (5), it follows that

‖vh − v‖∞,D ≤ m
1/p′

h ‖u‖p,Ω , u ∈ Lp(Ω).

Hence, ‖vh − v‖∞,D → 0 as h → 0. Since (Khu) (x) = vh(x) is uni-

formly continuous, then v(x) is also uniformly continuous: v ∈ C(D).
Thus, the operator K maps Lp(Ω) into C(D), and

‖Kh −K‖Lp(Ω)→C(D) ≤ m
1/p′

h → 0 as h→ 0.

Since Kh : Lp(Ω) → C(D) is compact and Kh
h→0−→ K in the operator

norm, then K : Lp(Ω) → C(D) is also compact operator.

�

3.

Now we apply Lemmas 1–3 to the study of the operator

(Kju) (x) =

∫

Ω

xj − yj

|x− y|nu(y)dy, j = 1, . . . , n.

Here x ∈ Ω or x ∈ Ωm, where Ωm is some section of Ω by m–dimensional
hyper–plane (m < n). So, either D = Ω or D = Ωm. If m = n, we agree that
Ωn ≡ Ω.
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Lemma 4

1) Suppose that 1 ≤ p ≤ n, n − p < m ≤ n, q ≥ 1 and 1 − n
p + m

q > 0.
Then the operator Kj : Lp(Ω) → Lq(Ωm) is compact.
(If m = n, then Ωm = Ω; if m < n, then Ωm is arbitrary section of Ω
by m–dimensional hyper–plane.)

2) If p > n, then the operator Kj : Lp(Ω) → C(Ωm) is compact. In
particular, Kj : Lp(Ω) → C(Ω) is compact.

Proof
The proof is based on Lemmas 2 and 3.

1) Case 1 < p ≤ n
Suppose that conditions 1) are satisfied and, moreover, that q ≥ p > 1.
We put

θ = 1 − n

p
+
m

q
, t =

n

n− 1 + θ
=

n
n
p′ + m

q

;

s =
m

n− 1 + θ
=

m
n
p′ + m

q

. Then
s

q
+

t

p′
= 1.

Since q ≥ p, then s
p + t

p′ ≥ 1.

Clearly, t < p′. Since m ≤ n, q ≥ p, then θ ≤ 1.
Hence, t ≥ 1. Thus, the numbers t and s satisfy conditions of Lemma
2(1). Let us check that Kj(x, y) =

xj−yj

|x−y|n satisfy conditions a) and b)
with these t and s.
Note that t(n − 1) < n (since t(n − 1) < t(n − 1 + θ) = n) and
s(n− 1) < m (since s(n− 1) < s(n− 1 + θ) = m). We have

∫

Ω
|Kj(x, y)|t dy =

∫

Ω

|xj − yj|t

|x− y|tn
dy ≤

∫

Ω

dy

|x− y|t(n−1)
.

This integral converges since t(n− 1) < n. Let d = diamΩ,
B(x) = {y ∈ R

n : |x− y| ≤ d}. Obviously, Ω ⊂ B(x). Then
∫

Ω
|Kj(x, y)|t dy ≤

∫

B(x)

dy

|x− y|t(n−1)

y=x+rξ

ξ∈�n−1

= κn

∫ d

0

rn−1dr

rt(n−1)

=
κnd

n−t(n−1)

n− t(n− 1)
,

where κn is the square of the unit sphere S
n−1 in R

n.
Thus, condition a) is satisfied with

M =
κnd

n−t(n−1)

n− t(n− 1)
<∞.
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Let us check condition b):

∫

Ωm

|Kj(x, y)|s dx ≤
∫

Ωm

dx

|x− y|s(n−1)
≤
∫

Ωm

dx

|x− y′|s(n−1)
,

where y′ is the projection of point y onto the hyper–plane Πm (which
contains Ωm : Ωm ⊂ Πm ). The integral is finite, since s(n − 1) < m.
Consider the m–dimensional ball Bm(y′) = {x ∈ Πm : |x− y′| ≤ d}.
Clearly, Ωm ⊂ Bm(y′). Then

∫

Ωm

|Kj(x, y)|s dx ≤
∫

Bm(y′)

dx

|x− y′|s(n−1)
=
κmd

m−s(n−1)

m− s(n− 1)
.

Hence, condition b) is satisfied with

N =
κmd

m−s(n−1)

m− s(n− 1)
<∞.

The constant N depends on m and on d = diamΩ, but it does not

depend on Ωm (it is one and the same for all sections Ωm of dimen-
sion m). Thus, conditions of Lemma 2(1) are satisfied and, therefore,
Kj : Lp(Ω) → Lq(Ωm) is continuous. We want to prove that this ope-
rator is compact. For this, we want to find the operators Kjh satisfying
conditions of Lemma 3.
Let Ψ(r), r ∈ [0,∞), be a smooth function such that Ψ ∈ C∞([0,∞)),
Ψ(r) = 0 if 0 ≤ r ≤ 1

2 , Ψ(r) = 1 if r ≥ 1, and 0 ≤ Ψ(r) ≤ 1, ∀r.
We put Ψh(r) = Ψ( r

h). Then Ψh(r) = 0 if 0 ≤ r ≤ h
2 ,

Ψh(r) = 1 if r ≥ h. Consider the kernels

Kjh(x, y) =
xj − yj

|x− y|n Ψh(|x− y|).

Obviously, |Kjh(x, y)| ≤ |Kj(x, y)| , ∀x, y. Hence, Kjh satisfy conditi-
ons a) and b) together with K with the same constants t, s,M and N .
Clearly, Kjh(x, y) are bounded:

|Kjh(x, y)| ≤ Ψh(|x− y|)
|x− y|n−1

≤ 1
(

h
2

)n−1 = L(h).

So, Kjh satisfy condition c). And, finally, Kjh is uniformly continuous
in both variables. So, condition d) for Kjh is also satisfied. Let us check
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condition (11):

∫

Ω
|Kjh(x, y) −Kj(x, y)|t dy =

∫

|x−y|<h

|xj − yj|t
|x− y|tn (1 − Ψh(|x− y|))t

︸ ︷︷ ︸
≤1

dy

≤
∫

|x−y|<h

dy

|x− y|t(n−1)

=
κnh

n−t(n−1)

n− t(n− 1)

→ 0 as h→ 0.

Thus, (11) is true. Next,

∫

Ωm

|Kjh(x, y) −Kj(x, y)|s dx =

∫
Ωm

|x−y|<h

|xj − yj|s
|x− y|sn (1 − Ψh(|x− y|))s dx

≤
∫

{x∈Ωm:|x−y′|<h}

dx

|x− y′|s(n−1)

=
κmh

m−s(n−1)

m− s(n− 1)

→ 0 as h→ 0.

Thus, (12) is satisfied. Then all conditions of Lemma 3(1) are satisfied.
Hence, the operator Kj : Lp(Ω) → Lq(Ωm) is compact. (Recall that we
assumed q ≥ p > 1).

2) If 1 ≤ q < p, then we apply the result that Kj : Lp(Ω) → Lp(Ωm) is
compact (i. e. , we apply 1) with p = q; condition 1 − n

p + m
p > 0 is

true, since m > n− p).
Since Ωm is a bounded domain, then Lp(Ωm) ↪→ Lq(Ωm) (if q < p),
and any compact set in Lp(Ωm) is also compact in Lq(Ωm). It follows
that the operator Kj : Lp(Ω) → Lq(Ωm) is compact.

3) Case p=1
Condition n − p < m ≤ n means that n − 1 < m ≤ n. Then m = n,
so, now Ωm = Ω. Next, condition 1 − n

p + m
q > 0 means that

1 − n + n
q > 0 ⇒ 1 ≤ q < n

n−1 . Let us check that condition b) with
s = q is true:

∫

Ω
|Kj(x, y)|q dx =

∫

Ω

|xj − yj |q
|x− y|nq

dx ≤
∫

Ω

dx

|x− y|(n−1)q
.

The integral is finite since (n− 1)q < n

⇒
∫

Ω
|Kj(x, y)|q dx ≤ κnd

n−q(n−1)

n− q(n− 1)
.
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Also, condition (13) is satisfied:

∫

Ω
|Kjh(x, y) −Kj(x, y)|q dx ≤ κnh

n−q(n−1)

n− q(n− 1)
→ 0 as h→ 0.

By Lemma 3(2), the operator Kj : L1(Ω) → Lq(Ω) is compact.

4) Case p ¿ n
Let us check that conditions of Lemma 3(3) are satisfied. Indeed, the
kernelsKj(x, y) (and Kjh(x, y) with it) satisfy condition a) with t = p′:

∫

Ω
|Kj(x, y)|p

′

dy ≤
∫

Ω

dy

|x− y|p′(n−1)
≤ κnd

n−p′(n−1)

n− p′(n− 1)
<∞.

Since p > n, then 1
p <

1
n ,

1
p′ = 1 − 1

p > 1 − 1
n = n−1

n .

Hence n > p′(n− 1). Next,

∫

Ω
|Kjh(x, y) −Kj(x, y)|p

′

dy ≤
∫

|x−y|≤h

dy

|x− y|p′(n−1)

≤ κnh
n−p′(n−1)

n− p′(n− 1)

→ 0 as h→ 0.

Thus, conditions of Lemma 3(3) are satisfied. It follows that the ope-
rator Kj : Lp(Ω) → C(Ω) is compact.

�

Lemma 5

If 1 < p < n, n−p < m ≤ n, then the operator Kj : Lp(Ω) → Lq∗(Ωm)
is continuous (but not compact), where

1 − n

p
+
m

q∗
= 0

(
⇔ q∗ =

mp

n− p

)
.

Without proof.
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§2: Embedding theorems for W 1
p (Ω)

1. The integral representation for functions in
◦

W 1
p (Ω)

Lemma 6

Let Ω ⊂ R
n be a bounded domain. Let u ∈

◦

W 1
p (Ω). Then

u(x) =
1

κn

n∑

j=1

∫

Ω

xj − yj

|x− y|n
∂u

∂yj
dy, for a. e. x ∈ Ω. (14)

Proof

1) First, assume that u ∈ C∞
0 (Ω). Consider the fundamental solution of

the Poisson equation 4E(z) = δ(z):

E(z) =

{
− 1

κn(n−2)|z|n−2 n > 2
1
κ2

ln |z| n = 2.

Then for any u ∈ C∞
0 (Ω) we have

u(x) =

∫

Ω
E(x− y)(4u)(y)dy.

The function E(z) has weak derivatives

∂E(z)

∂zj
=

1

κn

zj
|z|n .

Then, ∂
∂yj

E(x− y) = − 1
κn

xj−yj

|x−y|n , j = 1, . . . , n.

By Definition 1 of weak derivatives, we have

∫

Ω
E(x− y)(4u)(y)dy = −

n∑

j=1

∫

Ω

∂E(x− y)

∂yj

∂u

∂yj
dy.

Then,

u(x) =
1

κn

n∑

j=1

∫

Ω

xj − yj

|x− y|n
∂u

∂yj
dy, ∀u ∈ C∞

0 (Ω).

2) Now, let u ∈
◦

W 1
p (Ω), and let uk ∈ C∞

0 (Ω), uk
k→∞−→ u in W 1

p (Ω). For
uk we have

uk(x) =
1

κn

n∑

j=1

∫

Ω

xj − yj

|x− y|n
∂uk

∂yj
dy.
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Thus, uk = 1
κn

∑n
j=1 Kj

(
∂uk
∂yj

)
.

By Lemma 4, each operator Kj is compact from Lp(Ω) to Lp(Ω). We

know that uk
k→∞−→ u in Lp(Ω) and ∂uk

∂yj

k→∞−→ ∂u
∂yj

in Lp(Ω). Then

Kj(
∂uk
∂yj

)
k→∞−→ Kj(

∂u
∂yj

) in Lp(Ω).

(since Kj : Lp(Ω) → Lp(Ω) is continuous operator.)
Hence, by the limit procedure as k → ∞ we obtain:

u(x) =
1

κn

n∑

j=1

∫

Ω

xj − yj

|x− y|n
∂u

∂yj
dy, ∀u ∈

◦

W 1
p (Ω).

�

2. Embedding theorems for
◦

W 1
p (Ω)

Theorem 1

Let Ω ⊂ R
n be a bounded domain.

1) If 1 ≤ p ≤ n, m > n−p, q <∞ and 1− n
p + m

q ≥ 0, then
◦

W 1
p (Ω)

is embedded into Lq(Ωm), where Ωm = Ω (if m = n ) and Ωm is
any section of Ω by m–dimensional plane (if m < n). In the case
1 − n

p + m
q > 0, this embedding is compact.

2) If p > n, then
◦

W 1
p (Ω) is compactly embedded into C(Ω).

Comments

1) Let us distinguish the case m = n (Ωm = Ω):

If 1 ≤ p ≤ n, q < ∞ and q ≤ np
n−p = q∗, then

◦

W 1
p (Ω) ↪→ Lq(Ω). If

q < q∗, then this embedding is compact.

2) What does it mean that
◦

W 1
p (Ω) ↪→ Lq(Ωm) in the case m < n ?

A function u ∈
◦

W 1
p (Ω) is a measurable function in Ω; it can be changed

on any set of measure zero; Ωm is a set of measure zero.
First we consider u ∈ C∞

0 (Ω), and put Tu = u|Ωm
.

Then T : C∞
0 (Ω) → C∞

0 (Ωm) is a linear operator. This linear operator
can be extended by continuity to a continuous operator

T :
◦

W 1
p (Ω) → Lq(Ωm).

We have the estimate

‖Tu‖q,Ωm
≤ c ‖u‖W 1

p (Ω) , ∀u ∈ C∞
0 (Ω).
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Let u ∈
◦

W 1
p (Ω). Then ∃ uk ∈ C∞

0 (Ω), ‖uk − u‖W 1
p (Ω)

k→∞−→ 0.

Then ‖Tuk − Tuj‖q,Ωm
≤ c ‖uk − uj‖W 1

p (Ω)

k,j→∞−→ 0.

Hence {Tuk} is a Cauchy sequence in Lq(Ωm). There exists limit

Tuk
k→∞−→ w in Lq(Ωm). By definition, w = Tu.

Proof of Theorem 1

By Dj we denote operators Dju = ∂u
∂xj

. Then Dj :
◦

W 1
p (Ω) → Lp(Ω) is

continuous operator, j = 1, . . . , n. Then representation (14) can be written
as

u =
1

κn

n∑

j=1

KjDju. (15)

1) Suppose that 1 ≤ p ≤ n, m > n− p, q <∞ and 1 − n
p + m

q > 0. Then
conditions of Lemma 4(1) are satisfied. So, operator
Kj : Lp(Ω) → Lq(Ωm) is compact. Hence, the embedding operator

J = κ−1
n

n∑

j=1

KjDj :
◦

W 1
p (Ω) → Lq(Ωm)

is compact.
(We use the fact that if A1 : B1 → B2 is continuous operator and
A2 : B2 → B3 is compact operator, then A2A1 : B1 → B3 is compact.
Here B1, B2, B3 are Banach spaces.)
If p > 1 and 1 − n

p + m
q = 0 (i. e., q = q∗), then, by Lemma 5, the

operator Kj : Lp(Ω) → Lq(Ωm) is continuous. Hence, the embedding
operator

J = κ−1
n

n∑

j=1

KjDj :
◦

W 1
p (Ω) → Lq(Ωm)

is continuous.
For p = 1 – without proof.

2) Let p > n. Then, by Lemma 4(2), operators Kj : Lp(Ω) → C(Ω) are
compact. Hence, the embedding operator

J = κ−1
n

n∑

j=1

KjDj :
◦

W 1
p (Ω) → C(Ω)

is compact.
�
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Remark

1) Under conditions of Theorem 1(1), we have the estimate

‖u‖q,Ωm
≤ κ−1

n

n∑

j=1

‖Kj‖Lp(Ω)→Lq(Ωm) ‖Dju‖Lp(Ω)

≤ c′
n∑

j=1

‖∂ju‖p,Ω

≤ c ‖u‖W 1
p (Ω) , u ∈

◦

W 1
p (Ω). (16)

2) Under conditions of Theorem 1(2), we have

‖u‖C(Ω) ≤ κ−1
n

n∑

j=1

‖Kj‖Lp(Ω)→C(Ω) ‖∂ju‖p,Ω

≤ c′
n∑

j=1

‖∂ju‖p,Ω

≤ c ‖u‖W 1
p (Ω) , u ∈

◦

W 1
p (Ω). (17)

Using the estimates from Lemma 4 it is easy to see that the constants in
estimates (16), (17) depend only on diamΩ, n,m, p, q, but they do not depend

on Ωm (they are one and the same for any section Ωm).

3. Embedding theorems for W 1
p (Ω)

Theorem 2

Let Ω ⊂ R
n be a bounded domain of class C1. Then both statements

of Theorem 1 are true for W 1
p (Ω).

1) If 1 ≤ p ≤ n, m > n − p, q < ∞ and 1 − n
p + m

q ≥ 0, then

W 1
p (Ω) is embedded into Lq(Ωm). In the case 1− n

p + m
q > 0, this

embedding is compact.

2) If p > n, then W 1
p (Ω) is compactly embedded into C(Ω).

Proof
Let Ω̃ ⊂ R

n be a bounded domain such that Ω ⊂ Ω̃. (For example, Ω̃ is a
ball of sufficiently large diameter.)
By Theorem 11 (Chapter 1), there exists a linear continuous extension ope-

rator Π : W 1
p (Ω) →

◦

W 1
p (Ω̃). If u ∈W 1

p (Ω), then v = Πu ∈
◦

W 1
p (Ω̃), and

‖v‖W 1
p (Ω̃) ≤ c ‖u‖W 1

p (Ω) , c = ‖Π‖ .
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1) Under conditions of part 1), by Theorem 1,
◦

W 1
p (Ω̃) ↪→ Lq(Ω̃m);

if 1 − n
p + m

q > 0, this embedding is compact. (Here Ωm ⊂ Πm, where

Πm is m–dimensional plane, and Ω̃m is the section of Ω̃ by the same

Πm.)

a) Let 1 − n
p + m

q > 0. Let
�

be some bounded set in W 1
p (Ω).

Then Π
�

= {v = Πu : u ∈ �} is a bounded set in
◦

W 1
p (Ω̃). Then, by

Theorem 1, this set is compact in Lq(Ω̃m). Then
�

is compact in
Lq(Ωm) (because functions in

�
are restrictions of functions in Π

�

back to Ω). Hence, W 1
p (Ω) compactly embedded into Lq(Ωm).

b) Let 1 − n
p + m

q = 0. In this case embedding
◦

W 1
p (Ω̃) ↪→ Lq(Ω̃m) is

continuous (but not compact). By similar arguments, we show that
embedding W 1

p (Ω) ↪→ Lq(Ωm) is also continuous.

2) Under condition p > n, by Theorem 1(2),
◦

W 1
p (Ω̃) is compactly embed-

ded into C(Ω̃). If
�

is a bounded set in W 1
p (Ω), then Π

�
is bounded

set in
◦

W 1
p (Ω̃); Π

�
is compact in C(Ω̃). Hence,

�
is compact in C(Ω).

�

Comments

1) Under conditions of Theorem2(1), let JΩ : W 1
p (Ω) → Lq(Ωm) be

the embedding operator and let JΩ̃ :
◦

W 1
p (Ω̃) → Lq(Ω̃m) be the em-

bedding operator; Π : W 1
p (Ω) →

◦

W 1
p (Ω̃) is the extension operator;

R : Lq(Ω̃m) → Lq(Ωm) is the restriction operator. Then JΩ = RJΩ̃Π.
We have the estimate for all u ∈W 1

p (Ω).

‖u‖q,Ωm
=

∥∥RJΩ̃Πu
∥∥

q,Ω

≤
∥∥JΩ̃Πu

∥∥
q,Ω̃m

≤
∥∥JΩ̃

∥∥ ◦

W 1
p (Ω̃)→Lq(Ω̃m)︸ ︷︷ ︸
=c1

‖Π‖
W 1

p (Ω)→
◦

W 1
p (Ω̃)︸ ︷︷ ︸

=c2

‖u‖W 1
p (Ω)

⇒ ‖u‖q,Ωm
≤ c ‖u‖W 1

p (Ω) , ∀u ∈W 1
p (Ω). (18)

Compare (18) with estimate (16): in the case u ∈
◦

W 1
p (Ω) we can

estimate ‖u‖q,Ωm
by the norms of derivatives

∑n
j=1 ‖∂ju‖p,Ω. Now it is

impossible. (It is clear for u = const 6= 0 : ‖u‖q,Ωm
6= 0, but ∂ju ≡ 0.)
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2) Similarly, under conditions of Theorem 2(2), we have the estimate

‖u‖C(Ω) ≤ C ‖u‖W 1
p (Ω) , ∀u ∈W 1

p (Ω). (19)

The constants in estimates (18), (19) depend on ‖Π‖ and, so, on the
properties of ∂Ω. (While constants in estimates (16), (17) depend only
on diamΩ and on p, q,m, n.)

Let us formulate the analog of Theorem 2 for unbounded domain.
Theorem 3

Suppose that Ω ⊂ R
n is unbounded domain satisfying conditions of

Theorem 12 (Chapter 1). Then

1) If p ≥ 1, m > n − p, p ≤ q < ∞ and 1 − n
p + m

q ≥ 0, then

W 1
p (Ω) ↪→ Lq(Ωm).

2) If p > n, then W 1
p (Ω) ↪→ C(Ω).

Remark

1) In Theorem 3 embeddings are continuous, but not compact.

2) In part 1) we have condition q ≥ p (we don’t need this condition in
Theorem 2.).

3) If Ω is bounded and p > n, then 1) follows from 2). Now 1) does not
follow from 2).

4. Comments. Examples.

All conditions in Theorems 2, 3 are precise.

1) If 1 − n
p + m

q < 0, then W 1
p (Ω) 6↪→ Lq(Ωm).

Example.

Let Ω = {x ∈ R
n : |x| < 1}. Let u(x) = |x|λ with 1 − n

p < λ < −m
q .

Then u ∈W 1
p (Ω), but u /∈ Lq(Ω).

Indeed, |∇u| ≤ c |x|λ−1,

∫

Ω
|∇u|p dx ≤ c

∫

Ω
|x|p(λ−1)dx

= cκn

∫ 1

0
rn−1+p(λ−1)dr

< ∞, since n− 1 + p(λ− 1) > −1 ⇔ λ > 1 − n

p
.
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Also,
∫
Ω |u|pdx <∞. However,

∫

Ωm

|u(y)|q dy =

∫

Ωm

|y|qλ dy

= κm

∫ 1

0
rm−1+qλdr

= ∞, since m− 1 + qλ < −1(⇔ λ < −m
q

).

Here Ωm is a section of Ω by some m–dimensional plane Πm such that
point 0 ∈ Πm.

2) For unbounded domains, if p < q, then W 1
p (Ω) 6↪→ Lq(Ω).

Example

Let Ω = {x ∈ R
n : |x| > 1} , u(x) = |x|λ. Let −n

q < λ < −n
p . Then

u ∈W 1
p (Ω), but u /∈ Lq(Ω). Check yourself.

3) The
”
critical exponent“ q∗ is defined by the relation 1 − n

p + m
q∗ = 0.

(q∗ = mp
n−p). Here p < n. We have q∗ > p, since m > n− p.

W 1
p (Ω) ↪→ Lq(Ωm) for q ≤ q∗, but not for q > q∗. If p ≥ n, then

W 1
p (Ω) ↪→ Lq(Ωm) for all q < ∞ (if Ω is bounded) and all p ≤ q < ∞

(if Ω is unbounded). If p > n, then W 1
p (Ω) ↪→ C(Ω).

But for p = n > 1, W 1
n(Ω) 6↪→ C(Ω) and even W 1

n(Ω) 6↪→ L∞(Ω) .
(Here q∗ = ∞.)
Example

Let Ω =
{
x ∈ R

n : |x| < 1
e

}
. Consider u(x) = ln | ln |x||.

Then u ∈W 1
n(Ω), but u /∈ L∞(Ω). Indeed, |∇u(x)| ≤ 1

|x|| ln |x|| . Then

∫

Ω
|∇u(x)|ndx ≤

∫

Ω

dx

|x|n| ln |x||n

= κn

∫ 1/e

0

rn−1dr

rn| ln r|n

= κn

∫ 1/e

0

dr

r| ln r|n
< ∞.

Also,
∫
Ω |u(x)|ndx <∞. Then u ∈W 1

n(Ω).

4) If p = n = 1, Ω = (a, b), then any function u ∈ W 1
1 (Ω) is absolutely

continuous. This follows from Theorem 5 (Chapter 1).

5) For unbounded domains embeddings from Theorem 3 are not compact.
Example

Let u ∈ C∞
0 (Rn) and let

{
x(k)

}
be a sequence of points x(k) ∈ R

n such
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that
∣∣x(k)

∣∣→ ∞ as k → ∞. We put uk(x) = u(x− x(k)). Then the set
{uk} is bounded in W 1

p (Rn). Here p > n. (Obviously, ‖uk‖W 1
p (
�

n) =

‖u‖W 1
p (
�

n) = const.) But the set {uk} is not compact in C(Rn). Indeed,

suppose that there exists a subsequence ukj
such that ukj

j→∞−→ u0 in

C(Rn). Since ukj

j→∞−→ 0 in C(Ω) for any bounded domain Ω (simply
ukj

≡ 0 in Ω for sufficiently large j), then u0(x) ≡ 0. But
∥∥ukj

∥∥
C(

�
n)

=

‖u‖C(
�

n) 6= 0. Contradication.

Example

Let u ∈ C∞
0 (Rn), and vk(x) = k

−n
p u
(

x
k

)
. Then vk ∈W 1

p (Rn) and {vk}
is bounded in W 1

p (Rn). But {vk} is not compact in Lp(R
n). Thus, the

embedding W 1
p (Rn) ↪→ Lp(R

n) is not compact.

6) For bounded domains Ω and q = q∗ embedding W 1
p (Ω) ↪→ Lq∗(Ω) is

not compact.
Example

Ω = {x : |x| < 1}, u ∈ C∞
0 (Rn), wk(x) = k

n
p
−1u(kx), p < n. Then

{wk} is bounded in W 1
p (Ω), but {wk} is not compact in Lq∗(Ω).

Check this yourself.

5. Embeddings on submanifolds

Instead of the section of Ω by m–dimensional planes we can consider sections
of Ω by some m–dimensional manifolds.
Theorem 4

Let Ω ⊂ R
n be a bounded domain of class C1. Let 1 ≤ p ≤ n, m >

n − p, 1 ≤ q < ∞ and 1 − n
p + m

q ≥ 0. Let Γ ⊂ R
n be a manifold

of class C1, dimΓ = m. Let ΩΓ = Γ ∩ Ω. Then W 1
p (Ω) ↪→ Lq(ΩΓ). If

1 − n
p + m

q > 0, then this embedding is compact.

Without proof
(The proof is based on Theorem 2 and using of covering

⋃
Uj, diffemorphisms

fj and patition of unity.)

Important case
Γ = ∂Ω (then also ΩΓ = ∂Ω). dimΓ = n− 1.

Conditions: m = n−1 > n−p⇒ p > 1, 1− n
p + n−1

q ≥ 0 ⇔ q ≤ (n−1)p
n−p = q∗.

If q∗ <∞ (1 < p < n), then W 1
p (Ω) ↪→ Lq(∂Ω), ∀q ≤ q∗.

For q < q∗ this embedding is compact. If n = p > 1, then q∗ = ∞,
W 1

n(Ω) ↪→ Lq(∂Ω), ∀q <∞.
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§3: Embedding theorems for W l
p(Ω)

Theorem 5
Let Ω ⊂ R

n be a bounded domain of class C1.

1) If p ≥ 1, 1 ≤ q < ∞, 0 ≤ r < l, l − r − n
p + n

q ≥ 0, then

W l
p(Ω) ↪→ W r

q (Ω). If l − r − n
p + n

q > 0, then this embedding is
compact.

2) If p(l − r) > n, then W l
p(Ω) ↪→ Cr(Ω) and this embedding is

compact.

Proof

1) We put s = l − r and fix the numbers q0, q1, . . . , qs such that qj ≥ 1,
q0 = p, qs = q and 1 − n

qj
+ n

qj+1
≥ 0. Such numbers exist due to

condition s− n
p + n

q ≥ 0. If l−r− n
p + n

q = 0, then q0, . . . , qs are defined
uniquely from the equations 1 − n

qj
+ n

qj+1
= 0, j = 0, . . . , s − 1. If

θ = s− n
p + n

q > 0, such numbers exist (but they are not unique).

By Theorem 2(1), W 1
qj

(Ω) ↪→ Lqj+1(Ω).

It follows that W l−j
qj (Ω) ↪→ W l−j−1

qj+1 (Ω). Indeed, let u ∈ W l−j
qj (Ω).

Then ∂αu ∈ W 1
qj

(Ω) for |α| ≤ l − j − 1. Since W 1
qj

(Ω) ↪→ Lqj+1(Ω),
then ∂αu ∈ Lqj+1(Ω), |α| ≤ l − j − 1, and

‖∂αu‖qj+1,Ω ≤ c ‖∂αu‖W 1
qj

(Ω) ≤ c̃ ‖u‖
W l−j

qj
(Ω)

for all α with |α| ≤ l − j − 1.

⇒ u ∈W l−j−1
qj+1

(Ω) and ‖u‖
W l−j−1

qj+1
(Ω)

≤ c ‖u‖
W l−j

qj
(Ω)

.

We denote the embedding operator by Jj ,

Jj : W l−j
qj

(Ω) →W l−j−1
qj+1

(Ω), j = 0, 1, . . . , s− 1.

Jj is a continuous operator. We have:

W l
p(Ω) = W l

q0
(Ω)

J0→W l−1
q1

(Ω)
J1→ W l−2

q2
(Ω)

J3→ . . .
Js−1→ W l−s

qs
(Ω) = W r

q (Ω).

⇒ The embedding operator J : W l
p(Ω) → W r

q (Ω) is represented as
J = Js−1 . . . J1J0. Each operator Jj is continuous , then J is also
continuous. If θ > 0, then at least one of Jj is compact (at least for
one index j we have 1− n

qj
+ n

qj+1
> 0). In this case J is also compact.
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2) Let p(l − r) > n⇔ l − r − n
p > 0

Case a) r = l − 1
l − l + 1 − n

p > 0 ⇔ p > n. By Theorem 2(2), the embedding

W 1
p (Ω) ↪→ C(Ω) is compact. It follows thatW l

p(Ω) ↪→ C l−1(Ω) and this

embedding is compact. (If u ∈W l
p(Ω), then ∂αu ∈W 1

p (Ω) ↪→ C(Ω) for
|α| ≤ l − 1.)
Case b) r < l − 1
Then there exists a number q such that q > n and l−(r+1)− n

p + n
q > 0.

(Indeed, l − r − n
p =: ε > 0. We can find q > n such that 1 − n

q < ε,
i. e., n < q < n

1−ε .)

Then we can represent the embedding operator J : W l
p(Ω) → Cr(Ω)

as J = J2J1, where J1 : W l
p(Ω) → W r+1

q (Ω) (J1 is compact by part

1) of Theorem 5) and J2 : W r+1
q ↪→ Cr(Ω) (J2 is compact by case a),

since q > n).
Hence, J : W l

p(Ω) → Cr(Ω) is compact.

�

Particular cases

1) Let r = 0, pl < n. The critical exponent q∗ is defined from the conditi-
on l− n

p + n
q∗ = 0 ⇔ q∗ = np

n−lp . Since pl < n, then q∗ <∞. Embedding

W l
p(Ω) → Lq(Ω) is compact for q < q∗, and continuous for q = q∗.

2) If pl = n, then q∗ = ∞. In this case W l
p(Ω) ↪→ Lq(Ω) ∀q < ∞ (and

this embedding is compact).
But W l

p(Ω) 6↪→ L∞(Ω).

3) If pl > n, then W l
p(Ω) ↪→ C(Ω) and this embedding is compact.

4) Let q = p, r < l. Then embedding W l
p(Ω) ↪→ W r

p (Ω) is compact. In

particular, embedding W l
p(Ω) ↪→ Lp(Ω) (for l ≥ 1) is compact.

Remarks

1) The embedding theorem for Ωm with m < n (W 1
p (Ω) ↪→ Lq(Ωm)) can

be also generalized for W l
p(Ω). However, for the proof we need another

integral representation for u ∈
◦

W l
p(Ω) (including derivatives of higher

order).

2) The embedding theorems for W l
p(Ω) can be also generalized for the

case of unbounded domains.
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Equivalent norms in Sobolev spaces W l
p(Ω)

(lecture by prof. M. Birman)

1. Finitedimensional linear spaces and norms in these spaces

Let X be a linear space, dimX = N < ∞. It means that there exists a
system of linear independent elements x1, . . . , xN ∈ X, such that any x ∈ X
can be represented as a linear combination of x1, . . . , xN :

x =

N∑

k=1

ξkxk, , ξ
k ∈ C , k = 1, . . . N. (1)

There is a one–to–one correspondence of elements x ∈ X and coordinates

ξ =
{
ξk
}N

k=1
. We denote ‖x‖ =

(∑N
k=1

∣∣ξk
∣∣2
)1/2

. Check yourself, that this

functional has all properties of the norm. X is a Banach space with respect
to this norm (i. e., the space X with this norm is complete).
The mapping x 7→ ξ is an isometric isomorphism of X and C

N (with the
standard norm).
Proposition

Any other norm 〈x〉 on X is equivalent to ‖x‖. Therefore, all norms
on X are equivalent to each other.

Proof
From (1) it follows that

〈x〉 ≤
N∑

k=1

∣∣∣ξk
∣∣∣ 〈xk〉 ≤

(
N∑

k=1

∣∣∣ξk
∣∣∣
2
)1/2( N∑

k=1

〈xk〉2
)1/2

,

i. e. , 〈x〉 ≤ γ ‖x‖ , γ =

(
N∑

k=1

〈xk〉2
)1/2

> 0. (2)

Now, let us prove the opposite inequality. Let us check that the function
〈x〉 is continuous on X with respect to ‖x‖. From (2) and from the triangle
inequality it follows that

∣∣〈x〉 −
〈
x′
〉∣∣ ≤

〈
x− x′

〉
≤ γ

∥∥x− x′
∥∥ .

Now we restrict the continuous function 〈x〉 to the unit sphere ‖x‖ = 1. Then
〈x〉 is a continuous function of ξ on the closed bounded set

{
ξ ∈ C

N : |ξ| = 1
}

in C
N . Since 〈x〉 > 0, then by the Weierstrass Theorem, 〈x〉 ≥ β > 0 for

‖x‖ = 1. Then

〈y〉 = ‖y‖
〈

y

‖y‖

〉
≥ β ‖y‖ , ∀ y ∈ X. Thus, 〈x〉 � ‖x‖ , ∀ x ∈ X. (3)

�
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2.
”
Trivial“ equivalent norms in W l

p(Ω).

The standard norm in W l
p(Ω), l ∈ N, 1 ≤ p <∞, is

‖u‖W l
p(Ω) =


∑

|α|≤l

‖∂αu‖p
Lp(Ω)




1/p

, Ω ⊆ R
d. (4)

Let N be the number of all multi–indices α with |α| ≤ l. In C
N we introduce

the norm of lp–type by the formula

‖~η‖p
�

N =

N∑

s=1

|ηs|p , ~η ∈ C
N . (5)

Then we can rewrite (4) as

‖u‖p
W l

p(Ω)
= ‖~η‖p

�
n , (6)

where ~η =
{
‖∂αu‖Lp(Ω)

}
, |α| ≤ l.

If we replace the norm (5) in relation (6) by any other (equivalent!) norm
of vector ~η in C

N , then (6) will automatically define some norm in W l
p(Ω),

which is equivalent to the standard one. Such new norms in W l
p(Ω) are

trivial.
Example
The norm ‖u‖Lp(Ω) + max1≤|α|≤l ‖∂αu‖Lp(Ω) is equivalent to the standard

norm in W l
p(Ω). Give yourself several examples of new

”
trivial“ norms in

W l
p(Ω).

3. The notion of seminorm.

Definition

A functional ϕ on a linear space X is called a seminorm on X, if

1) 0 ≤ ϕ(x) <∞, ∀ x ∈ X,

2) ϕ(cx) = |c|ϕ(x), ∀ x ∈ X, ∀ c ∈ C,

3) ϕ(x1 + x2) ≤ ϕ(x1) + ϕ(x2).

Thus, a seminorm ϕ has all properties of the norm besides one: from ϕ(x) = 0
it does not follow x = 0.
Example

X = W l
p(Ω), ϕ(x) =

∣∣∫
Ω u(x)dx

∣∣. This functional is equal to zero for any

u ∈W l
p(Ω) with zero mean value.
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4. General theorem about equivalent norms in W l
p(Ω).

Assume that Ω ⊂ R
n is bounded and ∂Ω ∈ C1. By Pl we denote the class

of all polynomials in R
n of order ≤ l − 1. Let ϕ be a seminorm on W l

p(Ω)
which satisfies properties:

4) ϕ(u) ≤ c ‖u‖W l
p(Ω) (It means that ϕ is bounded, and, therefore, conti-

nuous in W l
p(Ω).)

5) If u ∈ Pl and ϕ(u) = 0, then u = 0 (ϕ is non–degenerate on the
subspace Pl ⊂W l

2(Ω)).

Theorem

Let ϕ be a functional on W l
p(Ω) satisfying conditions 1) – 5). Then the

functional

—u—W l
p(Ω) =


∑

|α|=l

‖∂αu‖p
Lp(Ω) + ϕ(u)p




1/p

(7)

defines the norm in W l
p(Ω), which is equivalent to the standard norm.

Proof
Obviously, functional (7) is homogeneous and satisfies the triangle inequality.
Next, if —u—W l

p(Ω) = 0, then ∂αu = 0 for ∀ α with |α| = l. Then it follows

that u ∈ Pl. Besides, ϕ(u) = 0, and, by property 5), u=0. Thus, functional
(7) is a norm on W l

p(Ω).
Taking account of property 4), it suffices to check that

‖u‖W l
p(Ω) ≤ C—u—W l

p(Ω), u ∈W l
p(Ω). (8)

Suppose the opposite. Then for any C > 0, (8) is not true. Then there exists
a sequence {um}, um ∈W l

p(Ω) such that

m—um—W l
p(Ω) ≤ ‖um‖W l

p(Ω) . (9)

We put vm = um
‖um‖

Wl
p(Ω)

. Then, by (9),

‖vm‖W l
p(Ω) = 1, (10)

—vm—W l
p(Ω) ≤

1

m
→ 0 as m→ ∞. (11)

Since the embedding W l
p(Ω) ↪→ W l−1

p (Ω) is compact it follows from (10)

that there exists a subsequence
{
vmj

}
, which converges in W l−1

p (Ω) to some

v0 ∈W l−1
p (Ω):

∥∥vmj − v0
∥∥

W l−1
p (Ω)

→ 0 as j → ∞ (12)
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From (11) it follows that

∥∥∂αvmj

∥∥
Lp(Ω)

j→∞−→ 0 for ∀ α with |α| = l. (13)

Since the operator ∂α is closed in Lp(Ω), ∂αv0 = 0 for ∀ α with |α| = l.
Then by (12) and (13), we have

vmj

W l
p(Ω)−→ v0 as j → ∞, v0 ∈ Pl. (14)

From (11) it follows that ϕ(vmj ) → 0 as j → ∞. By (14) and property
4), ϕ(vmj ) → ϕ(v0) as j → ∞. Thus, ϕ(v0) = 0, v0 ∈ Pl. By property 5),
v0 = 0. Together with (14) this contradicts to (10).

�

Mention that, in the proof of inequality (8), we did not use any explicit
construction and we did not obtain any upper bound for the constant C.
However, we have proved rather general theorem, which in particular cases
implies a number of concrete inequalities (proved before by special tricks).
Control question
Where did we use that Ω is bounded and ∂Ω ∈ C1?

5. Examples. Additions.

1.
Let l ≥ 2 and ϕ(u) = ‖u‖Lp(Ω). Conditions 1) - 2) are obviously satisfies. By
Theorem, the norm

—u—W l
p(Ω) =


∑

|α|=l

‖∂αu‖p
Lp(Ω) + ‖u‖p

Lp(Ω)




1/p

(15)

is equivalent to the standard one. It follows that ‖∂αu‖Lp(Ω), 0 < |α| < l, is

estimated by the norm (15).
Exercise
In the case p = 2, l = 2, prove this estimate using Fourier transform.
2.
Let l = 1, ω ⊆ Ω, ω is a measurable set such that mesnω > 0. Now Pl

consists of constants. Let ϕ(u) =
∣∣∫

ω u(x)dx
∣∣. Clearly, conditions 1) – 5)

are satisfied. Then the Theorem implies that

‖u‖p
Lp(Ω) ≤ C

(∫

Ω
|∇u|p dx+

∣∣∣∣
∫

ω
u(x)dx

∣∣∣∣
p)

.

For ω = Ω and p = 2 this is the classical Poincare inequality.
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3.
Let l = 1, Γ ⊂ ∂Ω, mesd−1Γ > 0. We put ϕ(u) =

∣∣∫
Γ udS

∣∣.
Properties 1) – 5) are satisfied. Condition 4) follows from the estimate

∫

∂Ω
|u|pdS ≤ C ‖u‖p

W l
p(Ω)

,

i. e. , from the trace embedding theorem. By Theorem (on equivalent norms)
we obtain

‖u‖p
Lp(Ω) ≤ C

(∫

Ω
|∇u|p dx+

∣∣∣∣
∫

Γ
udS

∣∣∣∣
p)

.

This generalizes and strengthens the Friedrichs inequality

∫

Ω
|u|2dx ≤ C

(∫

Ω
|∇u|2 dx+

∫

∂Ω
|u|2dS

)
.

4.
Let l = 2. P2 consists of linear functions, i. e. , of linear combinations of the
basis funcrtions 1, x1, . . . , xn. Let ω ⊆ Ω be a measurable set, mesdω > 0.
We put

ϕ(u) =

∣∣∣∣
∫

ω
u(x)dx

∣∣∣∣ +
n∑

k=1

∣∣∣∣
∫

ω
xku(x)dx

∣∣∣∣ . (16)

We have to check condition 5).
Consider P2 as a finite–dimensional subspace in L2(ω). If ϕ(u) = 0, then u
is orthogonal in L2(ω) to the basis in P2. Then, if u ∈ P2, it follows that
u = 0. Thus, the norm (7) with l = 2 and such ϕ(u) is equivalent to the
standard norm in W 2

p (Ω).
5.
Let l = 2, Γ ⊂ ∂Ω, mesd−1Γ > 0. We put

ϕ(u) =

∫

Γ
|u|dS. (17)

Condition 4) follows from the trace embedding theorem. Let us check 5):
ϕ(u) = 0 ⇔ u|Γ = 0.
If u ∈ P2 (u(x) is a linear function), then condition u|Γ = 0 and u 6= 0 is
equivalent to the fact that Γ is a plane part of the boundary, and u(x) = 0
is equation of this plane. In the case where Γ does not lie in some plane,
from u ∈ P2, u|Γ = 0, it follows that u = 0. Then the norm (7) with l = 2
and ϕ(u) given by (17) is equivalent to the standard norm in W 2

p (Ω). In
particular, it is always so, if Γ = ∂Ω.
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6.
In conclusion, we discuss one example, which does not follow from Theorem.
The norm

—u—W l
p(Ω) =

(
n∑

k=1

∥∥∥∥
∂lu

∂(xk)l

∥∥∥∥
p

Lp(Ω)

+ ‖u‖p
Lp(Ω)

)1/p

is equivalent to the standard one.
For example, in W 2

2 (Rd) = H2(Rd), this fact follows from the inequality
2|ξjξk| ≤ |ξj |2 + |ξk|2.
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Chapter 3: Sobolev spaces Hs(Rn)

§1: Classes S(Rn) and S ′(Rn). Fourier transform.

Definition

S(Rn) is a class of functions ϕ ∈ C∞(Rn) such that for any multi–index
α and any k ∈ N,

sup
x∈

�
n
(1 + |x|)k |∂αϕ(x)| <∞.

S(Rn) is called the Schwartz class.

For ϕ ∈ S(Rn) all derivatives ∂αϕ(x) are rapidly decreasing as |x| → ∞. We
can introduce topology in S(Rn).
Definition

We say that ϕm
m→∞−→ ϕ in S(Rn), if

sup
x∈

�
n
(1 + |x|)k |∂αϕm(x) − ∂αϕ(x)| m→∞−→ 0, ∀α, ∀k.

S(Rn) is a topological space, but not Banach space.

Definition

Let f ∈ S(Rn). We define the transformation F : f 7→ f̂ ,

f̂(ξ) = (2π)
−n
2

∫
�

n

f(x)e−ixξdx.

F is called the Fourier transformation.

It is known that f̂ ∈ S(Rn), if f ∈ S(Rn). So, F : S(Rn) → S(Rn) is a linear
operator. The inverse transformation F−1 is given by the formula

f(x) = (2π)
−n
2

∫
�

n

f̂(ξ)eixξdξ,

F−1 : S(Rn) → S(Rn).
It is known that the Fourier transform F can be extended by continuity to
L2(R

n), and F is unitary operator in L2(R
n):

F : L2(R
n) → L2(R

n),

∫
�

n

|f(x)|2 dx =

∫
�

n

∣∣∣f̂(ξ)
∣∣∣
2
dξ, f ∈ L2(R

n).
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Definition

By S′(Rn) we denote the dual space to S(Rn) (i. e., the space of linear
continuous functionals on S(Rn)).

Sometimes, S′(Rn) is called the space of slowly increasing distributions.
If v ∈ S′(Rn), ϕ ∈ S(Rn), by 〈v, ϕ〉 we denote the meaning of functional v
on function ϕ.
The Fourier transformation is extended to the class S′(Rn).
Definition

Let f ∈ S′(Rn). A functional f̂ ∈ S′(Rn) is called the Fourier image
of f , if 〈

f̂ , ϕ
〉

:= 〈f, ϕ̂〉 , ∀ϕ ∈ S(Rn).

It is known that F : S′(Rn)
onto−→ S′(Rn), F−1 : S′(Rn) → S′(Rn).
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§2: Spaces Hs(Rn)

1. Definition of Hs(Rn)

We know that the spaces W l
2(Ω) (l ∈ N) are Hilbert spaces : W l

2(Ω) = H l(Ω).
Let Ω = R

n. We can use the Fourier transform and express the norm in
W l

2(R
n) = H l(Rn) in terms of the Fourier image. Let u ∈ H l(Rn). Consider

the Fourier image

û(ξ) = (2π)
−n
2

∫
�

n

u(x)e−ixξdx.

Then

u(x) = (2π)
−n
2

∫
�

n

û(ξ)eixξdξ.

For the derivatives ∂αu(x), we have

∂̂αu(ξ) = (iξ)α û(ξ) = i|α|ξαû(ξ).

Then

‖u‖2
Hl(

�
n) =

∑

|α|≤l

∫
�

n

|∂αu|2 dx =

∫
�

n


∑

|α|≤l

|ξα|2

 |û(ξ)|2 dξ.

Since c1(1 + |ξ|2)l ≤∑|α|≤l |ξα|2 ≤ c2(1 + |ξ|2)l (prove this!), then

c1

∫
�

n

(1 + |ξ|2)l |û(ξ)|2 dξ ≤ ‖u‖2
Hl(

�
n) ≤ c2

∫
�

n

(1 + |ξ|2)l |û(ξ)|2 dξ.

Thus, the norm
(∫

�
n(1 + |ξ|2)l |û(ξ)|2 dξ

)1/2
is equivalent to the standard

norm in W l
2(R

n). We introduce the space with this norm; now we consider
arbitrary l (not only l ∈ N).
Definition

Hs(Rn) =
{
u ∈ S′(Rn) :

∫
�

n(1 + |ξ|2)s |û(ξ)|2 dξ <∞
}
, s ∈ R

n.

The inner product in Hs(Rn) is defined by

(u, v)Hs(
�

n) =

∫
�

n

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ.

Theorem 1

Hs(Rn) is the closure of C∞
0 (Rn) with respect to the norm ‖u‖Hs .
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Proof

1) Let us show that any u ∈ Hs(Rn) can be approximated by functions
in C∞

0 (Rn). If u ∈ Hs(Rn), then u∗(ξ) = û(ξ)(1 + |ξ|2)s/2 ∈ L2(R
n).

Since C∞
0 (Rn) is dense in L2(R

n), there exists a sequence vk ∈ C∞
0 (Rn)

such that vk(ξ)
k→∞−→ u∗(ξ) in L2(R

n). We put vk(ξ)(1 + |ξ|2)−s/2 =
wk(ξ). Then wk ∈ C∞

0 (Rn) and wk(ξ)(1 + |ξ|2)s/2 → u∗(ξ) in L2(R
n).

Obviously, wk ∈ S(Rn). We put uk = F−1wk. Then also uk ∈ S(Rn)

and wk = ûk. Since ûk(ξ)(1 + |ξ|2)s/2 k→∞−→ u∗(ξ) = û(ξ)(1 + |ξ|2)s/2 in

L2(R
n), then uk

k→∞−→ u in Hs(Rn).
It remains to approximate functions uk ∈ S(Rn) by functions
ukj ∈ C∞

0 (Rn) (in the Hs–norm). For this, we fix h ∈ C∞
0 (Rn) such

that h(x) = 1 for |x| ≤ 1. We put ukj(x) = uk(x)h
(

x
j

)
. Then ukj ∈

C∞
0 (Rn) and

‖ukj − uk‖2
Hs =

∫
�

n

|ûkj(ξ) − ûk(ξ)|2
(
1 + |ξ|2

)s
dξ

l≥s,l∈�
≤

∫
�

n

|ûkj(ξ) − ûk(ξ)|2
(
1 + |ξ|2

)l
dξ

= ‖ukj − uk‖2
Hl .

For l ∈ N we can use another norm (which is equivalent to the standard
one):

‖ukj − uk‖2
Hl ≤ c

∑

|α|≤l

∫
�

n

∣∣∣∣∂αuk(x)

(
1 − h

(
x

j

))∣∣∣∣
2

dx

≤ c̃
∑

|β|≤l

∫

|x|>j
|∂αuk(x)|2 dx

(
since h

(
x

j

)
= 1 for |x| ≤ j.

)

→ 0 as j → ∞.

It follows that ukj
j→∞−→ uk in Hs(Rn).

2) Let us show that each element of the closure of C∞
0 (Rn) in Hs–

norm belongs to Hs(Rn). Suppose that um ∈ C∞
0 (Rn) and {um}

is the Cauchy sequence in Hs(Rn), i. e. , ‖um − ul‖Hs(
�

n) → 0 as

m, l → ∞. It means that ûm(ξ)(1 + |ξ|2)s/2 =: u∗m(ξ) is a fundamen-
tal sequence in L2(R

n). Since L2(R
n) is complete, there exists a limit

u∗m(ξ)
m→∞−→ u∗(ξ) in L2(R

n). We put w(ξ) = u∗(ξ)(1+ |ξ|2)−s/2. Then
w ∈ S′(Rn), and, therefore, F−1w = u ∈ S′(Rn). We have:

w(ξ) = û(ξ), u∗(ξ) = û(ξ)(1 + |ξ|2)s/2 ∈ L2(R
n),

ûm(ξ)(1 + |ξ|2)s/2 m→∞−→ û(ξ)(1 + |ξ|2)s/2 in L2(R
n).
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It means that um
m→∞−→ u in Hs(Rn). Thus, each element of the closure

of C∞
0 (Rn) in ‖·‖Hs belongs to Hs(Rn).

�

2. Duality of Hs and H−s.

Theorem 2

Let u ∈ Hs(Rn), v ∈ H−s(Rn), and let uj, vj ∈ C∞
0 (Rn), uj

j→∞−→ u in

Hs(Rn), vj
j→∞−→ v in H−s(Rn). Then there exists the limit

lim
j→∞

∫
�

n

uj(x)vj(x)dx.

We denote this limit by
∫
�

n u(x)v(x)dx. We have
∣∣∣∣
∫
�

n

uvdx

∣∣∣∣ ≤ ‖u‖Hs ‖v‖H−s .

Proof
We have∫

�
n

uj(x)vj(x)dx =

∫
�

n

ûj(ξ)v̂j(ξ)dξ

=

∫
�

n

ûj(ξ)(1 + |ξ|2)s/2 · v̂j(ξ)(1 + |ξ|2)−s/2dξ. (1)

Since uj
j→∞−→ u in Hs(Rn), it follows that

ûj(ξ)(1 + |ξ|2)s/2 j→∞−→ û(ξ)(1 + |ξ|2)s/2 =: (Asu) (ξ) in L2(R
n).

The fact that vj
j→∞−→ v in H−s(Rn) means that

v̂j(ξ)(1 + |ξ|2)−s/2 j→∞−→ v̂(ξ)(1 + |ξ|2)−s/2 =: (A−sv) (ξ) in L2(R
n).

Then, by (1), we have
∫
�

n

uj(x)vj(x)dx
j→∞−→

∫
�

n

(Asu) (ξ)(A−sv) (ξ)dξ =:

∫
�

n

u(x)v(x)dx.

It is clear that the limit limj→∞

∫
�

n ujvjdx does not depend on the choice
of the sequences {uj} and {vj}. We have:

∣∣∣∣
∫
�

n

uvdx

∣∣∣∣ =

∣∣∣∣
∫
�

n

(Asu) (ξ)(A−sv) (ξ)dξ

∣∣∣∣
≤ ‖Asu‖L2(

�
n) ‖A−sv‖L2(

�
n)

= ‖u‖Hs ‖v‖H−s .

�
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Theorem 3

If v ∈ H−s(Rn), then

‖v‖H−s = sup
06=u∈Hs(

�
n)

∣∣∫�
n uvdx

∣∣
‖u‖Hs

= sup
06=u∈C∞

0 (
�

n)

∣∣∫�
n uvdx

∣∣
‖u‖Hs

. (2)

Proof

1) The mapping As : Hs(Rn) → L2(R
n), (Asu)(ξ) = û(ξ)

(
1 + |ξ|2

)s/2

is a one–to–one isometric mapping. Indeed, ‖Asu‖L2
= ‖u‖Hs . The

inverse mapping A−1
s : L2(R

n) → Hs(Rn) is defined as follows: for

u∗ ∈ L2 consider w(ξ) = u∗(ξ)

(1+|ξ|2)s/2 , and put u = F−1w.

Then û(ξ) = w(ξ) and u∗(ξ) = û(ξ)(1 + |ξ|2)s/2 = (Asu)(ξ).
Thus, A−1

s u∗ = F−1w = u. The mapping A−s : H−s → L2 is defined
similarly.

2) Let v ∈ H−s and v∗(ξ) = (A−sv)(ξ). Then v∗ ∈ L2. It is known that
in L2 we have

‖v∗‖L2
= sup

06=g∈L2

∣∣∣
∫
�

n g(ξ)v∗(ξ)dξ
∣∣∣

‖g‖L2

.

We put u = A−1
s g. Then g(ξ) = (Asu)(ξ), ‖g‖L2

= ‖u‖Hs . If g runs
over L2, then u runs over Hs. Thus, for v∗ = A−sv we have

‖v‖H−s = ‖v∗‖L2

= sup
06=u∈Hs

∣∣∣
∫
�

n (Asu) (ξ)(A−sv) (ξ)dξ
∣∣∣

‖u‖Hs

= sup
06=u∈Hs

∣∣∣
∫
�

n u(x)v(x)dx
∣∣∣

‖u‖Hs

�

From Theorems 2 and 3 it follows that l(u) =
∫
�

n uvdx is a linear continuous
functional on u ∈ Hs(Rn) (if v ∈ H−s(Rn)) and the norm of this functional
is equal to ‖v‖H−s :

‖l‖ = sup
06=u∈Hs

|l(u)|
‖u‖Hs

= sup
06=u∈Hs

∣∣∫�
n uvdx

∣∣
‖u‖Hs

= ‖v‖H−s .
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Riesz Theorem

Let H be a Hilbert space and l(u), u ∈ H, be a continuous linear
functional on H. Then there exists such element v ∈ H that
l(u) = (u, v)H . This element v is unique and ‖l‖ = ‖v‖H .

Proof

1) Let N = Ker l = {z ∈ H : l(z) = 0}. Then N is a closed subspace in

H. Indeed, if zj ∈ N and zj
j→∞−→ z in H, then l(zj)

j→∞−→ l(z). Since
l(zj) = 0, it follows that l(z) = 0, i. e. , z ∈ N .

2) If N = H, then l(u) = 0, ∀u ∈ H. In this case v = 0.
If N 6= H, then N⊥ 6= {0} ( where N⊥ is the orthogonal complement
of N). So, there exists v0 ∈ N⊥, v0 6= 0. Then, l(v0) 6= 0.

3) For ∀u ∈ H consider u− l(u)
l(v0)v0 ∈ N .(

Indeed, l
(
u− l(u)

l(v0)v0

)
= l(u) − l(u)

l(v0) l(v0) = 0.
)

Since v0 ∈ N⊥, we have
(
u− l(u)

l(v0)
v0, v0

)
= 0 ⇒ (u, v0) = l(u)

‖v0‖2

l(v0)
.

Denote v = l(v0)

‖v0‖
2 v0. Then l(u) = (u, v).

4) Uniqueness
If (u, v) = (u, ṽ), ∀u ∈ H, then v − ṽ⊥H ⇒ v − ṽ = 0.

5) The norm of l.

‖l‖ = sup
06=u∈H

|l(u)|
‖u‖H

= sup
06=u∈H

|(u, v)|
‖u‖H

= ‖v‖H .

Indeed,
|(u,v)|
‖u‖H

≤ ‖v‖H for ∀ 0 6= u ∈ H, and for u = v we have |(u,v)|
‖u‖H

= ‖v‖H .

�

Let l(u) be a continuous linear functional on Hs(Rn).
It means that l : Hs → C,

a) l(c1u1 + c2u2) = c1l(u1) + c2l(u2), ∀ u1, u2 ∈ Hs, ∀ c1, c2 ∈ C,

b) |l(u)| ≤ c ‖u‖Hs , ∀u ∈ Hs(Rn).

The norm ‖l‖ of a functional l is defined by the formula

‖l‖ = sup
06=u∈Hs

|l(u)|
‖u‖Hs

.
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Theorem 4

Let l(u) be a linear continuous functional onHs(Rn). Then there exists
unique element v ∈ H−s(Rn), such that

l(u) =

∫
�

n

uvdx, ∀ u ∈ Hs(Rn), (3)

and

‖l‖ = ‖v‖H−s . (4)

Proof
Consider the mapping

As : Hs(Rn) → L2(R
n), (Asu) (ξ) = u∗(ξ) = û(ξ)

(
1 + |ξ|2

)s/2
.

Then u = A−1
s u∗. We define the functional l̃(u∗) on L2(R

n) by the formula

l̃(u∗) = l(A−1
s u∗) = l(u).

Then l̃ is a linear continuous functional on L2(R
n).

By the Riesz theorem for the functional l̃ there exists unique function
w ∈ L2(R

n) such that

l̃(u∗) =

∫
�

n

u∗(ξ)w(ξ)dξ, and
∥∥∥l̃
∥∥∥ = ‖w‖L2

.

Then l(u) = l̃(u∗) =
∫
�

n û(ξ)
(
1 + |ξ|2

)s/2
w(ξ)dξ.

We denote v(x) = F−1
(
w(ξ)(1 + |ξ|2)s/2

)
.

Then

v̂(ξ) = w(ξ)(1 + |ξ|2)s/2;

∫
�

n

|v̂(ξ)|2 (1 + |ξ|2)−sdξ =

∫
�

n

|w(ξ)|2 dξ.

So, v ∈ H−s, and ‖v‖H−s = ‖w‖L2
.

We have w(ξ) = (1 + |ξ|2)−s/2v̂(ξ) = (A−sv) (ξ),
l(u) = l̃(u∗) =

∫
�

n (Asu) (ξ)(A−sv) (ξ)dξ =
∫
�

n uvdx.
For the norm of the functional l we have:

‖l‖ = sup
06=u∈Hs

|l(u)|
‖u‖Hs

= sup
06=u∗∈L2

∣∣∣l̃(u∗)
∣∣∣

‖u∗‖L2

=
∥∥∥l̃
∥∥∥ = ‖w‖L2

= ‖v‖H−s .

�

Remark

Theorem 4 means that H−s(Rn) is dual to Hs(Rn) with respect to

L2–duality.
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3. Mollifications in Hs(Rn)

Let ωρ(x) = ρ−nω
(

x
ρ

)
be a mollifier.

Recall that ω ∈ C∞
0 (Rn), ω(x) ≥ 0,

∫
�

n ω(x)dx = 1.
For u ∈ Hs(Rn) consider mollifications: uρ(x) = (ωρ ∗ u)(x), ρ > 0.
Theorem 5

If u ∈ Hs(Rn), then ‖uρ − u‖Hs → 0 as ρ→ 0.

Proof
For the Fourier transform of the convolution uρ = ωρ ∗ u we have

ûρ(ξ) = (2π)n/2ω̂ρ(ξ)û(ξ).

Next,

ω̂ρ(ξ) = (2π)−n/2

∫
�

n

ρ−nω

(
x

ρ

)
e−ixξdx

x
ρ
=y
= (2π)−n/2

∫
�

n

ω(y)e−iyξρdy

= ω̂(ρξ).

Since ω ∈ C∞
0 (Rn), then ω̂(ξ) belongs to the Schwartz class S(Rn). Hence,

a) |ω̂(ρξ)| ≤ c, ∀ξ ∈ R
n.

b) limρ→0 ω̂(ρξ) = ω̂(0) = (2π)−n/2

∫
�

n

ω(y)dy

︸ ︷︷ ︸
=1

= (2π)−n/2.

Let us estimate the norm ‖uρ − u‖Hs . We have

ûρ(ξ) − û(ξ) =
(
(2π)n/2ω̂(ρξ) − 1

)
û(ξ);

‖uρ − u‖2
Hs =

∫
�

n

(1 + |ξ|2)s |û(ξ)|2
∣∣∣(2π)n/2ω̂(ρξ) − 1

∣∣∣
2

︸ ︷︷ ︸
→0 as ρ→0∀ ξ

dξ.

The function under the integral is estimated by C(1 + |ξ|2)s |û(ξ)|2, which
is summable since u ∈ Hs. By the Lebesgue Theorem, ‖uρ − u‖Hs → 0 as
ρ→ 0.

�
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4. Embedding Hs ↪→ Cr

Theorem 6

Let s > r + n
2 . Then Hs(Rn) ↪→ Cr(Rn).

Proof

1) Let u ∈ C∞
0 (Rn). We have

u(x) = (2π)−n/2

∫
�

n

û(ξ)eixξdξ, ∂αu(x) = (2π)−n/2

∫
�

n

(iξ)αû(ξ)eixξdξ, ∀α.

Then, by the Hölder inequality,

|∂αu(x)| ≤
∫
�

n

|ξα| |û(ξ)| dξ

≤
(∫

�
n

|ξα|2 (1 + |ξ|2)−sdξ

)1/2(∫
�

n

|û(ξ)|2 (1 + |ξ|2)sdξ
)1/2

.

If |α| ≤ r, and s− r > n
2 , then

∫
�

n
|ξα|2dξ

(1+|ξ|2)s <∞. Thus,

max
|α|≤r

max
x∈

�
n
|∂αu(x)| ≤ C ‖u‖Hs , u ∈ C∞

0 (Rn),

i. e. , ‖u‖Cr ≤ C ‖u‖Hs , u ∈ C∞
0 (Rn). (5)

2) Let u ∈ Hs(Rn). Then there exists a sequence uj ∈ C∞
0 (Rn), such that

uj
j→∞−→ u in Hs. By (5), ‖uj − ul‖Cr ≤ C ‖uj − ul‖Hs

j,l→∞−→ 0.
So, {uj} is the Cauchy sequence in Cr(Rn). There exists a limit

ũ ∈ Cr(Rn): ‖uj − ũ‖Cr

j→∞−→ 0.
In fact, ũ(x) = u(x), for a.e. x ∈ R

n (check this!). We identify ũ = u.
We have proved that Hs ↪→ Cr and

‖u‖Cr ≤ C ‖u‖Hs , ∀ u ∈ Hs.

�

Remark

Theorem 6 is generalization of the embedding theorem:
W l

2 ↪→ Cr if 2(l − r) > n.
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5. Equivalent norm in Hs with fractional s > 0

Theorem 7

If 0 < s < 1, the norm ‖u‖Hs is equivalent to the norm

‖u‖′Hs =

(∫
�

n

|u|2dx+

∫
�

n

∫
�

n

|u(x) − u(y)|2dxdy
|x− y|n+2s

)1/2

.

Proof Note that

F : u(x) − u(x+ z) 7→ û(ξ)(1 − eizξ).

We have
∫
�

n

∫
�

n

|u(x) − u(y)|2dxdy
|x− y|n+2s

y=x+z
=

∫
�

n

∫
�

n

|u(x) − u(x+ z)|2dxdz
|z|n+2s

Parseval
=

∫
�

n

∫
�

n

|û(ξ)|2|1 − eizξ|2dξdz
|z|n+2s

=

∫
�

n

g(ξ)|û(ξ)|2dξ,

where g(ξ) =
∫
�

n
|1−eizξ|2dz
|z|n+2s .

The function g(ξ) is homogeneous in ξ of order 2s:

g(tξ) =

∫
�

n

|1 − eitzξ|2dz
|z|n+2s

= t2s

∫
�

n

|1 − eitzξ|2d(tz)
|tz|n+2s

= t2sg(ξ), ∀ t > 0.

The function g(ξ) depends only on |ξ|:

g(ξ) =

∫
�

n

|1 − eiz1|ξ||2dz
|z|n+2s

,

where the axis 0z1 has direction of vector ξ.
It follows that g(ξ) = A|ξ|2s, A > 0.
Then

‖u‖′Hs =

(∫
�

n

|û(ξ)|2(1 +A|ξ|2s)dξ

)1/2

.

Obviously, c1(1 + |ξ|2)s ≤ 1 +A|ξ|2s ≤ c2(1 + |ξ|2)s, ξ ∈ R
n.

Then ‖u‖′Hs � ‖u‖Hs .
�

Corollary

If s > 0 , [s] = k , {s} > 0, then the norm

‖u‖′Hs =


∑

|α|≤k

∫
�

n

|∂αu|2dx+
∑

|α|=k

∫
�

n

∫
�

n

|∂αu(x) − ∂αu(y)|2dxdy
|x− y|n+2{s}




1/2

is equivalent to ‖u‖Hs .
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Proof u ∈ Hs ⇔ u ∈ Hk and ∂αu ∈ H{s} with |α| = k. It is easy to check
that

‖u‖2
Hs

check this!� ‖u‖2
Hk +

∑

|α|=k

‖∂αu‖2
H{s}

by Theorem 7�
∑

|α|≤k

∫
�

n

|∂αu|2 dx+
∑

|α|=k

∫
�

n

∫
�

n

|∂αu(x) − ∂αu(y)|2dxdy
|x− y|n+2{s}

.

�

6.
”
ε–inequalities“

Obviously, Hs1(Rn) ↪→ Hs2(Rn) for s1 > s2.
Proposition

Let s1 < s < s2. Then for ∀ ε > 0 ∃ C(ε) > 0 such that

‖u‖2
Hs ≤ ε ‖u‖2

Hs2 + C(ε) ‖u‖2
Hs1 (6)

Proof
(6) is equivalent to the inequality

(
1 + |ξ|2

)s ≤ ε
(
1 + |ξ|2

)s2 + C(ε)
(
1 + |ξ|2

)s1

⇔ ρs ≤ ερs2 + C(ε)ρs1 , ρ ≥ 1.

⇔ 1 ≤ ερs2−s +C(ε)ρ−(s−s1), ρ ≥ 1.

We denote λ = ε
1

s2−s > 0, and put C(ε) = λ−(s−s1) = ε
−

s−s1
s2−s . Then

ερs2−s + C(ε)ρ−(s−s1) = (λρ)s2−s + (λρ)−(s−s1)
obviously

≥ 1

�
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§3: Trace embedding theorems

We write x ∈ R
n as x = (x′, xn), x′ = (x1, . . . , xn−1). Consider the traces of

functions on the hyper–plane xn = 0. We define the trace operator

γ0 : C∞
0 (Rn) → C∞

0 (Rn−1), (γ0u) (x′) = u(x′, 0).

Theorem 8

Let s > 1
2 . Then the trace operator γ0 : C∞

0 (Rn) → C∞
0 (Rn−1) can be

extended by continuity to the linear continuous operator
γ0 : Hs(Rn) → Hs− 1

2 (Rn−1). We have

‖γ0u‖
Hs− 1

2 (
�

n−1)
≤ C ‖u‖Hs(

�
n) . (7)

Proof

1) Let u ∈ C∞
0 (Rn). Then

u(x) = u(x′, xn) = (2π)−n/2

∫
�

n

û(ξ′, ξn)eixnξneix
′ξ′dξ′dξn;

(γ0u) (x′) = u(x′, 0) = (2π)−
n−1

2

∫
�

n−1

dξ′eix
′ξ′
(

1√
2π

∫ ∞

−∞
û(ξ′, ξn)dξn

)

︸ ︷︷ ︸
=�γ0u(ξ′)

⇒ γ̂0u(ξ
′) =

1√
2π

∫ ∞

−∞
û(ξ′, ξn)dξn.

Then

∣∣γ̂0u(ξ
′)
∣∣2 ≤

(∫ ∞

−∞
|û(ξ)|2(1 + |ξ|2)sdξn

)

∫ ∞

−∞
(1 + |ξ′|2︸ ︷︷ ︸

=a2

+ξ2n)−sdξn


 . (8)

Here the second integral is finite, since s > 1
2 . We have

∫ ∞

−∞

dξn
(a2 + ξ2n)s

=
a

a2s

∫ ∞

−∞

d
(

ξn

a

)

(
1 +

(
ξn

a

)2
)s

= a1−2s

∫ ∞

−∞

dt

(1 + t2)s︸ ︷︷ ︸
=cs

= csa
1−2s

⇒
∫ ∞

−∞

dξn
(1 + |ξ′|2 + ξ2n)s

= cs(1 + |ξ′|2) 1
2
−s. (9)
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Thus, from (8) and (9) it follows that

(
1 + |ξ′|2

)s− 1
2
∣∣γ̂0u(ξ

′)
∣∣2 ≤ cs

∫ ∞

−∞
|û(ξ)|2 (1 + |ξ|2)sdξn.

Integrate over R
n−1:

∫
�

n−1

(
1 + |ξ′|2

)s− 1
2
∣∣γ̂0u(ξ

′)
∣∣2 dξ′ ≤ cs

∫
�

n

|û(ξ)|2 (1 + |ξ|2)sdξ,

i. e. ‖γ0u‖2

Hs− 1
2 (
�

n−1)
≤ cs ‖u‖2

Hs(
�

n) , u ∈ C∞
0 . (10)

2) C∞
0 (Rn) is dense in Hs(Rn).

Let u ∈ Hs(Rn). Then ∃ {uj}, uj ∈ C∞
0 (Rn), ‖uj − u‖Hs(

�
n)

j→∞−→ 0.

By (10),

‖γ0uj − γ0ul‖2

Hs− 1
2 (
�

n−1)
≤ cs ‖uj − ul‖2

Hs(
�

n)

j,l→∞−→ 0.

So, {γ0uj} is a Cauchy sequence in Hs− 1
2 (Rn−1). Then there exists a

limit:
γ0uj

j→∞−→ v ∈ Hs− 1
2 (Rn−1) in Hs− 1

2 (Rn−1).

By definition , v = γ0u. By the limit procedure, the estimate (10) is
extended to all u ∈ Hs(Rn).

�

Corollary

Let k ∈ N and s > k + 1
2 . Then the trace operators

γj = γ0 ◦ ∂j
xn : Hs(Rn) → Hs−j− 1

2 (Rn−1) are continuous for
j = 0, 1, . . . , k. We have

‖γju‖
Hs−j− 1

2 (
�

n−1)
≤ c ‖u‖Hs(

�
n) .

Theorem 9 (extension theorem)

Let k ∈ Z+, s > k + 1
2 .

DenoteH〈s− 1
2〉(Rn−1) = Hs− 1

2 (Rn−1)×Hs− 3
2 (Rn−1)×. . .×Hs−k− 1

2 (Rn−1).
There exists a linear continuous operator

P : H〈s− 1
2〉(Rn−1) → Hs(Rn),

such that, if ϕ = (ϕ0, ϕ1, . . . , ϕk) ∈ H〈s− 1
2〉(Rn−1), u = Pϕ (∈

Hs(Rn)), then ϕj = γju, j = 0, 1, . . . , k. We have

‖u‖2
Hs(

�
n) ≤ c ‖ϕ‖2

H〈s− 1
2〉(�n−1)

= c

k∑

j=0

‖ϕj‖2

Hs−j− 1
2 (
�

n)
.
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Proof
Let h ∈ C∞

0 (R), h(t) = 1 for |t| ≤ 1, 0 ≤ h(t) ≤ 1. We put

V (ξ′, xn) =

k∑

j=0

1

j!
xj

nϕ̂j(ξ
′)h
(
xn

√
1 + |ξ′|2

)
, ξ′ ∈ R

n−1, xn ∈ R.

Here ϕ̂j(ξ
′) is the Fourier image of ϕj(x

′). Clearly, V (ξ′, 0) = ϕ̂0(ξ
′),

∂j
xnV (ξ′, 0) = ϕ̂j(ξ

′), j = 1, . . . , k. Let us show that V (ξ′, xn) is the Fourier
image of the function u(x′, xn) such that u ∈ Hs(Rn). We put û(ξ′, ξn) =
V̂ (ξ′, ξn), where V̂ (ξ′, ξn) is the Fourier image (in one variable xn 7→ ξn) of
V (ξ′, xn). Note that

xj
ng(xn)

F7→ ij ĝ(j)(ξn) = ij
dj

dξj
n

ĝ(ξn),

g(ρxn)
F7→ 1

ρ
ĝ

(
ξn
ρ

)
,

xj
nh(ρxn)

F7→ ij
1

ρj+1
ĥ(j)

(
ξn
ρ

)
.

Then

û(ξ) =
k∑

j=0

ij

j!
ϕ̂j(ξ

′)(1 + |ξ′|2)− j+1
2 ĥ(j)

(
ξn√

1 + |ξ′|2

)
.

We have:

‖u‖2
Hs(

�
n) =

∫
�

n

|û(ξ)|2 (1 + |ξ|2)sdξ

≤ C
k∑

j=0

∫
�

n

∣∣ϕ̂j(ξ
′)
∣∣2 (1 + |ξ′|2)−j−1

∣∣∣∣∣ĥ
(j)

(
ξn√

1 + |ξ′|2

)∣∣∣∣∣

2

(1 + |ξ|2)sdξ.

We write the integral as
∫
�

n−1 dξ
′
∫
� dξn . . ., and in the internal integral

change variable: τ = ξn√
1+|ξ′|2

. Then

1 + |ξ|2 = 1 + |ξ′|2 + ξ2n = (1 + |ξ′|2)(1 + τ2);

‖u‖2
Hs(

�
n) ≤ C

k∑

j=0

∫
�

n−1

dξ′
∣∣ϕ̂j(ξ

′)
∣∣2 (1+|ξ′|2)s−j− 1

2

∫
�

∣∣∣ĥ(j)(τ)
∣∣∣
2
(1+τ2)sdτ.

Since h ∈ C∞
0 (R), then ĥ ∈ S(R) and, so,

∫
�

∣∣∣ĥ(j)(τ)
∣∣∣
2
(1 + τ2)sdτ = C(j, s) <∞.

79



⇒ ‖u‖2
Hs(

�
n) ≤ C

k∑

j=0

∫
�

n−1

∣∣ϕ̂j(ξ
′)
∣∣2 (1 + |ξ′|2)s−j− 1

2 dξ′.

= c

k∑

j=0

‖ϕj‖2

Hs−j− 1
2 (
�

n−1)
.

So, the operator P : ϕ = (ϕ0, ϕ1, . . . , ϕk) 7→ u is a linear continuous operator

from H〈s− 1
2〉(Rn−1) to Hs(Rn) , and γju = ϕj , j = 0, . . . , k.

�
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§4: Spaces Hs(Ω) (survey)

1. Definition of Hs(Ω)

Let Ω ⊂ R
n be a domain. There are different ways of definition of the Sobolev

spaces Hs(Ω).
Approach I.
Definition 1

Hs(Ω) is the class of restrictions to Ω of functions in Hs(Rn):

u ∈ Hs(Ω) ⇔ ∃ v ∈ Hs(Rn), v|Ω = u.

Approach II.
Case s ≥ 0.
Definition 2

Hs(Ω) is the set of functions in L2(Ω), such that their weak derivatives
up to order k = [s] also belong to L2(Ω), and the following norm is
finite: ‖u‖Hs <∞,

‖u‖2
Hs

def
=





∑
|α|≤s

∫
Ω |∂αu|2 dx, if s = [s]

∑
|α|≤k

∫
Ω |∂αu|2 dx+

∑
|α|=k

∫
Ω

∫
Ω

|∂αu(x)−∂αu(y)|2dxdy

|x−y|n+2{s} ,

if s 6= [s] = k, {s} = s− k.

(11)

Comments

1) If Ω ⊂ R
n is a bounded domain of Lipschitz class, then both definitions

give the same space: Def 1 ⇔ Def 2.
If Hs(Ω), s ≥ 0, is the Sobolev space in the sense of Def 2, there exists
a linear continuous extension operator Π : Hs(Ω) → Hs(Rn).

2) The spaces W s
p (Ω) with fractional s ≥ 0 and p 6= 2 can be defined by

analogy with Def 2 (with “2“ replaced by “p“).

3) The embedding theorems can be generalized for spaces of fractional
order.

Next, the space
◦
Hs(Ω) is defined.

Definition 3
◦
Hs(Ω) is the closure of C∞

0 (Ω) with respect to the norm (11).
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Definition 4

Let s > 0. Then, by definition, H−s(Ω) =

(
◦
Hs(Ω)

)∗

, i. e. , H−s(Ω)

is the space of linear continuous functionals on
◦
Hs(Ω) with the norm

‖u‖H−s = sup

06=ϕ∈
◦

Hs(Ω)

|〈u, ϕ〉|
‖ϕ‖Hs(Ω)

.

By analogy with Hs(Rn) and H−s(Rn), for u ∈ H−s(Ω), ϕ ∈
◦
Hs(Ω),

we denote

〈u, ϕ〉 =

∫

Ω
u(x)ϕ(x)dx.

Comments

1)
◦
Hs(Ω) = Hs(Ω) for s < 1

2 .

2) Let u ∈
◦
Hs(Ω), P0u(x) =

{
u(x), x ∈ Ω

0, x ∈ R
n\Ω

.

Then P0 :
◦
Hs(Ω) → Hs(Rn) is continuous, if s 6= m+ 1

2 , m ∈ Z+.

3) Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary. Then

H−s(Ω) coincides with the space of restrictions to Ω of distributions
∈ H−s(Rn), if s 6= m+ 1

2 , m ∈ Z+.

4) Hs(Ω) is invariant with respect to diffeomorphisms of class C l,
l ≥ |s|, l ∈ N.

2. Trace embedding theorems

Theorems 8 and 9 can be extended to the case of bounded domain Ω with
smooth boundary. Let Ω ⊂ R

n be a bounded domain of class C l. Then
there exists a covering {Uj}j=1,...,N such that Ω ⊂ ⋃N

j=1 Uj , either Uj ⊂
Ω, or Uj ∩ ∂Ω 6= ∅, then ∃ diffeomorphism fj : Uj → K, fj, f

−1
j ∈ C l,

fj(Uj ∩ Ω) = K+, fj(Uj ∩ ∂Ω) = ∂K+\Σ+ = Γ. Suppose that domains
U1, U2, . . . , UM are of second kind, and UM+1, . . . , UN are strictly interior.
There exists a partition of unity {ζj}, such that ζj ∈ C∞

0 (Rn), supp ζj ⊂ Uj,∑N
j=1 ζj(x) = 1, x ∈ Ω.

For x ∈ ∂Ω we have
∑M

j=1 ζj(x) = 1. (This is true in some neighbourhood

of ∂Ω.) Let u ∈ C l(∂Ω), uj(x) = u(x)ζj(x), vj = uj ◦ f−1
j . Then vj ∈ C l(Γ),

supp vj ⊂⊂ Γ. We extend vj by zero to R
n−1\Γ:

ṽj(y) =

{
vj(y), y ∈ Γ

0, y ∈ R
n−1\Γ

.
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Then ṽj ∈ C l(Rn−1), supp ṽj ⊂ Γ. Consider




M∑

j=1

‖ṽj‖2
Hs(

�
n−1)




1/2

def
= ‖u‖Hs(∂Ω) , s ≤ l. (12)

Definition

Hs(∂Ω) is the closure of C l(∂Ω) with respect to the norm (12).

This norm depends on the choice of covering {Uj}, diffeomorphisms {fj},
and partition of unity {ζj}. It can be proved that all such norms (for different
{Uj} , {fj} , {ζj}) are equivalent to each other. So, the class Hs(∂Ω) is well–
defined.
Theorem 10 (trace embedding theorem)

Let Ω ⊂ R
n be a bounded domain of class C l, l ∈ N. Let k ∈ Z+,

s > k + 1
2 , s ≤ l. Let γj : C l(Ω) → C l−j(∂Ω) be the trace operator:

γju = ∂ju
∂νj

∣∣∣
∂Ω

, j = 0, . . . , k (where ∂j

∂νj are
”
normal“ derivatives of u).

Then the operator γj can be extended (uniquely) to linear continuous

operator γj : Hs(Ω) → Hs−j− 1
2 (∂Ω), j = 0, 1, . . . , k.

The proof is based on Theorem 8, and using covering {Uj}, diffeomorphisms
{fj} and partition of unity {ζj}.

Theorem 11 (extension theorem)

Let Ω ⊂ R
n be a bounded domain of class C l, s ≤ l, s > k + 1

2 , where
k ∈ Z+. We denote

H〈s− 1
2〉(∂Ω) = Hs− 1

2 (∂Ω) ×Hs− 3
2 (∂Ω) × . . .×Hs−k− 1

2 (∂Ω).

There exists a linear continuous operator

PΩ : H〈s− 1
2〉(∂Ω) → Hs(Ω)

such that, if ϕ = (ϕ0, ϕ1, . . . , ϕk), ϕj ∈ Hs−j− 1
2 (∂Ω), and u = PΩϕ,

then γju = ϕj , j = 0, 1, . . . , k, and

‖u‖2
Hs(Ω) ≤ c

k∑

j=0

‖ϕj‖2

Hs−j− 1
2 (∂Ω)

= c ‖ϕ‖2

H〈s− 1
2〉(∂Ω)

.

Theorem 12

Let Ω ⊂ R
n be a bounded domain of class C l, l ∈ N. Then u ∈

◦

H l(Ω) =
◦

W l
2(Ω) if and only if u ∈ H l(Ω) and γ0u = γ1u = . . . = γl−1u = 0.
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Proof
For simplicity we prove Theorem 12 in the case l = 1.

u ∈
◦

H1(Ω) ⇔ u ∈ H1(Ω) and γ0u = 0.

“⇒“ Obvious.
“⇐“
Using covering, diffeomorphisms and partition of unity, we reduce the que-
stion to the following. Let K+ = {x ∈ R

n : |x| < 1, xn > 0} be the half–ball.
Suppose that u ∈ H1(K+), u(x) = 0 near Σ+, γ0u = u|Γ = 0. We have to

prove that u ∈
◦

H1(K+). We have the following representation for u(x):

u(x′, xn) =

∫ xn

0

∂u

∂xn
(x′, t)dt, for a. e. (x′, xn) ∈ K+. (13)

We fix a cut–off function h(t) such that h ∈ C∞(R+), h(t) = 0, 0 ≤ t ≤ 1
2 ,

h(t) = 1 for t ≥ 1, and 0 ≤ h(t) ≤ 1. We put hm(t) = h(mt), then hm(t) = 1
for t ≥ 1

m . Consider um(x) = u(x′, xn)hm(xn). Then um(x) = 0 near ∂K+,
um ∈ H1(K+).
Let us check that ‖um − u‖H1(K+)

m→∞−→ 0. We have:

u(x′, xn) − um(x′, xn) = (1 − hm(xn))u(x′, xn),

∂

∂xj
(u(x) − um(x)) = (1 − hm(xn))

∂u(x)

∂xj
, j = 1, . . . , n− 1,

∂

∂xn
(u(x) − um(x)) = (1 − hm(xn))

∂u(x)

∂xn
− ∂hm

∂xn
u(x).

Then
∫

K+

|u(x) − um(x)|2 dx =

∫

K+

|1 − hm(xn)|2︸ ︷︷ ︸
≤1

|u(x)|2 dx

≤
∫

K+∩{0<xn< 1
m}

|u(x)|2 dx

→ 0 as m→ ∞;
∫

K+

∣∣∣∣
∂

∂xj
(u− um)

∣∣∣∣
2

dx =

∫

K+

|1 − hm(xn)|2
∣∣∣∣
∂u

∂xj

∣∣∣∣
2

dx

≤
∫

K+∩{0<xn< 1
m}

∣∣∣∣
∂u

∂xj

∣∣∣∣
2

dx

→ 0 as m→ ∞;
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(∫

K+

∣∣∣∣
∂

∂xn
(u− um)

∣∣∣∣
2

dx

)1/2

=

(∫

K+

|1 − hm(xn)|2
∣∣∣∣
∂u

∂xn

∣∣∣∣
2

dx

)1/2

︸ ︷︷ ︸
→0 as m→∞

+

+

(∫

K+

∣∣∣∣
∂hm

∂xn

∣∣∣∣
2

|u|2 dx
)1/2

︸ ︷︷ ︸
=Jm[u]

.

It remains to show that Jm[u] → 0 as m→ ∞. We have:

∂hm(x)

∂xn
=

∂

∂xn
(h(mxn)) = mh′(mxn).

Using (13), we obtain:

Jm[u] = m2

∫

K+

∣∣h′(mxn)
∣∣2
∣∣∣∣
∫ xn

0

∂u

∂xn
(x′, t)dt

∣∣∣∣
2

dx

≤ m2

∫

K+

∣∣h′(mxn)
∣∣2

︸ ︷︷ ︸
≤C

(∫ xn

0

∣∣∣∣
∂u

∂xn
(x′, t)

∣∣∣∣
2

dt

)(∫ xn

0
12dt

)
dx

︸ ︷︷ ︸
=xn

≤ cm2

∫

K+∩{0<xn< 1
m}

xn

(∫ xn

0

∣∣∣∣
∂u

∂xn
(x′, t)

∣∣∣∣
2

dt

)
dxndx

′

≤ cm2 1

m2

∫

K+∩{0<xn< 1
m}

∣∣∣∣
∂u

∂xn

∣∣∣∣
2

dx

→ 0 as m→ ∞.

Next step: consider mollifications of um(x): (um)ρ, ρ > 0. Then (um)ρ ∈
C∞

0 (K+) for sufficiently small ρ and ‖(um)ρ − um‖H1(K+)

ρ→0−→ 0.

Thus, we can approximate function u(x) by functions (um)ρ ∈ C∞
0 (K+) in

H1(K+)–norm ⇒ u ∈
◦

H1(K+).
�
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§5: Application to elliptic boundary value problems

1. Dirichlet problem for the Poisson equation

Let Ω ⊂ R
n be a bounded domain. Consider the classical Dirichlet problem:

−4u = F, x ∈ Ω
u|∂Ω = g.

}
(1)

If Φ(x) is arbitrary function in Ω such that Φ|∂Ω = g, then the function
v(x) = u(x) − Φ(x) is solution of the problem

−4v = f, x ∈ Ω
v|∂Ω = 0

}
(2)

where f(x) = F (x) + 4Φ(x). First, we’ll study problem (2) with homo-
geneous boundary condition. In the classical setting of problem (2), the
boundary is sufficiently smooth, f ∈ C(Ω) and solution v ∈ C2(Ω).
Now we want to define

”
weak“ solution of problem (2) under wide conditi-

ons on ∂Ω and f . Let us formally multiply equation −4v = f by the test
function ϕ ∈ C∞

0 (Ω) and integrate over Ω. Then v(x) satisfies the integral
identity

∫

Ω
∇v∇ϕdx =

∫

Ω
fϕdx, ∀ϕ ∈ C∞

0 (Ω). (3)

The left–hand side is well–defined for any v ∈
◦

H1(Ω) =
◦

W 1
2 (Ω), ϕ ∈

◦

H1(Ω);

and the right–hand side is well–defined for f ∈ H−1(Ω), ϕ ∈
◦

H1(Ω) (since

H−1(Ω) is the dual space to
◦

H1(Ω) with respect to L2–duality). The boun-

dary condition v|∂Ω = 0 we understand in the sense that v ∈
◦

H1(Ω). Then
we can consider arbitrary domains.
Definition

Let Ω ⊂ R
n be arbitrary bounded domain. A function v ∈

◦

H1(Ω) is
called a weak solution of the Dirichlet problem (2) with f ∈ H−1(Ω),

if v satisfies the identity (3) for any ϕ ∈
◦

H1(Ω).

Theorem 1

Let Ω ⊂ R
n be a bounded domain. Then, for any f ∈ H−1(Ω), there

exists unique (weak) solution v ∈
◦

H1(Ω) of the Dirichlet problem (2).
We have ‖v‖H1(Ω) ≤ C ‖f‖H−1(Ω).
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Proof

1) The form

[v, ϕ] :=

∫

Ω
∇v∇ϕdx, v, ϕ ∈

◦

H1(Ω),

defines an inner product in the space
◦

H1(Ω). The corresponding norm

[v, v]1/2 is equivalent to the standard norm ‖v‖H1(Ω) =
(∫

Ω

(
|v|2 + |∇v|2

)
dx
)1/2

.
This follows from the Friedrichs inequality:

∫

Ω
|v|2dx ≤ CΩ

∫

Ω
|∇v|2dx, ∀v ∈

◦

H1(Ω)

(here it is important that Ω is bounded).

2) The right–hand side of (3) is

lf (ϕ) =

∫

Ω
fϕdx.

lf (ϕ) is antilinear continuous functional on ϕ ∈
◦

H1(Ω):

|lf (ϕ)| ≤ ‖f‖H−1(Ω) ‖ϕ‖H1(Ω) .

We rewrite (3) in the following form:

[v, ϕ] = lf (ϕ). (4)

By the Riesz Theorem, for antilinear continuous functional lf on
◦

H1(Ω) there

exists unique function v ∈
◦

H1(Ω) such that lf (ϕ) = [v, ϕ], and the norm of

this functional is equal to the norm of v. (Now we consider
◦

H1(Ω) as the
Hilbert space with the inner product [·, ·].) Then, by the Riesz Theorem,

‖lf‖ = sup

06=ϕ∈
◦

H1(Ω)

|lf (ϕ)|
[ϕ,ϕ]1/2

= [v, v]1/2 . (5)

Thus, v is the unique solution of (4) (⇔ (3)). Since, by definition of the class
H−1(Ω),

‖f‖H−1(Ω) = sup

06=ϕ∈
◦

H1(Ω)

|lf (ϕ)|
‖ϕ‖H1(Ω)

,

and ‖ϕ‖H1(Ω) � [ϕ,ϕ]1/2, it follows from (5) that

‖v‖H1(Ω) ≤ C ‖f‖H−1(Ω) .

�
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2.

Now we return to the problem (1) with non–homogeneous boundary con-
dition u|∂Ω = g. Suppose that Ω ⊂ R

n is a bounded domain of class C1.
Then, by Theorem 10 (trace embedding theorem) the trace operator γ0

(γ0u = u|∂Ω) is continuous from H1(Ω) onto H1/2(∂Ω):

γ0 : H1(Ω) → H1/2(∂Ω).

Consider the problem

−4u = F, x ∈ Ω,
γ0u = u|∂Ω = g(x),

}

for given F ∈ H−1(Ω) and g ∈ H1/2(∂Ω). We look for solution u ∈ H1(Ω).
Equation −4u = F in Ω is understood in the sense of distributions: u(x) is
a weak solution of (1), if u ∈ H1(Ω), u(x) satisfies the identity

∫

Ω
∇u∇ϕdx =

∫

Ω
Fϕdx, ∀ϕ ∈ C∞

0 (Ω),

and γ0u = g.
Theorem 2

Let Ω ⊂ R
n be a bounded domain of class C1. Let F ∈ H−1(Ω),

g ∈ H1/2(∂Ω). Then there exists unique weak solution u ∈ H1(Ω) of
problem (1). We have

‖u‖H1(Ω) ≤ C
(
‖F‖H−1(Ω) + ‖g‖H1/2(∂Ω)

)
. (6)

Proof

1) By Theorem 11 (extension theorem), for g ∈ H1/2(∂Ω), there exists
extension G = PΩg ∈ H1(Ω) such that γ0G = g and

‖G‖H1(Ω) ≤ C1 ‖g‖H1/2(∂Ω) . (7)

If u ∈ H1(Ω) and γ0u = g. Then v = u − G ∈ H1(Ω) and γ0v = 0.

This is equivalent to the fact that v ∈
◦

H1(Ω). Function v is solution
of the problem

−4v = f
v|∂Ω = 0,

}
(8)

where f = F + 4G. From G ∈ H1(Ω) it follows that 4G ∈ H−1(Ω)
and ‖4G‖H−1(Ω) ≤ C2 ‖G‖H1(Ω). Then f ∈ H−1(Ω) and

‖f‖H−1 ≤ ‖F‖H−1 + C2 ‖G‖H1(Ω) ≤ ‖F‖H−1 + C1C2 ‖g‖H1/2 .
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By Theorem 1, there exists unique solution v ∈
◦

H1(Ω) of the problem
(8), and ‖v‖H1(Ω) ≤ C3 ‖f‖H−1 . Then u = v +G is unique solution of
the problem (1), and

‖u‖H1 ≤ ‖v‖H1 + ‖G‖H1

≤ C3 ‖f‖H−1 + C1 ‖g‖H1/2(∂Ω)

≤ C3 ‖F‖H−1 + (C1C2C3 + C1) ‖g‖H1/2(∂Ω) .

�

3. Dirichlet problem with spectral parameter

Now we consider the problem

−4u = λu+ f(x), x ∈ Ω
u|∂Ω = 0,

}
(9)

with spectral parameter λ. Here Ω is bounded.
Definition

Let Ω ⊂ R
n be arbitrary bounded domain. Let f ∈ H−1(Ω). A function

u ∈
◦

H1(Ω) satisfying identity

∫

Ω
∇u∇ϕdx = λ

∫

Ω
uϕdx+

∫

Ω
f(x)ϕdx, ∀ϕ ∈

◦

H1(Ω), (10)

is called a weak solution of problem (9).

As before, we denote [u, ϕ] =
∫
Ω ∇u∇ϕdx. This is inner product in

◦

H1(Ω).

The form
∫
Ω uϕdx, u, ϕ ∈

◦

H1(Ω) is continuous sesquilinear form in
◦

H1(Ω).
By the Riesz theorem for such forms it can be represented as [Au,ϕ], where

A is a linear continuous operator in
◦

H1(Ω).

Obviously,
∫
Ω uϕdx =

(∫
Ω ϕudx

)
, so [Au,ϕ] = [Aϕ, u] = [u,Aϕ], ∀u, ϕ ∈

◦

H1(Ω). It follows that A = A∗.
Next, [Au, u] =

∫
Ω |u|2dx > 0 if u 6= 0. So, A > 0.

Lemma

The operator A is compact operator in
◦

H1(Ω).

Proof

This follows from the embedding theorem:
◦

H1(Ω) is compactly embedded in
L2(Ω).
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We’ll use the following property of compact operators: T is a compact ope-
rator in the Hilbert space H, if and only if for any sequence {uk} which
converges weakly in H, the sequence {Tuk} converges strongly in H.

Let {uk} be a weakly convergent sequence in
◦

H1(Ω). Since the embedding

operator J :
◦

H1(Ω) ↪→ L2(Ω) is compact, {uk} converges strongly in L2(Ω).
We want to check that {Auk} converges strongly in L2(Ω). Since {uk} weak-

ly converges in
◦

H1(Ω), it follows that ‖uk‖H1(Ω) is uniformly bounded. A is
a continuous operator; then also ‖Auk‖H1(Ω) is uniformly bounded. We have

[A(uk − ul), A(uk − ul)] =

∫

Ω
(uk − ul)(Auk −Aul)dx

≤ ‖uk − ul‖L2(Ω)︸ ︷︷ ︸
→0

‖Auk −Aul‖L2(Ω)︸ ︷︷ ︸
≤C

→ 0 as k, l → ∞.

{Auk} converges strongly in
◦

H1(Ω). It follows that A is compact operator.

�

As before, the functional lf (ϕ) =
∫
Ω fϕdx (where f ∈ H−1(Ω)) is continuous

antilinear functional on ϕ ∈
◦

H1(Ω). By the Riesz Theorem, there exists

unique element v ∈
◦

H1(Ω) such that
∫
Ω fϕdx = [v, ϕ], ∀ϕ ∈

◦

H1(Ω), and
‖f‖H−1(Ω) � ‖v‖H1(Ω).
Now, we can rewrite identity (10) in the form

[u, ϕ] = λ [Au,ϕ] + [v, ϕ] , ∀ϕ ∈
◦

H1(Ω), (11)

which is equivalent to the equation

u− λAu = v, (12)

where v ∈
◦

H1(Ω) is given, and we are looking for solution u ∈
◦

H1(Ω). Thus,
we reduced the problem (9) to the abstract equation (12) with compact ope-

rator A in the Hilbert space
◦

H1(Ω).
We analyse equation (12), using the properties of compact operators.

The case v = 0 (which corresponds to f = 0):

−4u = λu x ∈ Ω
u|∂Ω = 0

}
(13)
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⇔ u− λAu = 0 ⇔ Au = µu (where µ =
1

λ
)

It is known that the spectrum of a compact operator is discrete: it consists
of eigenvalues µj, j ∈ N, that may accumulate only to point µ = 0; each
eigenvalue is of finite multiplicity (i. e. , dimker(A−µjI) <∞). In our case
A = A∗ > 0, then all eigenvalues µj are positive: µj > 0. We enumerate
eigenvalues in non–increasing order counting multiplicities µ1 ≥ µ2 ≥ . . .
Then each eigenvalue corresponds to one eigenfunction uj : Auj = µjuj,
j ∈ N. Eigenfunctions {uj} are linearly independent. We have : µj → 0 as
j → ∞.
Then for the eigenvalues λj = 1

µj
of the Dirichlet problem (13) we have the

following properties: 0 < λ1 ≤ λ2 ≤ . . ., λj → ∞ as j → ∞.
Thus, we have the following theorem.
Theorem 3

The spectrum of the Dirichlet problem (13) is discrete. There exists
non–trivial solution only if λ = λj , j ∈ N. All eigenvalues are positive
and have finite multiplicities. The only accumulation point is infinity:
λj → ∞ as j → ∞.

The case v 6= 0 (f 6= 0)

−4u = λu+ f x ∈ Ω
u|∂Ω = 0

}
(14)

⇔ u− λAu = v

For compact operator A it is known that, if λ 6= λj(=
1
µj

), ∀j ∈ N, then the

operator (I − λA)−1 is bounded. We can find unique solution

u = (I − λA)−1v,

and
‖u‖H1(Ω) ≤

∥∥(I − λA)−1
∥∥

︸ ︷︷ ︸
=Cλ

‖v‖H1(Ω) .

Since ‖v‖H1(Ω) � ‖f‖H−1(Ω), we arrive at the following theorem.
Theorem 4

If λ /∈ {λj}j∈� (λ is not eigenvalue), then for any f ∈ H−1(Ω) there

exists unique (weak) solution u ∈
◦

H1(Ω) of the problem (14), and

‖u‖H1(Ω) ≤ Cλ ‖f‖H−1(Ω) .
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Now, suppose that λ = λj , and v 6= 0 (f 6= 0). Then, solution of the equation
u− λjAu = v exists, if v satisfies the solvability condition: v⊥ker(I −λjA).
It means that v is orthogonal (with respect to the inner product [·, ·]) in
◦

H1(Ω) to all eigenfunctions ϕ
(k)
j , k = 1, . . . , p, corresponding to the eigenva-

lue λj (here p is the multiplicity of λj). Since [v, ϕ] =
∫
Ω f(x)ϕ(x)dx, this

solvability condition is equivalent to:
∫

Ω
f(x)ϕ

(k)
j (x)dx = 0, k = 1, . . . , p. (15)

The solution u(x) is not unique, but is defined up to a summand
∑p

j=1 cjϕ
(k)
j

with arbitrary constants cj.
Theorem 5

If λ = λj is eigenvalue of the Dirichlet problem, and ϕ
(k)
j , k = 1, . . . , p,

are corresponding (linearly independent) eigenfunctions, then problem
(14) has solution for any f ∈ H−1(Ω), which satisfies the solvability
conditions (15). Solution is not unique and is represented as

u = u0 +

p∑

j=1

cjϕ
(k)
j ,

where u0 is a fixed solution, and cj are arbitrary constants.

4. Hilbert–Schmidt Theorem

Finally, we can apply the Hilbert–Schmidt Theorem for compact operators
and obtain the following result.
Let λ1 ≤ λ2 ≤ . . . be eigenvalues of the Dirichlet problem. Here we repeat
each λj according to its multiplicity. There exists an orthogonal system of

eigenfunctions {ϕj}j∈� :

ϕj − λjAϕj = 0, j ∈ N, [ϕj , ϕl] = 0, j 6= l.

By the Hilbert–Schmidt Theorem, {ϕj}j∈� is orthogonal basis in
◦

H1(Ω),

i. e. , for any F ∈
◦

H1(Ω),

F =

∞∑

j=1

[F,ϕj ]

[ϕj , ϕj ]
ϕj

It is important that ϕj⊥ϕl also in L2(Ω). Indeed, [Au,ϕ] =
∫
Ω uϕdx (by

Definition of operator A). Next, Aϕj = µjϕj (where µj = 1
λj

). Thus,

[Aϕj , ϕl] =

∫

Ω
ϕjϕldx = µj [ϕj , ϕl] = 0, j 6= l.
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We have

[F,ϕj ] = λj [F,Aϕj ] = λj

∫

Ω
Fϕjdx,

[ϕj , ϕj ] = λj [Aϕj , ϕj ] = λj

∫

Ω
|ϕj |2dx.

Then
[F,ϕj ]

[ϕj , ϕj ]
=

∫
Ω Fϕjdx∫
Ω |ϕj |2dx

=
(F,ϕj)L2(Ω)

‖ϕj‖2
L2(Ω)

, and

F =

∞∑

j=1

(F,ϕj)L2(Ω)

‖ϕj‖2
L2(Ω)

ϕj .

The last fomula can be extended to all F ∈ L2(Ω).
Theorem 6

Let Ω ⊂ R
n be a bounded domain. Then there exists an ortogonal

system of eigenfunctions {ϕj}j∈� of the Dirichlet problem. This system

forms an orthogonal basis in L2(Ω) and in
◦

H1(Ω) (with respect to the
inner product [·, ·]).
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