Defintion of Weak derivatives notes

Brian Krummel

November 5, 2012

Today we want to generalize the notion of derivative to the derivative of a function in $\left.L_{\mathrm{loc}}^{1}\right)(\Omega)$, where Ω is an open set in \mathbb{R}^{n}. (Recall that $u \in L_{\mathrm{loc}}^{1}(\Omega)$ if $\|u\|_{L^{1}\left(\Omega^{\prime}\right)}<\infty$ for all $\Omega^{\prime} \subset \subset \Omega$.) First let's consider the derivative of a function $u \in C^{k}(\Omega)$. Let α with $|\alpha| \leq k$. By integration by parts

$$
\begin{equation*}
\int_{\Omega} D^{\alpha} u \zeta=(-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \zeta . \tag{1}
\end{equation*}
$$

for all $\zeta \in C_{c}^{\infty}(\Omega)$. The left hand side of (1) is not defined if $u \in L_{\mathrm{loc}}^{1}(\Omega)$, but the right hand side of (1) is defined if $u \in L_{\mathrm{loc}}^{1}(\Omega)$. This leads to the following definition:

Definition 1. Let Ω be an open set in \mathbb{R}^{n}, $u \in L_{l o c}^{1}(\Omega)$, and $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be a multi-index. The α-th distributional derivative or weak derivative of u is a linear functional $T: C_{c}^{\infty}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
T(\zeta)=(-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \zeta
$$

for all $\zeta \in C_{c}^{\infty}(\Omega)$. We say $v \in L_{\text {loc }}^{1}(\Omega)$ is the α-th weak derivative of u if

$$
T(\zeta)=\int_{\Omega} v \zeta
$$

for all $\zeta \in C_{c}^{\infty}(\Omega)$; that is,

$$
\int_{\Omega} v \zeta=(-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \zeta .
$$

for all $\zeta \in C_{c}^{\infty}(\Omega)$. Note that such av is unique. We will also denote v by $D^{\alpha} u$.
Example 1: If $u \in C^{k}(\Omega)$ and α with $|\alpha| \leq k$, as discussed above by integration by parts the α-th weak derivative of u is just the standard derivative $D^{\alpha} u$ of u defined using difference quotients. Thus weak derivatives generalize the classical notion of derivative.

Example 2: Suppose $\Omega=\mathbb{R}$ and

$$
u(t)= \begin{cases}-t & \text { for } t \leq 0 \\ +t & \text { for } t \geq 0\end{cases}
$$

Then u has no classical derivative at $t=0$. But

$$
\int_{-\infty}^{\infty} u(t) \zeta^{\prime}(t) d t=\int_{-\infty}^{0}-t \zeta^{\prime}(t) d t+\int_{0}^{\infty} t \zeta^{\prime}(t) d t=-\int_{-\infty}^{0}-1 \cdot \zeta(t) d t-\int_{0}^{\infty} 1 \cdot \zeta(t) d t
$$

for all $\zeta \in C_{c}^{\infty}(\Omega)$, so the weak derivative v of u is

$$
v(t)= \begin{cases}-1 & \text { for } t<0 \\ +1 & \text { for } t>0\end{cases}
$$

and $v \in L_{\mathrm{loc}}^{1}(\mathbb{R})$.
Example 3: Not every distributional derivative is in $L_{\text {loc }}^{1}$. Suppose $\Omega=\mathbb{R}$ and

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t>0\end{cases}
$$

Then

$$
\int_{-\infty}^{\infty} u(t) \zeta^{\prime}(t) d t=\int_{0}^{\infty} \zeta^{\prime}(t) d t=-\zeta(0)
$$

for all $\zeta \in C_{c}^{\infty}(\Omega)$. We can regard the weak derivative of u to be the Borel measure μ such that $\delta(A)=1$ if $0 \in A$ and $\delta(A)=0$ if $0 \notin A$ for every Borel set $A \subseteq \mathbb{R}$ since

$$
\int_{\mathbb{R}} u(t) \zeta^{\prime}(t) d t=-\int_{\mathbb{R}} \zeta d \delta .
$$

δ is not in $L_{\text {loc }}^{1}(\mathbb{R})$! Recall that the space $\mathcal{M}(\mathbb{R})$ of Borel measures on \mathbb{R} is a Frechet space with semi-norm

$$
\|\mu\|_{\mathcal{M}, I}=\mu(I)
$$

for all finite Borel measures μ and for all closed bounded intervals $I \subset \mathbb{R}$. There is an embedding

$$
E: L_{\mathrm{loc}}^{1}(\mathbb{R}) \rightarrow \mathcal{M}(\mathbb{R})
$$

given by

$$
E(f)=f d \mathcal{L}^{1}
$$

for all $f \in L_{\text {loc }}^{1}(\mathbb{R})$, where \mathcal{L}^{1} is the Lebesgue measure, such that

$$
\|f\|_{L^{1}(I)}=\left\|f d \mathcal{L}^{1}\right\|_{\mathcal{M}, I}
$$

for all $f \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ and for all closed bounded intervals $I \subset \mathbb{R}$. E is not surjective, i.e. not every Borel measure is in $L_{\mathrm{loc}}^{1}(\mathbb{R})$, since $L_{\mathrm{loc}}^{1}(\mathbb{R})$ consists of precisely those Borel measures that are absolutely continuous with respect to the Lebesgue measure \mathcal{L}^{1}. δ is not absolutely continuous with respect to the Lebesgue measure \mathcal{L}^{1} and thus δ is not in $L_{\mathrm{loc}}^{1}(\mathbb{R})$.

