
Chebyshev Polynomials

Reading Problems

Differential Equation and Its Solution

The Chebyshev differential equation is written as

(1− x2)
d2y

dx2
− x

dy

dx
+ n2 y = 0 n = 0, 1, 2, 3, . . .

If we let x = cos t we obtain

d2y

dt2
+ n2y = 0

whose general solution is

y = A cosnt+B sinnt

or as

y = A cos(n cos−1 x) +B sin(n cos−1 x) |x| < 1

or equivalently

y = ATn(x) +BUn(x) |x| < 1

where Tn(x) and Un(x) are defined as Chebyshev polynomials of the first and second kind
of degree n, respectively.
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If we let x = cosh t we obtain

d2y

dt2
− n2y = 0

whose general solution is

y = A coshnt+B sinhnt

or as

y = A cosh(n cosh−1 x) +B sinh(n cosh−1 x) |x| > 1

or equivalently

y = ATn(x) +BUn(x) |x| > 1

The function Tn(x) is a polynomial. For |x| < 1 we have

Tn(x) + iUn(x) = (cos t+ i sin t)n =
(
x+ i

√
1− x2

)n
Tn(x)− iUn(x) = (cos t− i sin t)n =

(
x− i

√
1− x2

)n

from which we obtain

Tn(x) =
1

2

[(
x+ i

√
1− x2

)n
+
(
x− i

√
1− x2

)n]
For |x| > 1 we have

Tn(x) + Un(x) = ent =
(
x±

√
x2 − 1

)n
Tn(x)−Un(x) = e−nt =

(
x∓

√
x2 − 1

)n

The sum of the last two relationships give the same result for Tn(x).
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Chebyshev Polynomials of the First Kind of Degree n

The Chebyshev polynomials Tn(x) can be obtained by means of Rodrigue’s formula

Tn(x) =
(−2)nn!

(2n)!

√
1− x2

dn

dxn
(1− x2)n−1/2 n = 0, 1, 2, 3, . . .

The first twelve Chebyshev polynomials are listed in Table 1 and then as powers of x in
terms of Tn(x) in Table 2.
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Table 1: Chebyshev Polynomials of the First Kind

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

T7(x) = 64x7 − 112x5 + 56x3 − 7x

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1

T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1

T11(x) = 1024x11 − 2816x9 + 2816x7 − 1232x5 + 220x3 − 11x
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Table 2: Powers of x as functions of Tn(x)

1 = T0

x = T1

x2 =
1

2
(T0 + T2)

x3 =
1

4
(3T1 + T3)

x4 =
1

8
(3T0 + 4T2 + T4)

x5 =
1

16
(10T1 + 5T3 + T5)

x6 =
1

32
(10T0 + 15T2 + 6T4 + T6)

x7 =
1

64
(35T1 + 21T3 + 7T5 + T7)

x8 =
1

128
(35T0 + 56T2 + 28T4 + 8T6 + T8)

x9 =
1

256
(126T1 + 84T3 + 36T5 + 9T7 + T9)

x10 =
1

512
(126T0 + 210T2 + 120T4 + 45T6 + 10T8 + T10)

x11 =
1

1024
(462T1 + 330T3 + 165T5 + 55T7 + 11T9 + T11)
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Generating Function for Tn(x)

The Chebyshev polynomials of the first kind can be developed by means of the generating
function

1− tx
1− 2tx+ t2

=
∞∑
n=0

Tn(x)tn

Recurrence Formulas for Tn(x)

When the first two Chebyshev polynomials T0(x) and T1(x) are known, all other polyno-
mials Tn(x), n ≥ 2 can be obtained by means of the recurrence formula

Tn+1(x) = 2xTn(x)− Tn−1(x)

The derivative of Tn(x) with respect to x can be obtained from

(1− x2)T ′n(x) = −nxTn(x) + nTn−1(x)

Special Values of Tn(x)

The following special values and properties of Tn(x) are often useful:

Tn(−x) = (−1)nTn(x) T2n(0) = (−1)n

Tn(1) = 1 T2n+1(0) = 0

Tn(−1) = (−1)n
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Orthogonality Property of Tn(x)

We can determine the orthogonality properties for the Chebyshev polynomials of the first
kind from our knowledge of the orthogonality of the cosine functions, namely,

∫ π

0

cos(mθ) cos(n θ) dθ =


0 (m 6= n)

π/2 (m = n 6= 0)

π (m = n = 0)

Then substituting

Tn(x) = cos(nθ)

cos θ = x

to obtain the orthogonality properties of the Chebyshev polynomials:

∫ 1

−1

Tm(x) Tn(x) dx
√

1− x2
=


0 (m 6= n)

π/2 (m = n 6= 0)

π (m = n = 0)

We observe that the Chebyshev polynomials form an orthogonal set on the interval −1 ≤
x ≤ 1 with the weighting function (1− x2)−1/2

Orthogonal Series of Chebyshev Polynomials

An arbitrary function f(x) which is continuous and single-valued, defined over the interval
−1 ≤ x ≤ 1, can be expanded as a series of Chebyshev polynomials:

f(x) = A0T0(x) +A1T1(x) +A2T2(x) + . . .

=
∞∑
n=0

AnTn(x)
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where the coefficients An are given by

A0 =
1

π

∫ 1

−1

f(x) dx
√

1− x2
n = 0

and

An =
2

π

∫ 1

−1

f(x) Tn(x) dx
√

1− x2
n = 1, 2, 3, . . .

The following definite integrals are often useful in the series expansion of f(x):

∫ 1

−1

dx
√

1− x2
= π

∫ 1

−1

x3 dx
√

1− x2
= 0

∫ 1

−1

x dx
√

1− x2
= 0

∫ 1

−1

x4 dx
√

1− x2
=

3π

8∫ 1

−1

x2 dx
√

1− x2
=

π

2

∫ 1

−1

x5 dx
√

1− x2
= 0

Chebyshev Polynomials Over a Discrete Set of Points

A continuous function over a continuous interval is often replaced by a set of discrete values
of the function at discrete points. It can be shown that the Chebyshev polynomials Tn(x)
are orthogonal over the following discrete set of N + 1 points xi, equally spaced on θ,

θi = 0,
π

N
,

2π

N
, . . . (N − 1)

π

N
, π

where

xi = arccos θi

We have
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1

2
Tm(−1)Tn(−1)+

N−1∑
i=2

Tm(xi)Tn(xi)+
1

2
Tm(1)Tn(1) =


0 (m 6= n)

N/2 (m = n 6= 0)

N (m = n = 0)

The Tm(x) are also orthogonal over the following N points ti equally spaced,

θi =
π

2N
,

3π

2N
,

5π

2N
, . . . ,

(2N − 1)π

2N

and

ti = arccos θi

N∑
i=1

Tm(ti)Tn(ti) =


0 (m 6= n)

N/2 (m = n 6= 0)

N (m = n = 0)

The set of points ti are clearly the midpoints in θ of the first case. The unequal spacing of
the points in xi(Nti) compensates for the weight factor

W (x) = (1− x2)−1/2

in the continuous case.
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Additional Identities of Chebyshev Polynomials

The Chebyshev polynomials are both orthogonal polynomials and the trigonometric cosnx
functions in disguise, therefore they satisfy a large number of useful relationships.

The differentiation and integration properties are very important in analytical and numerical
work. We begin with

Tn+1(x) = cos[(n+ 1) cos−1 x]

and

Tn−1(x) = cos[(n− 1) cos−1 x]

Differentiating both expressions gives

1

(n+ 1)

d[Tn+1(x)]

dx
=
− sin[(n+ 1) cos−1 x

−
√

1− x2

and

1

(n− 1)

d[Tn−1(x)]

dx
=
− sin[(n− 1) cos−1 x

−
√

1− x2

Subtracting the last two expressions yields

1

(n+ 1)

d[Tn+1(x)]

dx
−

1

(n− 1)

d[Tn−1(x)]

dx
=

sin(n+ 1)θ − sin(n− 1)θ

sin θ

or

T ′n+1(x)

(n+ 1)
−
T ′n−1(x)

(n− 1)
=

2 cosnθ sin θ

sin θ
= 2Tn(x) n ≥ 2
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Therefore

T ′2(x) = 4T1

T ′1(x) = T0

T ′0(x) = 0

We have the formulas for the differentiation of Chebyshev polynomials, therefore these for-
mulas can be used to develop integration for the Chebyshev polynomials:

∫
Tn(x)dx =

1

2

[
Tn+1(x)

(n+ 1)
−
Tn−1(x)

(n− 1)

]
+ C n ≥ 2

∫
T1(x)dx =

1

4
T2(x) + C

∫
T0(x)dx = T1(x) + C

The Shifted Chebyshev Polynomials

For analytical and numerical work it is often convenient to use the half interval 0 ≤ x ≤ 1
instead of the full interval−1 ≤ x ≤ 1. For this purpose the shifted Chebyshev polynomials
are defined:

T ∗n(x) = Tn ∗ (2x− 1)

Thus we have for the first few polynomials

T ∗0 = 1

T ∗1 = 2x− 1

T ∗2 = 8x2 − 8x+ 1

T ∗3 = 32x3 − 48x2 + 18x− 1

T ∗4 = 128x4 − 256x3 + 160x2 − 32x+ 1
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and the following powers of x as functions of T ∗n(x);

1 = T ∗0

x =
1

2
(T ∗0 + T ∗1 )

x2 =
1

8
(3T ∗0 + 4T ∗1 + T ∗2 )

x3 =
1

32
(10T ∗0 + 15T ∗1 + 6T ∗2 + T ∗3 )

x4 =
1

128
(35T ∗0 + 56T ∗1 + 28T ∗2 + 8T ∗3 + T ∗4 )

The recurrence relationship for the shifted polynomials is:

T ∗n+1(x) = (4x− 2)T ∗n(x)− T ∗n−1(x) T ∗0 (x) = 1

or

xT ∗n(x) =
1

4
T ∗n+1(x) +

1

2
T ∗n(x) +

1

4
T ∗n−1(x)

where

T ∗n(x) = cos
[
n cos−1(2x− 1)

]
= Tn(2x− 1)

Expansion of xn in a Series of Tn(x)

A method of expanding xn in a series of Chebyshev polynomials employes the recurrence
relation written as

xTn(x) =
1

2
[Tn+1(x) + Tn−1(x)] n = 1, 2, 3 . . .

xT0(x) = T1(x)
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To illustrate the method, consider x4

x4 = x2(xT1) =
x2

2
[T2 + T0] =

x

4
[T1 + T3 + 2T1]

=
1

4
[3xT1 + xT3] =

1

8
[3T0 + 3T2 + T4 + T2]

=
1

8
T4 +

1

2
T2 +

3

8
T0

This result is consistent with the expansion of x4 given in Table 2.

Approximation of Functions by Chebyshev Polynomials

Sometimes when a function f(x) is to be approximated by a polynomial of the form

f(x) =
∞∑
n=0

anx
n + EN(x) |x| ≤ 1

where |En(x)| does not exceed an allowed limit, it is possible to reduce the degree of the
polynomial by a process called economization of power series. The procedure is to convert
the polynomial to a linear combination of Chebyshev polynomials:

N∑
n=0

anx
n =

N∑
n=0

bnTn(x) n = 0, 1, 2, . . .

It may be possible to drop some of the last terms without permitting the error to exceed
the prescribed limit. Since |Tn(x)| ≤ 1, the number of terms which can be omitted is
determined by the magnitude of the coefficient b.

The Chebyshev polynomials are useful in numerical work for the interval −1 ≤ x ≤ 1
because

1. |Tn(x)] ≤ 1 within −1 ≤ x ≤ 1

2. The maxima and minima are of comparable value.
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3. The maxima and minima are spread reasonably uniformly over the interval
−1 ≤ x ≤ 1

4. All Chebyshev polynomials satisfy a three term recurrence relation.

5. They are easy to compute and to convert to and from a power series form.

These properties together produce an approximating polynomial which minimizes error in
its application. This is different from the least squares approximation where the sum of
the squares of the errors is minimized; the maximum error itself can be quite large. In
the Chebyshev approximation, the average error can be large but the maximum error is
minimized. Chebyshev approximations of a function are sometimes said to be mini-max
approximations of the function.

The following table gives the Chebyshev polynomial approximation of several power series.
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Table 3: Power Series and its Chebyshev Approximation

1. f(x) = a0

f(x) = a0T0

2. f(x) = a0 + a1x

f(x) = a0T0 + a1T1

3. f(x) = a0 + a1x+ a2x
2

f(x) =

(
a0 +

a2

2

)
T0 + a1T1 +

(
a2

2

)
T2

4. f(x) = a0 + a1x+ a2x
2 + a3x

3

f(x) =

(
a0 +

a2

2

)
T0 +

(
a1 +

3a3

4

)
T1 +

(
a2

2

)
T2 +

(
a3

4

)
T3

5. f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

f(x) =

(
a0 +

a2

2
+
a3

8

)
T0 +

(
a1 +

3a3

4

)
T1 +

(
a2

2
+
a4

2

)
T2 +

(
a3

8

)
T3

+

(
a4

8

)
T4

6. f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5

f(x) =

(
a0 +

a2

2
+

3a4

8

)
T0 +

(
a1 +

3a3

4
+

5a5

8

)
T1 +

(
a2

2
+
a4

2

)
T2

+

(
a3

4
+

5a5

16

)
T3 +

(
a4

8

)
T4 +

(
a5

16

)
T5
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Table 4: Formulas for Economization of Power Series

x = T1

x2 =
1

2
(1 + T2)

x3 =
1

4
(3x+ T3)

x4 =
1

8
(8x2 − 1 + T4)

x5 =
1

16
(20x3 − 5x+ T5)

x6 =
1

32
(48x4 − 18x2 + 1 + T6)

x7 =
1

64
(112x5 − 56x3 + 7x+ T7)

x8 =
1

128
(256x6 − 160x4 + 32x2 − 1 + T8)

x9 =
1

256
(576x7 − 432x5 + 120x3 − 9x+ T9)

x10 =
1

512
(1280x8 − 1120x6 + 400x4 − 50x2 + 1 + T10)

x11 =
1

1024
(2816x9 − 2816x7 + 1232x5 − 220x3 + 11x+ T11)

For easy reference the formulas for economization of power series in terms of Chebyshev are
given in Table 4.
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Assigned Problems

Problem Set for Chebyshev Polynomials

1. Obtain the first three Chebyshev polynomials T0(x), T1(x) and T2(x) by means of
the Rodrigue’s formula.

2. Show that the Chebyshev polynomial T3(x) is a solution of Chebyshev’s equation of
order 3.

3. By means of the recurrence formula obtain Chebyshev polynomials T2(x) and T3(x)
given T0(x) and T1(x).

4. Show that Tn(1) = 1 and Tn(−1) = (−1)n

5. Show that Tn(0) = 0 if n is odd and (−1)n/2 if n is even.

6. Setting x = cos θ show that

Tn(x) =
1

2

[(
x+ i

√
1− x2

)n
+
(
x− i

√
1− x2

)n]
where i =

√
−1.

7. Find the general solution of Chebyshev’s equation for n = 0.

8. Obtain a series expansion for f(x) = x2 in terms of Chebyshev polynomials Tn(x),

x2 =
3∑

n=0

AnTn(x)

9. Express x4 as a sum of Chebyshev polynomials of the first kind.
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