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Abstract. This paper presents an original probabilistic method for the numerical
computations of Greeks (i.e. price sensitivities) in finance. Our approach is based
on theintegration-by-partsformula, which lies at the core of the theory of vari-
ational stochastic calculus, as developed in the Malliavin calculus. The Greeks
formulae, both with respect to initial conditions and for smooth perturbations of
the local volatility, are provided for general discontinuous path-dependent payoff
functionals of multidimensional diffusion processes. We illustrate the results by
applying the formula to exotic European options in the framework of the Black
and Scholes model. Our method is compared to the Monte Carlo finite difference
approach and turns out to be very efficient in the case of discontinuous payoff
functionals.
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1 Introduction

In frictionless markets, the arbitrage price of most financial derivatives (European,
Asian, etc. ...) can be expressed as expected values of the associated payoff which
is usually defined as a functional of the underlying asset process.
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In this paper, we will show how one can use Malliavin calculus to devise
efficient Monte Carlo methods for these expected values and their differentials.
Other applications of Malliavin calculus for numerical figure and risk manage-
ment will appear in companion papers.

In order to precise our goal, we need to introduce some mathematical no-
tations. The underlying assets are assumed to be given by{X(t); 0 ≤ t ≤ T}
which is a markov process with values inIRn and whose dynamics are described
by the stochastic differential equation

dX(t) = b(X(t)) dt + σ(X(t)) dW(t) , (1)

where{W(t), 0 ≤ t ≤ T} is a Brownian motion with values inIRn. The coef-
ficients b andσ are assumed to satisfy usual conditions in order to ensure the
existence and uniqueness of a continuous adapted solution of equation (1).

Given 0< t1 ≤ . . . ≤ tm = T, we consider the function

u(x) = IE
[
φ(X(t1), . . . ,X(tm)) | X(0) = x

]
, (2)

whereφ satisfies some technical conditions to be described later on. In financial
applications,u(x) describes the price of a contingent claim defined by the pay-
off function φ involving the times (t1, . . . , tm). Examples of such contingent
claims include both usual and path dependent options and sophisticated objects
such as MBS or CMO’s. The functionu(x) can then be computed by Monte
Carlo methods. However, financial applications require not only to compute the
function u(x) but also to compute its differentials with respect to the initial
conditionx, the drift coefficientb and the volatility coefficientσ.

A natural approach to this numerical problem is to compute by Monte Carlo
simulation the finite difference approximation of the differentials. To simplify
the discussion, let us specialize it to the case of the Delta, i.e. the derivative
with respect to the initial conditionx. Then, one has to compute a Monte Carlo
estimator ofu(x) and a Monte Carlo estimator foru(x + ε) for some smallε;
the Delta is then estimated by [u(x + ε) − u(x)]/ε. If the simulations of the two
estimators are drawn independently, then it is proved in Glynn (1989) that the
best possible convergence rate is typicallyn−1/4. Replacing the forward finite
difference estimator by the central difference [u(x +ε)−u(x −ε)]/(2ε) improves
the optimal convergence rate ton−1/3. However, by using common random num-
bers for both Monte Carlo estimators, one can achieve the convergence raten−1/2

which is the best that can be expected from (ordinary) Monte Carlo methods, see
Glasserman and Yao (1992), Glynn (1989) and L’Ecuyer and Perron (1994). An
important drawback of the common random numbers finite difference method is
that it may perform very poorly whenφ is not smooth enough, as for instance if
one computes the delta of a digital or the gamma of European call options.

An alternative method which allows to achieve then−1/2 convergence rate
is suggested by Broadie and Glasserman (1996) : for simple payoff functionals
φ, an expectation representation of the Greek of interest can be obtained by
simple differentiation inside the expectation operator; the resulting expectation is
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estimated by usual Monte Carlo methods. An important limitation of this method
is that it can only be applied to simple payoff functionals.

In this paper, using Malliavin calculus we will show that all the differentials
of interest can be expressed as

IE
[
π φ(X(t1), . . . ,X(tm)) | X(0) = x

]
, (3)

whereπ is a random variable to be determined later on. Therefore, the required
differential can be computed numerically by Monte Carlo simulation and the
estimator achieves then−1/2 usual convergence rate. An important advantage
of our differential formula is that the weightπ does not depend on the payoff
functionφ.

While the aim of this paper is to design efficient numerical scheme, let us
point out a theorical aspect of the formulations (3) that our use of Malliavin
calculus leads us to set up. As it is well known, risk neutral probability is the
technical tool by which one introduces observed market prices in a given model :
this is done in practice through a calibration process, i.e. the computation of the
Arrow-Debreu prices over future various states of the world. Hence asset prices
can be written

price = IEQ0

[
pay-offs

]
,

whereprice is today’s value of the contingent claim,IEQ0 is the expected value
under the risk neutral probabilityQ0, and the discounted pay-offs are the future
contingent cash amounts. Hedging is trying to protect the portfolio against at
least some of the possible changes. But changes in market will come through
the calibration process as changes of the risk neutral probabilityQ. So marginal
changes ofQ will lead to new prices according to

variation of prices = new price − old price,

= IEQ
[
pay-offs

] − IEQ0

[
pay-offs

]
,

= IEQ0

[
pay-offs × π

]
,

whereπ is

π =
dQ − dQ0

dQ0
.

Now suppose that the probabilityQ lies within a parametrized family (Qλ), λ
= (λ1, . . . , λn). In the typical diffusion case studied in this paperQ is parame-
terized by the drift and the volatility functions which may be specified in some
parameterized family. Then the marginal moves of the market can be assessed
through the derivatives

∂

∂λi
(price) = IEQ0

[
pay-offs × πi

]
. (4)

whereG = dQ
dQ0

andπi = ∂G
∂λi

, i.e πi is the logarithmic derivative ofQ at Q0 in
the λi direction. Our use of Malliavin calculus helps to set up the formula (4)
and other various formulas based on the various derivatives or primitives of the
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pay offs. But even if in many cases, it might be analytically easier to start with
the formula of derivative before (4), our opinion is that (4) is likely to be a more
fundamental hedging formula than other ones.

Finally let us observe that the case of stochastic interest rates is easily acco-
modated in the framework of this paper by working under the so-called forward
measure or by extending the state space to include the additional state variable
exp

∫ t
0 r (u)du.

The paper is organized as follows. We first present in Sect. 2 a few basics of
Malliavin calculus. Then, in Sect. 3, we derive the formulae for various differ-
entials which correspond to the quantities calledgreeksin Finance. These cases
have to be seen as an illustration of a general method which can be adapted
and applied to all other pratical differentials. Finally, Sect. 4 is devoted to some
numerical examples and further comments on the operational use of our method.

2 A primer of Malliavin calculus for finance

This section briefly reviews the Malliavin calculus and presents the efficient rules
to use it in financial examples (see Nualart [9] for other expositions).

The Malliavin calculus defines the derivative of functions on Wiener space
and can be seen as a theory of integration by parts on this space. Thanks to
the Malliavin calculus, we can compute the derivatives of a large set of random
variables and processes (adapted or not to the filtration) defined on the Wiener
space. We present the following notations which shall be used in the rest of the
paper.

Let {W(t), 0 ≤ t ≤ T} be a n-dimensional Brownian motion defined on a
complete probability space (Ω,F ,P) and we shall denote by{Ft} the augmen-
tation with respect toP of the filtration generated byW. Let C be the set of
random variablesF of the form :

F = f

(∫ ∞

0
h1(t)dW(t), . . . ,

∫ ∞

0
hn(t)dW(t)

)
, f ∈ S (IRn)

whereS (IRn) denotes the set of infinitly differentiable and rapidly decreasing
functions on IRn and h1, . . . ,hn ∈ L2(Ω × IR+). For F ∈ C , the Malliavin
derivativeDF of F is defined as the process{Dt F , t ≥ 0} of L2(Ω × IR+) with
values inL2(IR+) which we denote by H :

Dt F =
n∑

i =1

∂f
∂xi

(∫ ∞

0
h1(t)dW(t), . . . ,

∫ ∞

0
hn(t)dW(t)

)
hi (t), t ≥ 0 a.s.

We also define the norm onC

‖F‖1,2 =
(
IE(F 2)

)1/2
+

(
IE(
∫ ∞

0
(Dt F )2dt)

)1/2

,
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Then ID 1,2 denotes the banach space which is the completion ofC with respect
to the norm‖ ‖1,2. The derivative operatorD (also called the gradient operator)
is a closed linear operator defined inID 1,2 and its values are inL2(Ω × IR+).

The next result is the chain rule for the derivation.

Property P1. Let φ : IRn −→ IR be a continuously differentiable function with
bounded partial derivatives and F= (F1, . . . ,Fn) a random vector whose com-
ponents belong to ID1,2. Thenφ(F ) ∈ ID 1,2 and :

Dtφ(F ) =
n∑

i =1

∂φ

∂xi
(F )Dt Fi , t ≥ 0 a.s.

In the case of a Markov diffusion process, the Malliavin derivative operator is
closely related to the derivative of the process with respect to the initial condition.

Property P2. Let {X(t), t ≥ 0} be an IRn valued It̂o process whose dynamics are
driven by the stochastic differential equation :

dX(t) = b(X(t)) dt + σ(X(t)) dW(t) ,

where b andσ are supposed to be continuously differentiable functions with
bounded derivatives. Let{Y(t), t ≥ 0} be the associated first variation process
defined by the stochastic differential equation :

dY(t) = b′(X(t)) Y(t) dt +
n∑

i =1

σ′
i (X(t)) Y(t) dWi (t), Y(0) = In,

where In is the identity matrix of IRn, primes denote derivatives andσi is the
i -th column vector ofσ. Then the process{X(t), t ≥ 0} belongs to ID1,2 and its
Malliavin derivative is given by :

DsX(t) = Y(t)Y(s)−1σ(X(s))1{s≤t}, s ≥ 0 a.s.

Hence, ifψ ∈ C1
b (IRn) then we have

Dsψ(XT ) = ∇ψ(XT )Y(T)Y(s)−1σ(X(s))1{s≤T}, s ≥ 0 a.s.

and also

Ds

∫ T

0
ψ(Xt ) dt =

∫ T

s
∇ψ(Xt )Y(t)Y(s)−1σ(X(s)) dt a.s.

The divergence operatorδ (also called Skorohod integral) associated with the
gradient operatorD exists. The following integration by parts formula defines
this divergence operator.

Property P3. Let u be a stochastic process. Then u∈ Dom(δ) if for anyφ ∈ ID 1,2,
we have
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IE(< Dφ,u >H ) := IE(
∫ ∞

0
Dtφ u(t) dt) ≤ C(u) ‖φ‖1,2.

If u ∈ Dom(δ), we defineδ(u) by:

IE(φ δ(u)) = IE(< Dφ,u >H ) for anyφ ∈ ID 1,2 .

The stochastic processu is said to beSkorohod integrableif u ∈ Dom(δ). One
of the most important properties of the divergence operatorδ is that its domain
Dom(δ) contains all adapted stochastic processes which belong toL2(Ω × IR+);
for such processes, the divergence operatorδ coincides with the It̂o stochastic
integral.

Property P4. Let u be an adapted stochastic process in L2(Ω × IR+). Then, we
have:

δ(u) =
∫ ∞

0
[u(t)]∗ dW(t) ,

Moreover, if the random variableF is FT−adapted and belongs toID 1,2 then
for any u in dom(δ), the random variableFu will be Skohorod integrable. We
have the following property.

Property P5. Let F be anFT−adapted random variable which belongs to ID1,2

then for any u in dom(δ) we have:

δ(Fu) = F δ(u) −
∫ T

0
Dt F u(t) dt.

Finally, we recall the Clark-Ocone-Haussman formula.

Property P6. Let F be a random variable which belongs to ID1,2. Then we have

F = IE(F ) +
∫ T

0
IE(Dt F | Ft ) dW(t) a.s.

The latter property shows that the Malliavin derivative provides an identification
of the integrator in the (local) martingale representation Theorem in a Brown-
ian filtration framework, which plays a central role in financial mathematics.
Therefore, in frictionless markets, the hedging portfolio is naturally related to
the Malliavin derivative of the terminal payoff.

3 Greeks

We assume that the drift and diffusion coefficientsb andσ of the diffusion pro-
cess{X(t), 0 ≤ t ≤ T} are continuously differentiable functions with bounded
Lipschitz derivatives in order to ensure the existence of a unique strong solution.
Under the above assumptions on the coefficientsb andσ and using the theory
of stochastic flows, we may choose versions of{X(t), 0 ≤ t ≤ T} which are
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continuously differentiable with respect to the initial conditionx for each (t , ω)
∈ [0,T] × Ω (see e.g. Protter 1990, Theorem 39 p250). We denote by{Y(t),
0 ≤ t ≤ T} the first variation process associated to{X(t), 0 ≤ t ≤ T} defined
by the stochastic differential equation :

Y(0) = In (1)

dY(t) = b′(X(t))Y(t)dt +
n∑

i =1

σ′
i (X(t))Y(t)dWi (t) (2)

whereIn is the identity matrix ofIRn, the primes denote derivatives andσi is the
i -th column ofσ. Moreover, we need another technical assumption.

Assumption 3.1 The diffusion matrixσ satisfies the uniform ellipticity condition :

∃ε > 0, ξ∗σ∗(x)σ(x)ξ ≥ ε | ξ |2 for any ξ, x ∈ IRn.

Since b′ and σ′ are assumed to be Lipschitz and bounded, the first vari-
ation process lies inL2(Ω × [0,T]), see e.g. Karatzas and Shreve (1988)
Theorem 2.9 p289, and therefore Assumption 3.1 insures that the process{
σ−1(X(t))Y(t), 0 ≤ t ≤ T

}
belongs toL2(Ω × [0,T]). Moreover, if the func-

tion γ is bounded then the process{σ−1γ(X(t)), 0 ≤ t ≤ T} will belong to
L2(Ω × [0,T]) andσ−1γ is a bounded function.

3.1 Variations in the drift coefficient

In this section, we allow the payoff functionφ to depend on the whole sample
path of the process{X(t), 0 ≤ t ≤ T}. More precisely, letφ be some function
mapping the setC [0,T] of continuous functions on the interval [0,T] into IR
and satisfying

IE
[
φ(X(.))2

]
< ∞ . (3)

Next, consider the perturbed process{Xε(t), 0 ≤ t ≤ T} defined by

dXε(t) =
[
b(Xε(t)) + εγ(Xε(t))

]
+ σ(Xε(t))dW(t) , (4)

whereε is a small real parameter andγ is a bounded function from [0,T] × IRn

into Rn. To simplify notations, we shall denote by{X(t), 0 ≤ t ≤ T} the non-
perturbed process corresponding toε = 0. We also introduce the random variable

Zε(T)=exp

[
−ε
∫ T

0
< σ−1γ(X(t)),dW(t) >−ε2

2

∫ T

0
‖σ−1γ(X(t))‖2dt

]
. (5)

From the boundedness ofσ−1γ, we have thatIE[Zε(T)] = 1 for anyε > 0 since
the Novikov condition is trivially satisfied. Now, consider the expectation

uε(x) = IE
[
φ(Xε(.))|Xε(0) = x

]
. (6)

The following result then gives an expression of the derivative ofuε(x) with
respect toε in ε = 0.
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Proposition 3.1 The functionε 7→ uε(x) is differentiable inε = 0, for any x∈ IRn,
and we have :

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= IE
[
φ(X(.))

∫ T

0
< σ−1γ(X(t)),dW(t) >

∣∣∣∣ X(0) = x

]
.

Proof. Since IE[Zε(T)] = 1, the probability measureQε defined by its Radon-
Nikodym derivativedQε/dP = Zε(T) is equivalent toP and we have :

uε(x) = IEQε [
Z̃ε(T)φ(Xε(.))

∣∣ Xε(0) = x
]
,

whereZ̃ε(T) = exp
[
−ε ∫ T

0 <σ−1γ(Xε(t)),dWε(t)> − ε2

2

∫ T
0 ‖σ−1γ(Xε(t))‖2dt

]
and{Wε(t), 0 ≤ t ≤ T} is defined byWε(t) = W(t) + ε

∫ t
0 σ

−1γ(Xε(t))dt is a
Brownian motion underQε, by the Girsanov Theorem. Let us observe that the
joint distribution of (Xε(.),Wε(.)) underQε coincides with the joint distribution
of (X(.),W(.)) underP and therefore :

uε(x) = IE
[

Zε(T)φ(X(.)) | X(0) = x
]
.

Now, let us notice that we have

1
ε

(Zε(T) − 1) =
∫ T

0
Zε(t) < σ−1γ(X(t)),dW(t) >

so that

1
ε

(Zε(T) − 1) −→
∫ T

0
< σ−1γ(X(t)),dW(t) > in L2.

Therefore, by the Cauchy-Schwarz inequality and using (3), we get :

∣∣∣ 1
ε (uε(x) − u(x)) − IE

[
φ(X(.))

∫ T
0 < σ−1γ(X(t)),dW(t) >

]∣∣∣
≤ K IE

[(
1
ε (Zε(T) − 1) − ∫ T

0 < σ−1γ(X(t)),dW(t) >
)2
]

whereK is a constant. This provides the required result. �

Remark 3.1The same kind of arguments as in the previous proof can be used
to obtain similar expressions for higher derivatives of the expectationuε(x) with
respect toε in ε = 0 as a weighted expectation of the same functional; the weights
being independent of the payoff functional.

Remark 3.2The result of Proposition 3.1 does not require the Markov feature of
the process{X(t), 0 ≤ t ≤ T}. The arguments of the proof go on even ifb, σ
andγ are adapted processes.
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3.2 Variations in the initial condition

In this section, we provide an expression of the derivatives of the expectation
u(x) with respect to the initial conditionx in the form of a weighted expectation
of the same functional. The payoff functionφ is now a mapping from (IRn)m into
IR with

E
[
φ (X(t1), . . . ,X(tm))2] < ∞.

for a given integerm ≥ 1 and 0< t1 ≤ . . . ≤ tm ≤ T, whereIEx(.) = IE(.|X(0) =
x). The expectation of interest is

u(x) = IEx [φ(X(t1), . . . ,X(tm))] , (7)

We shall denote by∇i the partial derivative with respect to thei -th argument
and we introduce the setΓm defined by :

Γm =

{
a ∈ L2([0,T]) |

∫ ti

0
a(t) dt = 1 ∀i = 1, . . . ,m

}

Proposition 3.2 Under Assumption 3.1, for any x∈ IRn and for any a∈ Γm, we
have :

∇u(x) = IEx

[
φ(X(t1), . . . ,X(tm))

∫ T

0
a(t)[σ−1(X(t))Y(t)]∗dW(t)

]
. (8)

Proof. (i) Assume thatφ is continuously differentiable with bounded gradient;
the general case will be proved in (ii) by density argument. We first prove that
the derivative ofu(x) with respect tox is obtained by differentiating inside the
expectation operator. Indeed, sinceφ is continuously differentiable, we have that

1
‖h‖
[
φ(Xx(t1), . . . ,Xx(tm)) − φ(Xx+h(t1), . . . ,Xx+h(tm))

]
− 1

‖h‖
〈∑m

i =1 ∇∗
i φ(X(t1), . . . ,X(tm))Y(ti ),h

〉
(9)

converges to zero a.s. ash goes to zero. The second term of the last expression
is uniformly integrable inh since the partial derivatives of the payoff functionφ
are assumed to be bounded. Denoting byψh the first term, it is easily seen that :

‖ψh‖ ≤ M
k∑

j =1

∥∥Xx(tj ) − Xx+h(tj )
∥∥

‖h‖ ,

whereM is a uniform bound on the partial derivatives ofφ. The uniform inte-
grability of the right hand side term of the last inequality follows from Protter
(1990, p246) and implies the uniform integrability of (9) which then converges
to zero in the sense of theL1(Ω) norm, by the dominated convergence Theorem.
This proves that :

∇∗u(x) = IEx

[
m∑

i =1

∇∗
i φ(X(t1), . . . ,X(tm))Y(ti )

]
.
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Now, by Property P2, the process{X(t); 0 ≤ t ≤ T} belongs toID 1,2. Besides,
one can easily check that for alli ∈ {1, . . . ,m} and for all t ∈ [0,T] we have
Dt X(ti ) = Y(tj )Y(t)−1σ(t) 1{t≤ti }. This shows that :

Y(ti ) =
∫ T

0
Dt X(ti ) a(t)σ−1(t)Y(t) dt ∀a ∈ Γm

∇∗u(x) = IEx

[∫ T

0

m∑
i =1

∇∗
i φ(X(t1), . . . ,X(tm))Dt X(ti ) a(t)σ−1(t)Y(t)dt

]

and by the chain rule Property P2, we obtain :

∇∗u(x) = IEx

[∫ T

0
Dtφ(X(t1), . . . ,X(tm))a(t)σ−1(t)Y(t) dt

]

Now, for a functiona fixed in Γm, we define the{F (t)} adapted process{v(t),
0 ≤ t ≤ T} by :

v(t) = a(t)σ−1(X(t))Y(t),

which belongs toL2(Ω × [0,T]) by Assumption 3.1. Then,

∇∗u(x) = IEx

[∫ T

0
Dtφ(X(t1), . . . ,X(tm)) v(t)dt

]

and the result follows from a direct application of the Malliavin integration by
parts, see Property P3.
(ii) We now consider the general caseφ ∈ L2. Since the setC∞

K of infinitely
differentiable functions with compact support is dense inL2, there exists a se-
quence (φn)n ⊂ C∞

K converging toφ in L2. Let un(x) = IE [φn(X(t1), . . . ,X(tm))]
and

εn(x) = IE [φn(X(t1), . . . ,X(tm)) − φ(X(t1), . . . ,X(tm))]2 .

First it is clear that

un(x) −→ u(x) for all x ∈ IRn. (10)

Next denote byg(x) the function on the right hand-side of (8). Applying (i) to
functionφn and using Cauchy-Schwartz inequality, we see that :

|∇un(x) − g(x)| ≤ εn(x)ψ(x),

whereψ(x) = IE
[∫ T

0 a(t)[σ−1(X(t))Y(t)]∗dW(t)
]2

. By a continuity argument of

the expectation operator, this proves that :

sup
x∈K

|∇un(x) − g(x)| ≤ εn(x̂)ψ(x̂) for some ˆx ∈ K ,

whereK is an arbitrary compact subset ofIRn which provides :
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∇un(x) −→ g(x) uniformly on compact subsets ofIRn. (11)

From (10) and (11), we can conclude that functionu is continuously differentiable
and that∇u = g.

�

3.3 Variations in the diffusion coefficient

In this section, we provide an expression of the derivatives of the expectationu(x)
with respect to the diffusion coefficientσ in the form of a weighted expectation
of the same functional. As in the previous section, the coefficientsb and σ
defining the diffusion process{X(t), 0 ≤ t ≤ T} are assumed to be continuously
differentiable and with bounded derivatives. Also, the payoff function is assumed
to be path dependent and has finiteL2 norm. We start by introducing the set of
deterministic functions

Γ̃m =

{
a ∈ L2([0,T]) |

∫ ti

ti −1

a(t) dt = 1, for i = 1 . . .m

}
.

Let σ̃ : IRn −→ IRn×n be continuously differentiable function with bounded
derivatives. The functionσ and the function ˜σ are assumed to satisfy the follow-
ing condition.

Assumption 3.2 The diffusion matrixσ + εσ̃ satisfies the uniform ellipticity con-
dition for anyε :

∃η > 0, ξ∗(σ + εσ̃)∗(x)(σ + εσ̃)(x)ξ ≥ η | ξ |2 for any ξ, x ∈ IRn.

In order to evaluate the Ĝateaux derivative of the expectationu(x) with respect
to the diffusion matrixσ in the direction ˜σ, we consider the process{Xε(t),
0 ≤ t ≤ T} defined by :

Xε(0) = x

dXε(t) = b(Xε(t))dt +
[
σ(Xε(t)) + εσ̃(Xε(t))

]
dW(t). (12)

We also introduce theIRn valued variation process of the process with respect to
ε :

Zε(0) = 0n

dZε(t) = b′(Xε(t))Zε(t)dt + σ̃(Xε(t))dW(t)

+
n∑

i =1

[σ′
i + εσ̃′

i ](Xε(t))Zε(t)dWi (t), (13)

where 0n is the zero column vector ofIRn. As in the previous section, we simply
use the notationX(t), Y(t) and Z(t) for X0(t), Y0(t) and Z0(t). Next, consider
the process{β(t), 0 ≤ t ≤ T} defined by :
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β(t) = Z(t)Y−1(t), 0 ≤ t ≤ T a.s. (14)

This process satisfies the following regularity assumption.

Lemma 3.1 The process{β(t); 0 ≤ t ≤ T} belongs to ID1,2.

The process{Y−1(t); 0 ≤ t ≤ T} satisfies

Y−1(0) = In

dY−1(t) = Y−1(t)

[
−b′(X(t)) +

n∑
i =1

[
σ′

i (X(t))
]2]

dt

−Y−1(t)
n∑

i =1

σ′
i (X(t))dWi (t).

By Lemma 2.2.2 p104 in Nualart [9], the process{Y−1(t); 0 ≤ t ≤ T} belongs
to ID 1,2. We also prove by the same argument that the process{Z(t); 0 ≤ t
≤ T} is in ID 1,2 . The required result follows from a direct application of the
Cauchy-Schwarz inequality.

Proposition 3.3 Under Assumption 3.2, for any a iñΓm we have :

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= Ex
[
φ(X(t1), . . . ,X(tm))δ

(
σ−1(X)Y β̃a(T)

)]
where

β̃a(t) =
m∑

i =1

a(t) (β(ti ) − β(ti −1)) 1{ti −1≤t≤ti }

and whereδ
(
σ−1(X)Y β̃a(T)

)
is the Skorohod integral of the anticipating process{

σ−1(X(t))Y(t)β̃a(T) ; 0 ≤ t ≤ T
}
.

Proof. Proceeding as in the proof of Proposition 3.2, it is clear that it suffices to
prove the result for continuously differentiable functionφ with bounded deriva-
tive; the general result follows from a density argument as in (ii) of the proof
of Proposition 3.2. We first prove that the derivative ofuε(x) with respect toε
is obtained by differentiating inside the expectation operator. Consideringε as
a degenerate process, we can apply Theorem 39 p250 in Protter (1990) which
ensures that we can choose versions of{Xε(t), 0 ≤ t ≤ T} which are contin-
uously differentiable with respect toε for each (t , ω) ∈ [0,T] × Ω. Sinceφ is
continuously differentiable, we prove by the same arguments that we have in the
sense of theL1 norm:

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= Ex

[
m∑

i =1

∇∗
i φ(X(t1), . . . ,X(tm))Z(ti )

]
. (15)

Using Property P2, we haveDt X(ti ) = Y(tj )Y(t)−1σ(t) 1{t≤ti } for any i ∈
{1, . . . ,m} and for anyt ∈ [0,T]. Hence, for alli ∈ {1, . . . ,m} we have
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∫ T

0
Dt X(ti )σ

−1(t)Y(t)β̃a(T) dt =
∫ ti

0
Y(ti )β̃a(T) dt (16)

= Y(ti )
i∑

k=1

(∫ tk

tk−1

a(t) (β(tk) − β(tk−1)) dt

)

Sincea belongs toΓ̃m , the right-hand side of (16) can be simplified inY(ti )β(ti )
which is equal toZ(ti ) according to the definition (14). This shows that :

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= Ex

[∫ T

0

m∑
i =1

∇∗
i φ(X)Dt X(ti )σ

−1(X(t))Y(t)β̃a(T)dt

]
(17)

Using again Property P2, the expression (17) of the derivative of the expectation
u(x) can be rewritten in

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= IEx

[∫ T

0
Dtφ(X(t1), . . . ,X(tm))σ−1(X(t))Y(t)β̃a(T) dt

]

Finally, we define the{FT} adapted process{u(t), 0 ≤ t ≤ T} by :

v(t) = σ−1(X(t))Y(t)β̃a(T),

Since the process{σ−1(X(t))Y(t); 0 ≤ t ≤ T} belongs toL2(Ω × [0,T]) and
is {Ft} adapted and since we have proved in Lemma 3.1 thatβ̃a(T) is in ID 1,2

(recall thata is a deterministic function) and is{FT} adapted, we can apply the
Property P5. It follows that the Skorohod integral of the product processv exists.
More precisely, we have

δ(v) = β̃a(T)
∫ T

0
[σ−1(X(t))Y(t)]∗ dW(t) −

∫ T

0
Dt β̃a(T)σ−1(X(t))Y(t) dt

Then, we can apply the Malliavin integration by parts property to obtain the
required result. �

Remark 3.3The same kind of arguments as in the proof of Proposition 3.3 (resp.
Proposition 3.2) can be used to obtain similar expressions for higher derivatives
of the expectationu with respect toε in ε = 0 (resp. with respect to the initial
condition) as a weighted expectation of the same functional; the weights being
independent of the payoff functional.

Remark 3.4We can also extend our results to the case of a payoff functionφ
which is a function of the mean value of the process{X(t); 0 ≤ t ≤ T}. We give
the formula for the derivative with respect to the initial condition in dimension
one. The functionu is defined by

u(x) = IEx

[
φ

(∫ T

0
X(t)dt

)]
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In this case, we have

u′(x) = IEx

[
φ

(∫ T

0
X(t)dt

)
δ

(
2Y2(t)
σ(X(t))

(∫ T

0
Y(s)ds

)−1)]

4 Numerical experiments

This section presents some simple examples which illustrate the results obtained
in the previous sections.

We consider the famous Black and Scholes model, i.e. a one dimensional
market model which consists of a risky assetS and a non-risky one with deter-
ministic instantaneous interest rater (t). Let

(
Ω,F ,Q, (Ft ), (W̃t )

)
be a standard

Wiener process onIR. Then, it is well known, under mild conditions on the coef-
ficients of the SDE driving the price process, that there exists a unique equivalent
probability measureP such that theP−dynamic of the price process is

dS(t)
S(t)

= r (t) dt + σ dW(t), S0 = x. (18)

In this framework, most problems of pricing contingent claims are solved by
computing the following mathematical expectation :

u(0, x) = IE[e−
∫ T

0
r (t) dt

φ(S0,x(T))] (19)

whereφ is a payoff functional.
In practice, the hedging of the contingent claim requires the computation of

the Greeks, i.e. the derivatives of the value functionu,
∂u
∂x

,
∂2u
∂x2

,
∂u
∂σ

, etc. By

using the general formulae developed in the previous section, we are able to
compute analytically the values of the different Greeks without differentiating
neither the value function nor the payoff functional.

In this Black and Scholes framework, the tangent processY follows, P−a.s.,
the stochastic differential equation

dYt = r (t)Yt dt + σYt dWt , Y0 = 1

and so, we havexYt = St ,∀ 0 ≤ t ≤ T,P − a.s.
In our first example, we consider a functionalφ which depends only on the

terminal valueST of the risky asset, the so called European case. First, we can
compute easily an extended rho, i.e. the directional derivative of the functionu
for a perturbation ˜r (t) of the yield r (t). As was shown in the previous sections,
it is a trivial application of the Girsanov Theorem. We have the following result

rhor̃ (t) = IE
[

e−
∫ T

0
r (t) dt

φ(ST )
∫ T

0

r̃ (t)
σSt

dWt

]
− IE

[∫ T

0
r̃ (t) dt e−

∫ T

0
r (t) dt

φ(ST )

]
.
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For the delta, i.e. the first derivative w.r.t. the initial conditionx, we have

to compute an It̂o stochastic integral
∫ T

0
a(t)

Yt

σSt
dWt where a must satisfy,∫ T

0 a(t) dt = 1. A trivial choice is a(t) = 1
T ,∀0 ≤ t ≤ T. Then we get the

formula
∂u
∂x

(0, x) = IE
[

e−
∫ T

0
r (t) dt

φ(ST )
WT

xσT

]
.

A straightforward computation, using again the integration-by-parts formula,
gives for the gamma (the second derivatives w.r.t. the price) the following for-
mula

∂2u
∂x2

(0, x) = IE
[

e−
∫ T

0
r (t) dt

φ(ST )
1

x2σT

(
W2

T

σT
− WT − 1

σ

)]
,

where we also chosea(t) = 1/T.
For the vega, the derivative w.r.t. the volatility parameterσ, direct application

of the formula developed in the previous section again witha(t) = 1/T, provides :

∂u
∂σ

(0, x) = IE
[

e−
∫ T

0
r (t) dt

φ(ST )

(
W2

T

σT
− WT − 1

σ

)]
.

To illustrate these formulae, we consider the case of a European digital option
whose payoff functionφ at timeT of the formφ(x) = 1[a,b] (x). We compute the
values of the previous derivatives with a standard quasi Monte Carlo numerical
procedure based on the use of low discrepancy sequences. More precisely, we
compute the values of the Greeks delta, gamma, vega for a digital option with
payoff functionφ(x) = 1[100,110](x) with parameters valuesx = 100, r = 0.1,
σ = 0.2, T = 1 year.

As a second example, we present an application of the integration-by-parts
formulas by computing the Greeks for an exotic option. We consider the case of
an asian option with payoff of the formφ(

∫ T
0 St dt). In the Black and Scholes

model, a straightforward calculus using the formula given in Remark 3.4 gives
for the delta

∂u
∂x

(0, x) = IE

[
e−
∫ T

0
r (t) dt

φ(
∫ T

0
St dt)

(
2

xσ

∫ T
0 Yt dWt∫ T

0 Yt dt
+

1
x

)]
.

As a third example, we are able to extend our result to more complicated
payoff depending for example on the mean and terminal values of the underlying
asset, likeφ(ST ,

∫ T
0 St dt). Let us define, an “asian barrier in” option with payout

φ(x, y) = 1{y≤B}(x − K )+. We obtain for the delta the following formula

∂u
∂x

(0, x) = IE
[

e−
∫ T

0
r (t) dt

φ

(
ST ,

∫ T

0
St dt

)
δ(G)

]
,

whereG is the random process
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Fig. 1. Delta for a digital option with pay-off 1[100,110] with x = 100, r = 0.1, σ = 0.2, T = 1 year.
We use low discrepency Monte Carlo generation.
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Fig. 2. Gamma for a digital option with pay-off 1[100,110] with x = 100, r = 0.1, σ = 0.2, T = 1
year. We use low discrepency Monte Carlo generation.
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Fig. 3. Vega for a digital option with pay-off 1[100,110] with x = 100, r = 0.1, σ = 0.2, T = 1 year.
We use low discrepency Monte Carlo generation.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

"delta.res"
0.724

Fig. 4. Delta for a asian option with pay-off (
∫ T

0
Ss ds− K )+ with x = 100, r = 0.1, σ = 0.2, T = 1

year,K = 100. We use standard Monte Carlo generation.
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G(s) = (a + αs)
Ys

σSs
+ (b + βs)

2Y2
s

σSs
∫ T

0 Su du

with

a =
2< s > −1

(2< s > −1)2 + (2< s2 > −1)2

α =
4< s2 > −2

(2< s > −1)2 + (2< s2 > −1)2

b =
1
2

− < s2 > + < s > −1
(2< s > −1)2 + (2< s2 > −1)2

β = = 0

and< s >=

∫ T
0 uSu du∫ T
0 Su du

and< s2 >=

∫ T
0 u2Su du∫ T

0 Su du
.

A trivial computation in the case of the standard Wiener process (S = W)
with T = 1 givesδ(G) = 4W1 − 6

∫ 1
0 s dWs. Further analysis shows thisG is

optimal in the sense that it minimizes onL2 the variance of the random variable

φ
(

WT ,
∫ T

0 Wt dt
)
δ(G) as we will prove in a forthcoming paper.
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0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
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Fig. 5. Delta for a complex option with pay-off 1
{
∫ 1

0
Ws ds≥B}

(W1 − K )+. We use standard Monte

Carlo generation.

At this stage, we wish to observe that the Malliavin integration-by-parts
which yields the above formulae, creates weights which involve powers of, say,
the Brownian motion. These “global” weights in fact may slow down Monte



Monte Carlo simulations and Malliavin calculus 409

Carlo simulations and we now suggest a cure for this difficulty. The idea is to
localize the integration-by-parts around the singularity.

In order to be more specific, let us consider the delta of a call option in the
Black and Scholes model, i.e.

∂

∂x
IE
[

e−
∫ T

0
r (t) dt (ST − K )+

]
= IE

[
e−
∫ T

0
r (t) dt 1(ST>K ) YT

]

= IE
[

e−
∫ T

0
r (t) dt (ST − K )+

WT

xσT

]
.

The term (ST − K )+WT is “very large” whenWT is “large” and has a “large”
variance. The idea to solve this difficulty is to introduce a localization around
the singularity atK . More precisely, we set forδ > 0

Hδ(s) = 0, if s ≤ K − δ,

=
s − (K − δ)

2δ
, if K − δ ≤ s ≤ K + δ,

= 1, if s ≥ K + δ

andGδ(t) =
∫ t

−∞ Hδ(s) ds, Fδ(t) = (t − K )+ − Gδ(t). Then, we observe that we
have

∂

∂x
IE
[

e−
∫ T

0
r (t) dt (ST − K )+

]

=
∂

∂x
IE
[

e−
∫ T

0
r (t) dt Gδ(ST )

]
+
∂

∂x
IE
[

e−
∫ T

0
r (t) dt Fδ(ST )

]

= IE
[

e−
∫ T

0
r (t) dt Hδ(ST ) YT

]
+ IE

[
e−
∫ T

0
r (t) dt Fδ(ST )

WT

xσT

]
.

Notice thatFδ vanishes fors ≤ K − δ and fors ≥ K + δ and thusFδ(ST )WT

vanishes whenWT is large.
A similar idea can be used for all the Greeks. For example, we have for the

gamma

∂2

∂x2
IE
[

e−
∫ T

0
r (t) dt (ST − K )+

]
= IE

[
e−
∫ T

0
r (t) dt

δK (ST ) Y2
T

]

= IE
[

e−
∫ T

0
r (t) dt Iδ(ST ) Y2

T

]

+IE
[

e−
∫ T

0
r (t) dt Fδ(ST )

1
x2σT

(
W2

T

σT
− WT − 1

σ

)]

whereIδ(t) =
1
2δ

1|t−K |<δ, Fδ(t) = (t − K )+ − ∫ t
0

∫ s
0 Iδ(u) du ds.

The following Fig. 6 shows the efficiency of this trick by computing the
gamma of a call option by global and localized Malliavin like formula (the direct
integration by parts without localization is now refered to as global Malliavin).
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Fig. 6. Gamma of a call option computed by global and localized Malliavin like formula. The
parameters areS0 = 100, r = 0.1, σ = 0.2, T = 1, K = 100 andδ = 10 (localization parameter). We
use low discrepency sequences.

N = 10 000 exact MCFD MCMALL

Delta call 0.725747 0.725639 0.725660 (loc.)
Gamma call 0.016660 0.015330 0.016634 (loc.)
Vega call 33.320063 33.250709 33.267145 (loc.)

Delta digital -0.001335 -0.003167 -0.001335
Gamma digital -0.000389 +0.099532 -0.000389
Vega digital -0.777516 -0.542902 -0.778695

Delta average call 0.649078 0.660177 0.654369 (loc.)

We conclude the paper by presenting a benchmark comparing Monte Carlo
simulations based on the finite difference approximation of the Greeks and our
localized Malliavin calculus approach. The finite difference scheme is the fol-
lowing : setu(x, σ) = IE

[
Φ(ST )|S0 = x

]
, we have the approximations

delta =
u(x + h, σ) − u(x − h, σ)

2h

gamma =
u(x + h, σ) − 2u(x, σ) + u(x − h, σ)

h2

sigma =
u(x, σ + ε) − u(x, σ − ε)

2ε

We compare the values obtained by those two methods for a given number (10
000) of Brownian trajectories with the exact values. Of course, we use the same
Brownian trajectories for the different initial conditionsx + h, x, x − h which
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Fig. 7. Gamma of a call option computed by finite difference and localized Malliavin like formula.
The parameters areS0 = 100, r = 0.1, σ = 0.2, T = 1, K = 100 andδ = 10 (localization parameter).
We use low discrepency sequences.
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Fig. 8. Delta of an average call option computed by finite difference, global and localized Malliavin
like formula. The parameters areS0 = 100, r = 0.1, σ = 0.2, T = 1, K = 100 andδ = 10 for the
localization parameter. We use pseudo random sequences.
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gives a natural variance reduction to the finite difference method; see also the
discussion in the introduction. Figures 7 and 8 give an idea of the number of
paths required in order to achieve a given precision of 1%.
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