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Abstract. This paper presents an original probabilistic method for the numerical
computations of Greeks (i.e. price sensitivities) in finance. Our approach is based
on theintegration-by-partdormula, which lies at the core of the theory of vari-
ational stochastic calculus, as developed in the Malliavin calculus. The Greeks
formulae, both with respect to initial conditions and for smooth perturbations of
the local volatility, are provided for general discontinuous path-dependent payoff
functionals of multidimensional diffusion processes. We illustrate the results by
applying the formula to exotic European options in the framework of the Black
and Scholes model. Our method is compared to the Monte Carlo finite difference
approach and turns out to be very efficient in the case of discontinuous payoff
functionals.
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1 Introduction

In frictionless markets, the arbitrage price of most financial derivatives (European,
Asian, etc. ...) can be expressed as expected values of the associated payoff which
is usually defined as a functional of the underlying asset process.
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In this paper, we will show how one can use Malliavin calculus to devise
efficient Monte Carlo methods for these expected values and their differentials.
Other applications of Malliavin calculus for numerical figure and risk manage-
ment will appear in companion papers.

In order to precise our goal, we need to introduce some mathematical no-
tations. The underlying assets are assumed to be givefXigy); 0 <t < T}
which is a markov process with valuesRf' and whose dynamics are described
by the stochastic differential equation

dX(t) = bX(t)dt + o(X(t)) dW(t) 1)

where{W(t), 0 <t < T} is a Brownian motion with values iR". The coef-

ficientsb and o are assumed to satisfy usual conditions in order to ensure the

existence and uniqueness of a continuous adapted solution of equation (1).
Given 0<t; <... <ty =T, we consider the function

u(x) = E[¢(X(t),....X(tm)) | X(0) =x] , @)

where¢ satisfies some technical conditions to be described later on. In financial
applications,u(x) describes the price of a contingent claim defined by the pay-
off function ¢ involving the times i, ... ,tyn). Examples of such contingent
claims include both usual and path dependent options and sophisticated objects
such as MBS or CMO'’s. The function(x) can then be computed by Monte
Carlo methods. However, financial applications require not only to compute the
function u(x) but also to compute its differentials with respect to the initial
conditionx, the drift coefficiento and the volatility coefficient.

A natural approach to this numerical problem is to compute by Monte Carlo
simulation the finite difference approximation of the differentials. To simplify
the discussion, let us specialize it to the case of the Delta, i.e. the derivative
with respect to the initial conditior. Then, one has to compute a Monte Carlo
estimator ofu(x) and a Monte Carlo estimator far(x + ¢) for some smalk;
the Delta is then estimated by(k +¢) — u(x)]/e. If the simulations of the two
estimators are drawn independently, then it is proved in Glynn (1989) that the
best possible convergence rate is typically’/4. Replacing the forward finite
difference estimator by the central differencgX+<) — u(x — )] /(2¢) improves
the optimal convergence ratetio >3, However, by using common random num-
bers for both Monte Carlo estimators, one can achieve the convergenoe t&te
which is the best that can be expected from (ordinary) Monte Carlo methods, see
Glasserman and Yao (1992), Glynn (1989) and L’Ecuyer and Perron (1994). An
important drawback of the common random numbers finite difference method is
that it may perform very poorly whet is not smooth enough, as for instance if
one computes the delta of a digital or the gamma of European call options.

An alternative method which allows to achieve thel/2 convergence rate
is suggested by Broadie and Glasserman (1996) : for simple payoff functionals
¢, an expectation representation of the Greek of interest can be obtained by
simple differentiation inside the expectation operator; the resulting expectation is
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estimated by usual Monte Carlo methods. An important limitation of this method
is that it can only be applied to simple payoff functionals.

In this paper, using Malliavin calculus we will show that all the differentials
of interest can be expressed as

E [7¢(X(ta), .-, X(tm)) | X(0) = x], 3

wherer is a random variable to be determined later on. Therefore, the required
differential can be computed numerically by Monte Carlo simulation and the
estimator achieves the—/2 usual convergence rate. An important advantage
of our differential formula is that the weight does not depend on the payoff
function ¢.

While the aim of this paper is to design efficient numerical scheme, let us
point out a theorical aspect of the formulations (3) that our use of Malliavin
calculus leads us to set up. As it is well known, risk neutral probability is the
technical tool by which one introduces observed market prices in a given model :
this is done in practice through a calibration process, i.e. the computation of the
Arrow-Debreu prices over future various states of the world. Hence asset prices
can be written

price = Eq, [pay-offg ,

whereprice is today’s value of the contingent clairkg, is the expected value
under the risk neutral probabilit®,, and the discounted pay-offs are the future
contingent cash amounts. Hedging is trying to protect the portfolio against at
least some of the possible changes. But changes in market will come through
the calibration process as changes of the risk neutral proba@ilitgo marginal
changes of) will lead to new prices according to

variation of prices new price — old price,

= Eq [pay-off§ — Eq, [pay-offs ,
=  Eq, [pay-offs x 7],

wherer is
dQ — dQ

d@
Now suppose that the probability lies within a parametrized familyQy), A
= (A1,..., An). In the typical diffusion case studied in this paggris parame-
terized by the drift and the volatility functions which may be specified in some
parameterized family. Then the marginal moves of the market can be assessed
through the derivatives

m =

g , .
—)\i(prlce) = Eq, [pay-offs x mj] . 4)
whereG = (%?0 andm = STGH i.e i is the logarithmic derivative of at Qg in

the )\ direction. Our use of Malliavin calculus helps to set up the formula (4)
and other various formulas based on the various derivatives or primitives of the
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pay offs. But even if in many cases, it might be analytically easier to start with
the formula of derivative before (4), our opinion is that (4) is likely to be a more
fundamental hedging formula than other ones.

Finally let us observe that the case of stochastic interest rates is easily acco-
modated in the framework of this paper by working under the so-called forward
measure or by extending the state space to include the additional state variable
expfé r(u)du.

The paper is organized as follows. We first present in Sect. 2 a few basics of
Malliavin calculus. Then, in Sect. 3, we derive the formulae for various differ-
entials which correspond to the quantities callgdeksin Finance. These cases
have to be seen as an illustration of a general method which can be adapted
and applied to all other pratical differentials. Finally, Sect. 4 is devoted to some
numerical examples and further comments on the operational use of our method.

2 A primer of Malliavin calculus for finance

This section briefly reviews the Malliavin calculus and presents the efficient rules
to use it in financial examples (see Nualart [9] for other expositions).

The Malliavin calculus defines the derivative of functions on Wiener space
and can be seen as a theory of integration by parts on this space. Thanks to
the Malliavin calculus, we can compute the derivatives of a large set of random
variables and processes (adapted or not to the filtration) defined on the Wiener
space. We present the following notations which shall be used in the rest of the
paper.

Let {W(t), 0 <t < T} be a n-dimensional Brownian motion defined on a
complete probability space&X,.7 , P) and we shall denote by7} the augmen-
tation with respect td® of the filtration generated bW. Let Z" be the set of
random variable§ of the form :

F = f( /0 T hOAW(D). /O N hn(t)dW(t)>7 f €. (R

where.#”(R") denotes the set of infinitly differentiable and rapidly decreasing
functions onR" and hy,...,h, € L?(2 x R,). For F € ¢, the Malliavin
derivativeDF of F is defined as the proce$®.F, t > 0} of L2(£2 x R.) with
values inL?(R.) which we denote by H :

n
8f o o0
D/F = — htth,...,/ htth)h-t, t>0a.s.
F o= 2 g ([ moawo.. . [T womwo ) no
We also define the norm ot

IF|

00 1/2
12 = (E(FZ))”2+(E(/O (DtF)Zdt)) ,
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ThenD *? denotes the banach space which is the completiorf afith respect
to the norm|| ||1,2. The derivative operatdD (also called the gradient operator)
is a closed linear operator definedn'? and its values are ih%(2 x R,).

The next result is the chain rule for the derivation.

Property P1. Let ¢ : R" — R be a continuously differentiable function with
bounded patrtial derivatives and E (F4,...,F,) a random vector whose com-
ponents belong to B?. Then¢(F) € D2 and :

n 8¢

Dio(F) a—Xi(F)DtFi, t>0 as.

In the case of a Markov diffusion process, the Malliavin derivative operator is
closely related to the derivative of the process with respect to the initial condition.

Property P2. Let {X(t), t > O} be an R valued 16 process whose dynamics are
driven by the stochastic differential equation :

dX(t) = bX(t)dt+o(X(t) dW(t)

where b andos are supposed to be continuously differentiable functions with
bounded derivatives. L€ty (t), t > 0} be the associated first variation process
defined by the stochastic differential equation :

dy() = b/(X()Y(t)dt + Za{(X(t))Y(t)dWi(t), Y(@) = In,
i=1

where |, is the identity matrix of R, primes denote derivatives ang is the
i-th column vector ofr. Then the procesgX(t), t > 0} belongs to D% and its
Malliavin derivative is given by :

DsX(t) = Y()Y(s) 'o(X(s))lis<ty, S=>0 as.
Hence, ify € CL(R") then we have
Dstp(Xr) = V(Xr)Y(T)Y(s) *o(X(s))ls<t}, S>0 as.

and also

T T
Ds / P(X)dt = / Vy(X)Y )Y (s) lo(X(s))dt  a.s.
0 S

The divergence operatér(also called Skorohod integral) associated with the
gradient operatoD exists. The following integration by parts formula defines
this divergence operator.

Property P3. Let u be a stochastic process. Thea Dom(d) if for any ¢ € D12,
we have
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E(< Do.u>n) = E([ - Do u®d) < Cw) o]z
If u € Dom(é), we definej(u) by:
E(¢d(u)) = E(< D¢,u>y) forany¢ e D2 .

The stochastic processis said to beéSkorohod integrablé u € Dom(J). One
of the most important properties of the divergence operatsrthat its domain
Dom(s) contains all adapted stochastic processes which belohdg(fd x R.);
for such processes, the divergence operatapincides with the & stochastic
integral.

Property P4. Let u be an adapted stochastic process ffL x R.). Then, we
have

5(u) = /0 o) dw(y)

Moreover, if the random variable is .7 —adapted and belongs B2 then
for any u in dom(d), the random variabl&u will be Skohorod integrable. We
have the following property.

Property P5. Let F be an7 —adapted random variable which belongs to"D
then for any u in dor¥) we have

.
S(Fu) = F §(u) — / D¢F u(t)dt.
0

Finally, we recall the Clark-Ocone-Haussman formula.

Property P6. Let F be a random variable which belongs to'f) Then we have
T
F = EF) + / E(D:F | . %) dW(t) a.s.
0

The latter property shows that the Malliavin derivative provides an identification
of the integrator in the (local) martingale representation Theorem in a Brown-
ian filtration framework, which plays a central role in financial mathematics.
Therefore, in frictionless markets, the hedging portfolio is naturally related to
the Malliavin derivative of the terminal payoff.

3 Greeks

We assume that the drift and diffusion coefficiehtando of the diffusion pro-
cess{X(t), 0 <t < T} are continuously differentiable functions with bounded
Lipschitz derivatives in order to ensure the existence of a unique strong solution.
Under the above assumptions on the coefficiéntnd o and using the theory

of stochastic flows, we may choose versions{¥f(t), 0 < t < T} which are
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continuously differentiable with respect to the initial conditiorfor each €, w)
€ [0,T] x 2 (see e.g. Protter 1990, Theorem 39 p250). We denoté\y),
0 <t < T} the first variation process associated{¥(t), 0 <t < T} defined
by the stochastic differential equation :

Y(0) In 1)

b/(X(D)Y (t)dt + ) of (XY ()W (1) )

i=1

dy(t)

wherel, is the identity matrix ofR", the primes denote derivatives asidis the
i -th column ofo. Moreover, we need another technical assumption.

Assumption 3.1 The diffusion matrix satisfies the uniform ellipticity condition :
Je >0, &o*(X)o(x)¢ > |2 forany £,x € R".

Sinceb’ and ¢’ are assumed to be Lipschitz and bounded, the first vari-
ation process lies in?(2 x [0,T]), see e.g. Karatzas and Shreve (1988)
Theorem 2.9 p289, and therefore Assumption 3.1 insures that the process
{o7HX(1))Y(t), 0 <t < T} belongs toL?(£2 x [0, T]). Moreover, if the func-
tion ~ is bounded then the procegs—1y(X(t)), 0 < t < T} will belong to
L2(£2 x [0, T]) and o1y is a bounded function.

3.1 Variations in the drift coefficient

In this section, we allow the payoff functiop to depend on the whole sample
path of the proces$X(t), 0 <t < T}. More precisely, letp) be some function
mapping the se€[0, T] of continuous functions on the interval,[0] into R
and satisfying

E [¢(X()*] < oo. (3)
Next, consider the perturbed procegsé(t), 0 <t < T} defined by
dXe(t) = [b(X(t)) +ev(X“(1)] + o (X°(1))dW(L) , (4)

wheree is a small real parameter andis a bounded function from [0] x R"
into R". To simplify notations, we shall denote H¥X(t), 0 <t < T} the non-
perturbed process corresponding:te 0. We also introduce the random variable

T 2 T
z:M=ewp|- [ <o hxonaw) >~ [l b)), 6

From the boundedness af ', we have thaE[Z*(T)] = 1 for anye > 0 since
the Novikov condition is trivially satisfied. Now, consider the expectation

us(x) = E[p(X°()IX(0) =x] . (6)

The following result then gives an expression of the derivativeidk) with
respect tce in e = 0.
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Proposition 3.1 The functiore — u®(x) is differentiable ire = 0, for any x € R",
and we have :

9w

.
o = E [QS(X(.))/O < oIy (X (1)), dW(t) >‘ X(O):x}

e=0

Proof. Since E[Z¢(T)] = 1, the probability measur®¢ defined by its Radon-
Nikodym derivativedQ¢ /dP = Z¢(T) is equivalent tdP® and we have :

u(x) = EY [Z5(T)p(X() | X°(0) =x],
whereZ<(T) = exp| = Jy <o 11X (©),dW(©)> —5 [y llo~ (X ()2t
and {W=(t), 0 <t < T} is defined bywe(t) = W(t) +5f0t o y(XE(t))dt is a
Brownian motion undeR¢®, by the Girsanov Theorem. Let us observe that the

joint distribution of X¢(.), W¢(.)) underQ¢ coincides with the joint distribution
of (X(.),W(.)) underP and therefore :

us(x) = E[Z°(T)p(X()) | X(0) =x].
Now, let us notice that we have
.
t@m-y = [ 0 <o hew).aw >
0
so that
.
}(ZE(T)—l) — / <o X)), dW() > in L2
€ 0

Therefore, by the Cauchy-Schwarz inequality and using (3), we get :

LU0 — uG)) — E [6(X() fy < o~ 1 (X)), dW(o) >]|

T 2
< KE [(g(za(T)—l)—fo < o~ y(X(1)), dW(t) >) }

whereK is a constant. This provides the required result. O

Remark 3.1The same kind of arguments as in the previous proof can be used
to obtain similar expressions for higher derivatives of the expectati@x) with
respect t& in e = 0 as a weighted expectation of the same functional; the weights
being independent of the payoff functional.

Remark 3.2The result of Proposition 3.1 does not require the Markov feature of
the procesgX(t), 0 <t < T}. The arguments of the proof go on everifo
and~ are adapted processes.
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3.2 Variations in the initial condition

In this section, we provide an expression of the derivatives of the expectation
u(x) with respect to the initial conditior in the form of a weighted expectation

of the same functional. The payoff functignis now a mapping fromR")™ into

R with

E [¢(X(t),.... X(tm))?] < oo

for a given integem > 1 and O< t; < ... <ty < T, whereE*(.) = E(.|X(0) =
X). The expectation of interest is

ux) = E[e(X(t),..., X(tm)], (@)

We shall denote by; the partial derivative with respect to theh argument
and we introduce the sét, defined by :

Iy = {a e L%(0,T]) | /ti at)dt =1 Vi =1,...,m}
0

Proposition 3.2 Under Assumption 3.1, for any R" and for any ac I, we
have :

)
Vu) = E [as(xal),...,xam» /O a(t)[o—1(X(t))Y(t)]*dW(t)] ®)

Proof. (i) Assume thatp is continuously differentiable with bounded gradient;
the general case will be proved in (ii) by density argument. We first prove that
the derivative ofu(x) with respect tox is obtained by differentiating inside the
expectation operator. Indeed, sintés continuously differentiable, we have that

T[S0, - XX (tm) — SO (W), -, XX ()]
— it (TR Vie(X (), - X ()Y (4), D) ©9)

converges to zero a.s. Asgoes to zero. The second term of the last expression
is uniformly integrable irh since the partial derivatives of the payoff function
are assumed to be bounded. Denoting/lythe first term, it is easily seen that :

k
[X*() — X ()|
< M § : ;

whereM is a uniform bound on the partial derivatives #f The uniform inte-
grability of the right hand side term of the last inequality follows from Protter
(1990, p246) and implies the uniform integrability of (9) which then converges
to zero in the sense of tHe(£2) norm, by the dominated convergence Theorem.
This proves that :

V) = B VieX(t), - X ()Y (&)

i=1
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Now, by Property P2, the proce$X(t); 0 < t < T} belongs toD 2. Besides,
one can easily check that for alle {1,...,m} and for allt € [0, T] we have
DeX(t) = Y ()Y (t)to(t) 1<y This shows that :

.
Y () = /O DX () a(t)o ~L(t)Y (t) dt Va € I'y

T m
Viux) = EX [ /O ST VRO (M), - .-, X(tm)DeX () at)o L)Y (bt
i=1

and by the chain rule Property P2, we obtain :

T
Viu(x) = EX [/0 Dt¢(X(t1)7...,X(tm))a(t)a_l(t)Y(t)dt]

Now, for a functiona fixed in I, we define thel.77 (t)} adapted procesg(t),
0<t<T}hy:

o) = a)e HXO)Y ),
which belongs td_2(£2 x [0, T]) by Assumption 3.1. Then,

-
Viux) = E [/o Dip(X(t1), - . ., X(tm)) v(t)dt

and the result follows from a direct application of the Malliavin integration by
parts, see Property P3.

(i) We now consider the general cagec L2. Since the seCg® of infinitely
differentiable functions with compact support is densé inthere exists a se-
quence én), C C° converging tap in L2. Let un(X) = E [¢n(X(t1), - - -, X (tm))]
and

EI’1(X) = E [¢n(x(tl)7 e 7X(tm)) - ¢(X(t1)7 e 7X(tm))]2 .
First it is clear that
up(x) — u(x) forall x e R". (10)

Next denote byy(x) the function on the right hand-side of (8). Applying (i) to
function ¢, and using Cauchy-Schwartz inequality, we see that :

[Vun(X) —g(¥)] < en(X)9(x),

2
whered(x) = E [ N a(t)[afl(x(t))Y(t)]*dW(t)] . By a continuity argument of
the expectation operator, this proves that :

sup|Vun(x) — g(x)] < en(R)y(X) for some X' € K,
xeK

whereK is an arbitrary compact subset Bf* which provides :
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Vun(x) — g(x) uniformly on compact subsets B". (11)

From (10) and (11), we can conclude that functinis continuously differentiable
and thatVu = g.

3.3 Variations in the diffusion coefficient

In this section, we provide an expression of the derivatives of the expectgkdn
with respect to the diffusion coefficieatin the form of a weighted expectation

of the same functional. As in the previous section, the coefficienend o
defining the diffusion procesgX(t), 0 <t < T} are assumed to be continuously
differentiable and with bounded derivatives. Also, the payoff function is assumed
to be path dependent and has firifenorm. We start by introducing the set of
deterministic functions

ti

ti—1

I = {a e L%[0,T)) | at)dt =1, fori= 1...m}.

Let & : R" — R" " be continuously differentiable function with bounded
derivatives. The functiom and the functiorv"are assumed to satisfy the follow-
ing condition.

Assumption 3.2 The diffusion matrix + 5 satisfies the uniform ellipticity con-
dition for anye :
I >0, E(0+e5) ()0 +ea)(x)E > n| €2 forany £,x € R".

In order to evaluate the @eaux derivative of the expectatiorix) with respect
to the diffusion matrixo in the directions’; we consider the processXe(t),
0<t < T} defined by :

X
b(XE(t))dt + [o(X= (1)) + £5(X° ()] dW(1). (12)

X=(0)
dXe(t)

We also introduce th&" valued variation process of the process with respect to
€
Z:(0)
dze(t)

O
b/ (X5 (1)Z (t)dt + 5 (X5 (1))dW (1)

+> lof +e5{1(XM)Z° ()W (1), (13)
i=1

where Q is the zero column vector dR". As in the previous section, we simply
use the notatiorX(t), Y (t) andZ(t) for X°(t), YO(t) and Z°(t). Next, consider
the procesq(t), 0 <t < T} defined by :
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Bty = Z@EY (), 0<t<T as (14)
This process satisfies the following regularity assumption.
Lemma 3.1 The procesgA(t); 0 <t < T} belongs to B2,
The proces{Y ~(t); 0 < t < T} satisfies

Y'0) = I,

Y [ X)) + > [of(X(1)]? | ot

i=1

Y)Y of (X ()W (t).

i=1

dy—1(t)

By Lemma 2.2.2 p104 in Nualart [9], the proce®61(t); 0 <t < T} belongs

to D12, We also prove by the same argument that the pro¢ggg); 0 < t

< T}is in D2 . The required result follows from a direct application of the
Cauchy-Schwarz inequality.

Proposition 3.3 Under Assumption 3.2, for any a ifi, we have :

Tu| = B[O, X () (o 00V Fa(T))]
=0

where
m

Ba(t) = > alt) (Bt) — Bi-1)) Ly _y<i<ty

i=1

and wherey (o~ 1(X)Y (a(T)) is the Skorohod integral of the anticipating process
{o T XO)YOFa(T): 0<t<T}.

Proof. Proceeding as in the proof of Proposition 3.2, it is clear that it suffices to
prove the result for continuously differentiable functigrwith bounded deriva-
tive; the general result follows from a density argument as in (ii) of the proof
of Proposition 3.2. We first prove that the derivativeus{x) with respect to:
is obtained by differentiating inside the expectation operator. Considerag
a degenerate process, we can apply Theorem 39 p250 in Protter (1990) which
ensures that we can choose versiongXxf(t), 0 <t < T} which are contin-
uously differentiable with respect tofor each {,w) € [0, T] x (2. Since¢ is
continuously differentiable, we prove by the same arguments that we have in the
sense of thé&.! norm:

m
= B D VoK), .. X(tn)Z ()| - (15)

i=1

9 .
EU (%)

e=0

Using Property P2, we havBX(t) = Y ()Y (t)1o(t) 1<y for anyi e
{1,...,m} and for anyt € [0, T]. Hence, for alli € {1,...,m} we have
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/ Y )R (16)
0

i ty
Y& S < | 2609 - ) dt)
k=1 \“k&

—1

/ ' DX (t)o H(t)Y (t)Ba(T) it
0

Sincea belongs tolf, , the right-hand side of (16) can be simplified¥rt; ) 5(t;)
which is equal taZ(t;) according to the definition (14). This shows that :

8 €
&U )

T m
= EX Vo Zvi*(b(X)Dtx(ti)U_l(X(t))Y(t)Ba(T)dt‘| (17)
i=1

e=0

Using again Property P2, the expression (17) of the derivative of the expectation
u(x) can be rewritten in

9w

T ~
=~ = & | [ Dk X o KO O

e=0

Finally, we define the.74 } adapted procesfu(t), 0<t < T} by :
ut) = oTHXE)Y (O)Fa(T),

Since the proces$§o~1(X(t))Y(t); 0 <t < T} belongs toL?(£2 x [0, T]) and
is {7} adapted and since we have proved in Lemma 3.1 #héf) is in D2
(recall thata is a deterministic function) and 7 } adapted, we can apply the
Property P5. It follows that the Skorohod integral of the product processsts.
More precisely, we have

~ T T ~
o(v) = ﬂa(T)/O [0~ XEDY (O] dW(t) —/0 Defa(T)o ™ HX(D)Y (1) dt

Then, we can apply the Malliavin integration by parts property to obtain the
required result. O

Remark 3.3The same kind of arguments as in the proof of Proposition 3.3 (resp.
Proposition 3.2) can be used to obtain similar expressions for higher derivatives
of the expectatioru with respect tae in ¢ = 0 (resp. with respect to the initial
condition) as a weighted expectation of the same functional; the weights being
independent of the payoff functional.

Remark 3.4We can also extend our results to the case of a payoff fungtion
which is a function of the mean value of the proc¢xgt); 0 <t < T}. We give
the formula for the derivative with respect to the initial condition in dimension
one. The functioru is defined by

ux) = E* {¢ (/OT X(t)dt)}
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In this case, we have
T 2 T -1
u'(x) = EX [q& </o X(t)dt> ) (:2;(((:))) (/0 Y(s)ds) )]

4 Numerical experiments

This section presents some simple examples which illustrate the results obtained
in the previous sections.

We consider the famous Black and Scholes model, i.e. a one dimensional
market model which consists of a risky asSeand a non-risky one with deter-
ministic instantaneous interest ratg). Let (!2,.;7, Q, (#A), (V~\/t)) be a standard
Wiener process oR. Then, it is well known, under mild conditions on the coef-
ficients of the SDE driving the price process, that there exists a unique equivalent
probability measurd such that thé®>—dynamic of the price process is

dsit)

sy - Odrodwe, S=x. (18)

In this framework, most problems of pricing contingent claims are solved by
computing the following mathematical expectation :

T
r

u0,x) = Efe o "O%y(s0x(Ty)] (19)

where¢ is a payoff functional.

In practice, the hedging of the contingent claim requirezs the computation of
the Greeks, i.e. the derivatives of the value funcuinng—i, % ngi’ etc. By
using the general formulae developed in the previous section, we are able to
compute analytically the values of the different Greeks without differentiating
neither the value function nor the payoff functional.

In this Black and Scholes framework, the tangent prodesgsllows, P—a.s.,

the stochastic differential equation
dy; =rt)Yidt+oYi dW, Yp=1

and so, we haveY; =§,vO<t<T,P-—as.

In our first example, we consider a functiormalwhich depends only on the
terminal valueS; of the risky asset, the so called European case. First, we can
compute easily an extended rho, i.e. the directional derivative of the funation
for a perturbatiorr (t) of the yieldr (t). As was shown in the previous sections,
it is a trivial application of the Girsanov Theorem. We have the following result

_ S ARIGE: T@ }_ { T SARIGES
thorgy E[e o) [ Taw| | [ rode k%]
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For the delta, i.e. the first derivative w.r.t. the initial conditionwe have

T
o Y :
to compute an @ stochastic mtegray a(t) —édV\.{ where a must satisfy,
0 g

Ta(t)dt = 1. A trivial choice isa(t) = 2,¥0 < t < T. Then we get the
0 T
formula

ou _ - DTr(t)dt Wy
8)((07X)—E[e J ¢(ST)M] :

A straightforward computation, using again the integration-by-parts formula,
gives for the gamma (the second derivatives w.r.t. the price) the following for-
mula

2 T 2
I t0x=E [e Jorosysy 2 (WT Wy - 1)] 7

x20T \ oT o

where we also chosa(t) = 1/T.
For the vega, the derivative w.r.t. the volatility parametedirect application
of the formula developed in the previous section again afth=1/T, provides :

Mox =€ [e Jyrostysy (‘;"f Swp m |

To illustrate these formulae, we consider the case of a European digital option
whose payoff functiorp at timeT of the form¢(x) = 14 5y (x). We compute the
values of the previous derivatives with a standard quasi Monte Carlo numerical
procedure based on the use of low discrepancy sequences. More precisely, we
compute the values of the Greeks delta, gamma, vega for a digital option with
payoff function ¢(x) = Ij100110)(X) With parameters values = 100,r = 0.1,
0=02,T =1 year.

As a second example, we present an application of the integration-by-parts
formulas by computing the Greeks for an exotic option. We consider the case of
an asian option with payoff of the formb(foT S dt). In the Black and Scholes
model, a straightforward calculus using the formula given in Remark 3.4 gives
for the delta

@ _ 7f0Tr(t)dt T ifoT Ye dW 1
8X(O’X)_E [e (b(/o S dt) <XUIOTYt " +X )

As a third example, we are able to extend our result to more complicated
payoff depending for example on the mean and terminal values of the underlying
asset, likep(Sr, fOT S dt). Let us define, an “asian barrier in” option with payout
#(x,y) = Ly<gy (X — K)+. We obtain for the delta the following formula

ou _ — [Trydt T
8X<o,x>—E[e Ji ¢><ST,/O Sdt) 5(@)],

whereG is the random process
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Fig. 1. Delta for a digital option with pay-off loo,110) With x = 100,r =0.1, 0 = 0.2, T = 1 year.
We use low discrepency Monte Carlo generation.
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Fig. 2. Gamma for a digital option with pay-offjio 110} With x = 100,r = 01,0 =02, T =1
year. We use low discrepency Monte Carlo generation.
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3. Vega for a digital option with pay-off j1og,110] With x
use low discrepency Monte Carlo generation.
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year,K = 100. We use standard Monte Caré) generation.
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G(s)=(a+ as);—; +(b+ g5 — 2%

oS Jy Sudu
with
a = 2<s>-1
2<s>-1P+(2<s2>—1)%2
0 = 4<s?> -2
T (2<s>-1PR+(2<s2> —1)2
b o= Lo <s?>+<s>-1
T2 (2<s>-1P+(2<s2> 1)
ﬂ = =0
T T
uS, du uS, du
and<s>:f°T731and<sz>:f°T7&.
Jo Sudu

A trivial computation in the case of the standard Wiener proc&ss (V)
with T = 1 givesé(G) = 4W; — 6fols dW. Further analysis shows this is
optimal in the sense that it minimizes &A the variance of the random variable

10) (WT, fOT W, dt) 4(G) as we will prove in a forthcoming paper.

0.5 T T T T T T T T T
"delta.res” —
0.465 ----
h ) AN Lo,
0.45 | N
0.4 h B
0.35 B
0.3 B
0.25 | B
02 1 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Fig. 5. Delta for a complex option with pay-off 1 (W1 — K)+. We use standard Monte

1
) (] wsds>8}
Carlo generation. 0

At this stage, we wish to observe that the Malliavin integration-by-parts
which yields the above formulae, creates weights which involve powers of, say,
the Brownian motion. These “global” weights in fact may slow down Monte
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Carlo simulations and we now suggest a cure for this difficulty. The idea is to
localize the integration-by-parts around the singularity.

In order to be more specific, let us consider the delta of a call option in the
Black and Scholes model, i.e.

0 —foTr(t)dt B
87E e (ST K)+:|

T
E {e_fo rode 1(ST>K) YT:|

;
Ele Jirod gy Wr |
{e ’ (Sr )+ xXoT
The term & — K).Wr is “very large” whenWr is “large” and has a “large”
variance. The idea to solve this difficulty is to introduce a localization around

the singularity atk. More precisely, we set faf > 0

Hs(s) = 0, ifs<K —4,

= ii%iQ,WK—5gng+&
= 1 ifs>K+5

)

andGs(t) = fioo Hs(s)ds, Fs(t) = (t — K)+ — Gs(t). Then, we observe that we
have

0 7f0Tr(t)dt B
5E [e (Sr K)+}
0

87E [efo r(t)dt Ga(Sr)] +8%E [ej‘o r(t)dt Fa(sr)}

c [e_ [T rwat Ha(Sr)YT] ‘E {e_ [T F5(Sr) V\fr} '
XoT

Notice thatFs vanishes fois < K —§ and fors > K +¢ and thusFs(Sy)Wr
vanishes wheW is large.
A similar idea can be used for all the Greeks. For example, we have for the
gamma
2 T T
%E {e—ﬁ) Od g K)“} - E {e—j; r(t) dt 5K(ST)YT2}
Tr

- E [e‘fo O la(sr)YT"}

+E{e—f0Tr(t)th6(ST) 1 (WTZ—WT—lﬂ

x20T \ oT o

Wher8|5(t) = 2125 1‘t7K‘<57 Fg(t) = (t — K)+ - fol fos |§(U) duds

The following Fig.6 shows the efficiency of this trick by computing the
gamma of a call option by global and localized Malliavin like formula (the direct
integration by parts without localization is now refered to as global Malliavin).
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Fig. 6. Gamma of a call option computed by global and localized Malliavin like formula. The
parameters ar80 = 10Qr = 0.1,0 = 0.2, T = 1K =100 and$ = 10 (localization parameter). We
use low discrepency sequences.

[N =10 000 [ exact | MCFD | MCMALL |
Delta call 0.725747 | 0.725639 | 0.725660 (loc.)
Gamma call 0.016660 | 0.015330 | 0.016634 (loc.)
Vega call 33.320063| 33.250709| 33.267145 (loc.)
Delta digital -0.001335 | -0.003167 -0.001335
Gamma digital -0.000389 | +0.099532 -0.000389
Vega digital -0.777516 | -0.542902 -0.778695

Delta average call [ 0.649078 | 0.660177 [ 0.654369 (loc.) |

We conclude the paper by presenting a benchmark comparing Monte Carlo
simulations based on the finite difference approximation of the Greeks and our
localized Malliavin calculus approach. The finite difference scheme is the fol-
lowing : setu(x,o) = E [@(ST)|S) = x], we have the approximations

uix+h,o) —u(x —h,o)

delta

2h
h,o) -2 —h
gamma = u(x +h, o) U(é(z’ o)+u(x —h,o)
. _ uX,o+¢€)—u(x,o —¢)
sigma = o

We compare the values obtained by those two methods for a given number (10
000) of Brownian trajectories with the exact values. Of course, we use the same
Brownian trajectories for the different initial conditions+ h,x,x — h which
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Fig. 7. Gamma of a call option computed by finite difference and localized Malliavin like formula.
The parameters a0 = 10Qr =0.1,0 = 0.2, T = 1,K =100 andd = 10 (localization parameter).
We use low discrepency sequences.
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Fig. 8. Delta of an average call option computed by finite difference, global and localized Malliavin
like formula. The parameters a&) = 10Qr = 0.1,0 = 0.2,T = 1,K = 100 and$ = 10 for the
localization parameter. We use pseudo random sequences.
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gives a natural variance reduction to the finite difference method; see also the
discussion in the introduction. Figures 7 and 8 give an idea of the number of
paths required in order to achieve a given precision of 1%.
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