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Abstract. This paper is the sequel of Part | [1], where we showed how to use the
so-called Malliavin calculus in order to devise efficient Monte-Carlo (numerical)
methods for Finance. First, we return to the formulas developed in [1] concerning
the “greeks” used in European options, and we answer to the question of optimal
weight functional in the sense of minimal variance. Then, we investigate the use
of Malliavin calculus to compute conditional expectations. The integration by
part formula provides a powerful tool when used in the framework of Monte
Carlo simulation. It allows to compute everywhere, on a single set of trajectories
starting at one point, solution of general options related PDEs.

Our final application of Malliavin calculus concerns the use of Girsanov
transforms involving anticipating drifts. We give an example in numerical Finance
of such a transform which gives reduction of variance via importance sampling.

Finally, we include two appendices that are concerned with the PDE inter-
pretation of the formulas presented in [1] for the delta of a European option
and with the connections between the functional dependence of some random
variables and their Malliavin derivatives.
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1 Introduction

As is well-known, the valuation and the hedging of most financial products in-
volve expected values, and their differentials, of functionals of Brownian motions
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and related stochastic processes. A general and natural approach to the practi-
cal (numerical) computation of such quantities is the Monte-Carlo method. The
advantages of Monte-Carlo simulations on other numerical approaches, which
are essentially numerical partial differential equations approaches (we exclude
explicit formula which are limited to a few simple examples), are the flexibility
and in particular the possibility of dealing with path-dependent products, and the
potential for computations in higher dimensions. The drawbacks of Monte-Carlo
approaches are i) the relative slow convergence and the lack of precision, ii) the
inadequacy for the treatment of american options.

Our goal in this series of papers (Part | [1], this article and forthcoming
publications) is to provide some cures for these drawbacks. More precisely, we
emphasize the usefulness of tools of modern probability theory, in particular
of the Malliavin calculus that we briefly presented in Part | (for more details
on Malliavin calculus, the reader may consult [5], [6], [7], [10]). Let us also
mention in passing the possible use of large deviations theory (see [3], [2]). In
Part | [1], we showed how one can use Malliavin calculus to write down explicit
probabilistic formulas for the greeks — i.e. differentials of the values of various
European options with respect to various parameters — which are needed for
hedging. The formula turn out to be expectations of the original pay off multiplied
by some explicit weights. Such representations of greeks allow for a direct and
efficient Monte-Carlo simulation and we presented in [1] various experiments
showing the improvements in speed and precision of such an approach compared
to a traditional “difference quotients” approach.

In this article, we present several other applications of Malliavin calculus.
First of all, we analyze the question of the weights appearing in the representa-
tions of greeks mentioned above : indeed, see [1], those weights are non unique
and thus we need to choose the “best” one. In [1], we chose in some sense the
simplest one. We study, in Sect. 2 below, the selection of an optimal weight
where optimal means minimal variance. Next, in Sect. 3, we develop an idea
which is briefly mentioned in Part | [1] which consists in applying the Malliavin
calculus, or integration by parts, on a piece of the functional whose expectation is
to be computed. This allows to write several probabilistic expressions that share
the same expectation and thus to look for a reduced variance.

Section 4 is concerned with what we believe to be one of the most promising
applications of Malliavin calculus to numerical Finance namely the representa-
tion of conditional expectations. Indeed, conditional expectations are extremely
difficult to compute by traditional Monte-Carlo simulations for obvious reasons
— “almost all” paths generated by the simulation will miss the event involved in
the conditional expectation. However, the Malliavin integration by parts allows
to obtain different representations that can be computed by Monte-Carlo simu-
lations ! In other words, we can use paths that do not go through or to the right
zone. We illustrate this general observation by two applications which are rele-
vant for Finance. First, we show how one generation of paths emanating from a
fixed initial position of the underlying asset can be used to compute the price of
a European option at any later time and at any position. This should clearly pave
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the way to a full Monte-Carlo approach to American options and we shall come
back to this issue in a forthcoming publication. Next, as an example, we consider
a stochastic volatility model and the price of a European option conditioned by
the value of the volatility at same time(s). Once more, the aforementioned in-
tegration by parts allows us to compute efficiently such conditional values by a
traditional Monte-Carlo simulation.

Our final application of Malliavin calculus concerns the use of Girsanov
transforms involving anticipating drifts. This is described in Sect. 5 and we just
allude here to the interest of such transforms. Girsanov transforms with non-
anticipating drifts are well-known to be useful in various contexts for numerical
Finance : reduction of variance via importance sampling for instance, change of
numeraire. We show here that very general drifts can be used and we present one
simple application to the pricing of European options. Indeed, it is natural to use
a drift that depends on the terminal position in order to drive the process to the
zone of interest for the computation of the payoff. One can think of a simple call
where all paths leading to a terminal position below the strike do not contribute
to the expectation.

Finally, we also include two rather more mathematical appendices very much
related to the facts shown in [1] and here, that are concerned with the PDE
interpretation of the formula presented in [1] for the delta of a European option
and with the connections between the functional dependence of some random
variables and their Malliavin derivative.

We conclude this long introduction with a few notations that we keep through-
out the article. We denote b\);>o anN-dimensional Brownian motion defined
on a complete probability spac€(.7, P) and by (#):>o the augmentation with
respect td® of the filtration generated by. Finally, we shall write indifferently
X¢ or X(t) for any procesX defined on (2,.7 ,. %, W, P).

2 Optimal weights for greeks

As recalled in the introduction, we obtained in Part | [1] representation formulas
for the so-called greeks of European options. All these formula can be summa-
rized as follows : lefl > 0, letF be a “smooth”% -measurable random variable
with values in R' wherem > 1, and we shall need to make precise what we
really mean by “smooth”. Furthermore, we assume thatepends upon a real-
valued parametek, F = F(0), and\~*(F(\) — F(0)) = G asA — 0 (A #0) in
L1(£2) (for instance). We then consider

2E[@(F)] = E[?'(F).G] (2.1)

2 A=0
whered is an arbitrary smooth function over"R

For financial applicationd; is the position at tim& of the underlying asset

assumed to be a diffusion process defined, for instance, by

dX, = o(X)dW +b(X)dt, Xo=x € RY (2.2)
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whered > 1, o is d x N matrix-valued functionp is a function from R into

RY and we assume thatandb are Lipschitz on R. For instance, in the usual
Black-Scholes model] = 1, ¢(S) = ¢S and¢ is the volatility, b(S) = bS. But

the general formulation (2.2) obviously allows for more general models or even
for “extended” procesus such X = (S, M;) where

ds ocSdW; +bSdt
th = Sdt

which are relevant for Asian options.

Finally, @ is the pay-off and various choices @éfcorrespond to various options
(call, put, digital, knock out, etc). Let us also mention in passing that we could
consider as well non homogeneous models wiveesdb depend uport.

2.1 Minimal weights

We showed in Part | [1] various situations in which one can rewrite (2.1) as
E [@’(F).G] = E[®(F)~] (2.3)

for any smooth®, wherer is a weight that we computed explicitly in various
cases.

The existence of such a weight is straightforwardrifis smooth i.e. if the
law of F()\) admits a smooth, positive densityon R™ which depends smoothly
on \. Indeed, under natural conditions that do not need to be made precise, we
have

) )
SREREO] = o5 [ s@neee
- /R () ((,i Iogfk> @) fr(2)dz
= E[FW)]

with 7 = (& logfy) (F()). Hence, (2.3) holds withro = (- logfy) ‘ (F). Let

us notice, for future use, that this construction not only yields Aa_ower'tgbut

also a weight which is measurable with respect todHeeld generated by-.
However, the preceding weight is theoretical since, in general the ddgsity

is not known (and not even available numerically even though we shall see in

Sect 4 a general approach which can be applied in particular to the computation

of fA(2)). Let us also observe that there are many weigh¢sich that (2.3) holds

for all ¢ : more precisely, the set of suehis exactly given by

7" = {r|E[r|o(F)] = mo} (2.4)

always assuming that all random variablesare integrable, and where(F)
denote ther-field generated by .
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Obviously, for any practical application, one needs to determine an element
of 77" which is explicit or that can be computed by a standard Monte-Carlo
procedure. We presented in Part | [1] several examples relevant to Financial
Engineering where this can be done using Malliavin calculus. These examples can
be incorporated in the previous abstract framework as follows. We now assume
thatF is “smooth in Malliavin sense” i.e. admits a Malliavin derivat&F , t €
[0,T]) in L2(£2 x (0, T)N (for instance) and thaDF is “not degenerate” and
more precisely that we can find at least one “smooth” processth values in
RN such that

E UOT DtF.utdto(F)} = E [G|o(F)] (2.5)

Then, we have for any suah (and for any®)

E [9'(F)G] E [¢'(F)E(G|o(F))]

- T
L 0

- T
= E qS’(F)/O DtF.utdt}

ropT
E _/0 Dt@(F).Ut dt:|
E[o(F)7]

wheren = §(k) is the Skorohod integral on [T] of u. In other wordsd(u)
belongs to77". Conversely, ifr ¢ 77" N H! — we denote as is customary
in stochastic analysis bjH® the space ofL? random variablesX such that
DX € L%(£2 x (0, T))N — thenr = 6(w) for some adapted, satisfying (2.5) and
this is the case in particular if = mo. Indeed, taking? = 1 in (2.3), we see that
E(7) = 0 and thus

T
T = / E[Dt’ﬂ'|.7{] dWT = 5(Ut)
0

with u; = E [Dyw|-%]. In addition, we have for ang using the same string of
equalities as before

E [¢'(F)E(G|o(F))] = E{@’(F)E(/OTDtF.utdtU(F)ﬂ

hence (2.5) holds.

Our final observation consists in remarking thatis, among all weights,
the one which yields the mininum variance i®. is a minimum over allr €
7Z7°(NH 1) of the convex functional

7 (r) = E[|®(F)r — E[¢'(F)G] |*] (2.6)
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Indeed, we have trivially

7" (r) E [#2(F)r?] — E[&(F)mo]?

E [9%(F)(r — 70)?] + 7" (m0)

In conclusion, we have shown the

Proposition 2.1 Under the above assumptions, the set 77" N H ! is equal to
{m=0(u) € H' | u satisfies (2.5)}

and mg is a minimum of 7" () over that set.

2.2 Euler-Lagrange equation
Obviously, the set of minima of (2.6) is given by € 77" | ® = mp a.s. on{®(F)

7 0}}. For any such minimum = §(u) in 77"NH 1, the Euler-Lagrange equation
holds forw or equivalently foru namely we have for all “smooth #, such that

T
E {/ DiF.udt | o(F)| = O (2.7)
0
the following equality
E [{2(F)m — E(?'(F)G)} &(F)é(v)] = 0 (2.8)
or equivalently by integrating by parts
T
E {/ v.DiF &' (F) [20(F)m — E(9'(F)G)] + v Dy ®?(F) dt } =0
0

or in view of (2.7)

E{/T vt.DtFE@Z)’(F)+vt.Dt7?4'>2(F)dt} =0 (2.9)
0

Next, we remark that, at least formally, we may choose for each “smaath”
T T -1
v =wy — D(FE [/ DtF.wtdt|a(F)} E [/ |DtF2dt|a(F)}
0 0
T
at least if/ |D¢F |%dt does not “vanish too much”. Inserting this choice in (2.9),
we find T
E [/ wy .DF (D% (F) + wt.DtEdiz(F)dt] =
0

= E UOT wy.DiF <E [E/OT |DtF|2dta(F)} (@?)(F) +
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+ E{ATDJ?Q%m(ﬁFﬂQQFO [E{ATH%FFm“ﬂpﬂ}_W

Hence, we have

.
EK/QH%QEwmﬂ
DiF 7(®?)'(F) + Di7®?(F) = DF o (@2 (F)+
E[/DfﬁmhﬂFﬂ
0

P*(F)

T
+DiF —=2

-
E{mﬂﬁwmﬂ
0

(2.10)
Obviously, (2.10) holds ifr is o(F) measurable i.e. is a function & and
thus coincides withrg in view of (2.4). Conversely, (2.10) implies at least when
&2 does not vanish

Dit = ADF in 2 x[0,T]

for some random variabld independent ot € [0, T]. This condition should
imply under appropriate nondegeneracy and smoothness conditions tha ~—
function of F exactly as the fact that the gradients of two scalar functions on
RN are parallel at each point “implies” that these functions are functionally
dependent. We are able to answer positively this question in a few rather specific
cases (see Appendix B below) and we mention this open problem not only for
its own intrinsic interest but also because it is highly suggestive of a potential
use of the Malliavin derivatives in order to measure the “nonlinear correlations”
of random variables.

2.3 Financial applications

Now, we go back and comment some of the formula established in Part | [1] for
the greeks. Our goal is to show that, in most of them, the derived weights are
optimal in the sense of Proposition 2.1 above. We shall always assume that the
contingent asse% is one-dimensional and satisfies (2.2) with eithéB) = oS,

b(S) =bS, ¢ > 0,b € R, the usual Black-Scholes model (BS),a(S) = ¢ > 0,

b(S) = b € R, the Brownian model that we only consider for a pedagogical
purpose. We begin with an option of the fotvh = E[4(Sr)], for someT > 0

and some measurable functidnwith at most polynomial growth at infinity.

This option could be, for instance, a call(§) = (S — K).), or a digital @¢(S) =
1s>k)), whereK > 0 is fixed. Then, as shown in Part | [1], we have

(delta) g—\é = E[®(S)n], 7= %(BS model 7 = \:H—T (Brownian model),

2
(vega) Al = E[®(S)n], m= Wi _ Wr — 1 (in both cases)
oo oST o
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Since obviouslyr is a function ofSr, these weights are optimal.
The case of the Asian option is more interesting. We thus consider now

T
V =E [qﬁ </ Sdt)]. This corresponds to the cade= 2, where the second
0

t
component ofX; = (S, | +/ S.ds) satisfiesdX = Sdt. Then, the delta is given
0

by
o T
5 = E[d)( /0 Sdt)w} (2.11)

6 [T Wr .
wherer = T2 W dt — 2? in the Brownian case and
0

2 S-S .1 <1— 22) for the BS Model. 2.12)
ag

_ -S
s '
| s
0

-
Once more, these weights are functiony &, / Sdt | and thus are optimal.

0
We emphasize the fact that, in all the previous examples but the last one,
those explicit weights may be deduced directly from the explicitly known laws

of the processes. However, in the last case (BS model, Asian option), even though
T

the law of [ Sdt is not known explicitly, Malliavin calculus yields the optimal

weight!

Finally, if we consider a general model (2.2) withandb of classC? (say)
with ¢/ and b’ bounded and if we assume thatis uniformly invertible (to
simplify), then, as shown in [1], we have

* - 1 T -1 *
el =€ |206) (1 [ @ ovyaw )|

where we denote b\ * the transpose of a matrid andY; is the linearized
flow given by
DY; = (¢/(X)-Yo).dW, , Yo=1

In general, this representation, deduced from Malliavin calculus, does not provide
an optimal weight since it is not, in general, a functiongf.

Remark 2.1 Let us observe that, in cases when we do not know how to obtain an
explicit optimal weight, one may use a combination of Monte-Carlo simulations
and of an iterative procedure based upon the variance functigrighnd its
gradient (which can be computed along the lines developed in the Euler-Lagrange
section). Starting with an explicit;, we compute by a Monte-Carlo simulation

an approximation forA = E [¢/(F)G| and then useZ’(r) to “improve” the
weight by a gradient descent method, obtaining in this way a new wejghnd

so forth. ..
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Remark 2.2 It is worth observing that the existence of a weights insured by

the smoothness of the laws of the underlying processes, while Malliavin calculus
actually yields such weights in case when the Malliavin derivatives of these
processes exist and “do not vanish too much ”. At least formally, this second
notion of smoothness is more restrictive and there are examples of financial
products that do not satisfy it. More precisely, takidg= 1, a solutionX; of

(2.2) with o, b smooth,o positive, we may consider a barrier option (we could
as well consider lookbacks .) like for instance

V = E[®(Xr) 1r>1)]

wherer is the first hitting time of the regiofix > B} whereB > 0 is fixed. The
approach developed in Part | [1] breaks down in this case dneedoes not
exist. However, all the laws appearing in that expectation are smooth. We shall
see in a future publication how this serious difficulty may be circumvented and
how one can extend the results and methods of Part | [1] (and of this paper) to
the cases of general barrier options and of options of maxima (or minima) such
as lookback options.

3 Identities and variance reduction

In this section, our goal is not to provide a general theory but to emphasize an
observation that was sketched in Part | [1] and which is crucial for the practical
implementation of Monte-Carlo simulations based upon our use of Malliavin
calculus.

Let us begin by explaining how one can localize the integration by parts
provided by Malliavin calculus around the singularity points, in the context of
greeks. Also, in order to simplify the presentation, we shall simply consider the
case when the underlying asset is a pure Brownian motiogieS+oW;, t >
0. Then, we consider the delta of a digital, or equivalently the gamma of a call,

namely
2

0 0 .
A= 75 E (Ls>K)) L:S): @E((S - K)) s,

Then, as can be checked by a direct inspection or through a (very!) particular
case of Malliavin integration by parts, we certainly have

(3.13)

W,
A=E (1(s>r<) U;) (3.14)

((S K)+ (t)> (3.15)

Next, if we wish to computé by a Monte-Carlo simulation, it is important to
compare the variance of the two random variables whose meanAiriimely

1(3>K)gt and & — K). ( i ) In other words, we wish to compare

or
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W2 —t)2
E (Ls>x) W) and E <1<s>K>(s _K)z(t2)>

These expressions are difficult to compare but a limit on their behavior is provided
by computing their behavior asgoes to bo or ast goes to Q. This is indeed
straightforward by the scaling properties of the Brownian motion and we find

1E (Lg>WP) — 3 as t — +oo,
W, —
tlE [1(S>K)(S —K)? (( :;Zt?t) )} —E (1(W1>0)( - 2wy +W1))
= 5ast = +oo

1E (Ls>W2) — 1if 9 > K, 1if =K, as t — 0,

E(S-KLUE) — 20 if §>Kast0,

1E((S K). Y0 )—>5if S=Kast—0,

and all these expectations are exponentially smad ik K.

In other words, the variance of the second variable is asymptotically 10 times
larger than the variance of the first one. The explanation is that each integration
by parts creates a weight of ord#r which builds up the variance. Let us record

for future purposes that the variance or more precisely the second moment of the
random variables entering the expectations in (3.14), (3.15) respectively behaves
like 5 ast goes to o wherec = ,5 respectively as goes to bo or ast

goes to Q and§ =K.

These considerations together with realistic Monte-Carlo simulations (see [1]
for more details) led us to propose in [1] a localized integration by parts. For
instance, in the case of the digital, we writg(x) = Lx>0) and we introduce a
“smooth” function (say Lipschiz) such that we have for sonae> 0,

x(X)=0if x<-a, xx)=1if x>a. (3.16)

For instance, taka = 1, y(x) = 3(x +1) if —-1 <x < 1.
Then, using again the integration by parts we find

A= DE0S§ —K)| =B K)] * LB (o V(S ~K))

S=5 S=%

A=E {x%s SORUCRIE] (317)

where ¢ = ¥ — xo. Notice that, because of (3.16), and x’ are supported in
[—a, +a]. We may now estimate the second momenik s — K) — ¢(S — K)%

ast goes to Q or ast goes to to. We begin with the analysis of the case
whent goes to Q. And we immediately observe that this second moment is
exponentially small provided we choogein such a way thag’ and ¢ vanish
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nearS — K. This is obviously possible i # K (choosea < | — K| for
instance...). If S = K, we choosey such thaty(0) = 1/2 and we obtain easily

2
E ({x/(s —K) - (S —K)‘;‘f} ) - 4012”0(3)

thus dividing by two the size of the second moment.

We now turn to the case whan— +oo. We then picka = 1, x; satisfying
(3.16) witha = 1 such thaty;(0) = 3 and we choos@ =t, y = x1 (). Then,
one checks easily that

W, ) 2 1
{X/(SK)(ﬁ(StK)Ut} ]t%% as t goes to oo .
t

Let us emphasize the fact that the preceding choices fand x are simple
illustrations of the variance reduction induced by the localization approach i.e.
by the use of the integration by parts around the singularity (I&re, K). In
terms of variance, the above choices lead to an asymptotic variance reduction by
a factor of the order 4. It is precisely given BF=%).

One can perform a similar analysis for the gamma of a call. We now assume
that y is at least of clas€ ! and satisfies in addition to (3.16)

+a
/ Ydx = a. (3.18)

—a

X
We then introducep = / x — xo dy and we write
—00

&2 "
A= SSE(E-KW| =E(X(E-K) - E(S — k)

882

=S S=S

hence
A= (s -as st (3.19)

Then, we immediately observe thBt= E {(X (S —K)—¢(S —K)X i ) ]

is exponentially small as goes to Q if y and ¢ vanish nea§, — K and this

is certainly possible i # K since¢ andy’ are supported in-fa, +a] in view

of (3.16) and (3.18). Next, if = K, we again choosg such thaty(0) = % and
we find thattB goes tozg2 ast goes to Q. And one can make a similar analysis
in the case wheh goes to +o.

The first general observation that we wish to make concerns the usefulness
of this localization method. We have seen how the variance can be significantly
reduced and this theoretical (by a simple asymptotic analysis) evidence is con-
firmed by the numerical examples in [1] - that show in fact an even more dramatic
speed up of the Monte-Carlo simulations.
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We also wish to point out that, although the preceding elementary analysis
was performed in the trivial case of a Brownian model for the underlying asset,
this localization trick, in conjunction with Malliavin integration by parts, should
always be used for practical Monte-Carlo simulations and for general models. In
particular, in the case of Black-Scholes model that is when the underlying asset
is a lognormal process, the above considerations immediately adapt and we have
for instance ifS, solves

dS = oSdW; +bSdt , fort >0,

the following expressions

%E (Ls>) ; E (X’(S —K)=(x = x0)(& — K)O_tV\g)> (3.20)

S=

82
FrE(E ~K09)|__

“E (x”(s —K) - o(S - K)sozlat (‘;Vf W j_)) (3.21)

Let us also mention in passing that the previous asymptotic evaluation also adapts
trivially to that case.
We conclude this section by a general remark on Brownian expectations.

Remark 3.3 We wish to point out here that if we are interested in computing by

a Monte-Carlo simulation an expression of the fdetip(W;)) for some function

o, then it may be of interest, in order to reduce the variance of the random
variable whose expectation is the desired quantity, to reviife(W;)) using

the Malliavin integration by parts at least on piecesg@¥\;). More precisely,

we may write formally (without bothering about the mathematical conditions that

may be needed) ip(x) = ¢1(X) + Xp2(X) + ©3(X), ©3 = P
E (p(Wh)) E [p1(W0)] + E [02(We)WH] + E [p3(Wh)]
E W] +(E [000)] + E |oa0o) |

E | oa(W) + tp(we) + qzsg(wt)vﬂ .

And we may want or need to reiterate such manipulations on each piece.

4 Conditional expectations

In this section, we present a new application of Malliavin calculus to the represen-
tation of conditional expectations. We shall derive representation formulas which
are explicit enough to be computed by Monte-Carlo simulations in a straightfor-
ward way. In Sect. 4 below, we first show why such formula should exist and
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in order to do so we follow the same line of arguments as in Sect. 2. Next, we
show in Sect. 4.2 how it is possible to obtain the desired formula from Malli-
avin calculus and we work out some examples. Sections 4.3 and 4.4 are then
devoted to some particular applications that are relevant for numerical Finance:
in Sect. 4.3, we explain how one can use a single set of sample paths emanating
from a fixed position to compute the price of a European option at all points and
all intermediate times between the initial time and the maturity. We present some
numerical examples. Finally, in Sect. 4.4, we develop conditional expectations
involving one component of a multidimensional “state process” and apply this
approach to the computation of quantities that are relevant for the calibration of
stochastic volatility models.

4.1 Conditional expectations via the densities

Exactly as we did in Sect. 2, we consider general conditional expectations of the
form

E [¢(F)/G =0] (4.22)

whereF is am-dimensionalZ4-measurable random variablg, is a scalar7 -
measurable random variable ands a Borel-measurable function onMRwith
appropriate growth at infinity, say at most polynomial if we assume that all
moments ofF (and G) are bounded. Of course, the above expression does not
make sense for arbitrary random variablés @) and we need to assume, in
general, that the law ofH, G) admits some smoothness (which is made precise
below). At least formally, the above expression may be writteR f&(F )5o(G)]

E [50(G)]‘1 and we wish to explain now why there exists in general a weight
such that we have for alh

E[¢(F)H (G)n]

E[¢(F)G=0] = E[A (G)r] (4.23)
whereH = 1y-0) +C, Cc € R is arbitrary. Of course, (4.23) is equivalent to
E[4(F)oo(G)] = E[¢(F)H(G)n], forall ¢ . (4.24)

This is indeed the case as soon as the joint lawFQfQ@) admits a density
p(x,y) (x € RV, y € R) such that its log isC* (or even Lipschitz) with a
differential which grows at most in a polynomial way at infinity (for instance).
Indeed, we may then write

E[¢(F)do(G)] / @(X)do(y)p(x, y)dxdy

- / / 6() H (y)f)—;’(x,y)dxdy

/ ()M (¥) do(x.y) p(x.y) dxdy

hence (4.24) where = o = qo(F, G) andqo(X,y) = % ‘9—5 = —6% logp.
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Remark 4.1 Of course, if we assume th@t takes its values in R(p > 1) instead
of being scalar, a similar manipulation may be made replacing the Heaviside
functionH by any functionH such that

do = P(Dy)H

whereP (Dy) denotes, as usual, any differential operator with constant coefficients

determined by a polynomid. Then, go(s,y) = %P(—Dy)p. For instance, we

may choose(Dy) = - ... 5 andH = Ly sovi<i<p).

Remark 4.2 Let a be aC? (or even Lipschitz) function on IR x R such that
a(x,0) =1 for allx € R™. Then,d = ady and we see that we may replage
in the preceding derivatives by = —%%‘;") =ag — %3 = —a% log(ap) if a is
positive).

The last elementary observation we want to make in this section consists in
using the smoothness af (provided we assume it) and write

E (¢(F)d0(G)) = E [¢(F)N(G)m1 — ¢'(F)h(G) ] (4.25)

for some weightsry, mo. This is indeed possible at least when we assume, as
we did above, some smoothness of fodndeed, we look forr; = q(F, G) and
m =r(F,G) and we write

E [6(F)H (G)m1 — ¢/(F)H (G)ma] =

/ {o0COH (Y)a(s,y) — ¢'()H (¥)r (x,y) } p(x, y)dxdy
J[ oo {asom}p oy

E [6(F)0(G)]

provided we request that andr satisfy

10 0
+= — = o=——( . 4.26
a+s ax (P = do ay(oglo) (4.26)
Remark 4.3 Of course, in the above formulay (resp.m; and x,) may be re-
placed by more general weights. For instance, in (4.24)nay be replaced by
any m such that :E [r|o(F,G)] = m. And, exactly as in Sect. 2y, is among
all such weights an optimal one in terms of variance.

Remark 4.4 In view of the multiplicity of choices (of or of r ...), a natural
guestion is to decide whether there exists a particular choice that minimizes the
variance or equivalently the second moment of the random varggblgH (G)n

(or ¢(F)H (¢)m1—¢'(F)H (¢)m .. .). Then, if we consider for instance the question

of the selection of an optima and we choosél (y) = %sign(y), we are then

led to the following minimization problem : minimize, over ax,y) with
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appropriate growth at infinity and such thafx,0) = 1 for all x € R™, the
expression

2 oa 2 _
E (o) {a(F,G)qo(F,G)ay(F,G)] =

_ 2 _oda, o
= [ 20rax | aylatey)antey) - G O pocy)

We then claim that an (in fact the, at least whmloes not vanish. .) optimal
a is given by

&x.y) = b(x) ( /y - p(x,z)dz) p(x,y)

+o0 -1

whereb(x) = p(x, 0) (/ p(x,z)dz) . Indeed, one can check easily teat
0
solves the associated Euler-Lagrange equation

0 0
(8y+qo) p (E)yq0> a=0,on R"xR
and the above minimization problem is convex. Notice that the weight ~—
g(F, G) associated t@ is trivial namelyw = b(F) and we have of course

E [2(F)do(G)]

/ SP(x, 0)dx = / B() Ly ()P(X, y)dy
E [6(F)H (G)7] .

However, such a choice heavily depends upon the usg ahdH while (4.24)
and ((4.25) with the choices made above hold in fact whenever we refydne
v andH by ¥ with &' =,

4.2 Conditional expectations in Malliavin calculus

The elementary considerations developed in the previous section are of course
theoretical since, in general, the joint lgwx,y) of (F,G) is not known. Once
more, they only explain why weights likeor (71, 7o) should exist. We shall now
show how explicit or at least computable weights can be obtained using Malliavin
calculus. Exactly as in Sect. 2, we then need to assumd-thad G are smooth

in Malliavin sense i.e. (for instancé), G € L?(£2), DiF, DiG € L?(£2 x [0, T))

and thatD;G is non degenerate. We thus assume that there exists a smooth
processy; € H?! such that

.
E [/ D\Gu dt|o(F,G)| = 1. (4.27)
0

Whenever this is possible, one may simply choose D%G.
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Then, we have, for ang?! function ¢ (or locally Lipschitz...) such that
¢ grows, say, at most linearly at infinity and for any Heaviside-like function
H(y) = Ly>0) + ¢ with c € R, the following representation formula

Theorem 4.1 Under the above assumptions, we have

T
E |:¢(F)H (G)o(u) — ¢'(F).H (G)/O DtF.utdt]

E [¢(F)|G=0] = E[H (©G)oW)] (4.28)
Corallary 4.1 If there exists u; satisfying (4.27) such that
T
E U D¢ Fuy dt|a—(F,G)] =0, (4.29)
0
then we have
E[6(F)iG =0 = ELEHCIwW) (4.30)

E[H(G)d(u)]

and this formula is valid by density for any Borel measurable function ¢ with,
say, at most linear growth at infinity.

Proof of Theorem 4.1 The formula (4.28) is at least formally completely obvious.
We write E [¢(F)|G = 0] = E[¢(F)d0(G)] /E [60(G)]. And we have

i
E[6(F)0uG)] = E [ /O D {(6(F)H (G)) utdt]

—E {(qﬁ’(F)H (G). /OT thutdt]

T
E {gb(F)H (G)d(u) — ¢'(F)H (G)./O DtFutdt] .

In order to justify this formal computation, we go back to a definition of such a
conditional density and we write

o E[#(F)1er(G)]
Elome=0=ln —ern = o)

Then, we may write

.
E [¢(F)1(—c+¢(G)] E { /O Dt {o(F)H(G)} utdt]

;
—E {¢>’(F)H€(G)./0 DtFutdt]

i
E[¢(F)He(e)6(u)—¢’(F)HE(G). /O DtFutdt] ,
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whereH.(y) =cify < —¢, =y+etcif —e <y <e¢ =2+cif y > e. We then
conclude easily upon letting go to 0. since%Hs(G) converges a.s. toH(G)
(recall thatP(G = 0) = 0). |

We shall give in the next sections some specific exampleg which allow
to compute or determine in a computable way the Skorohod inté@gual

Remark 4.5 The existence ofy; satisfying (4.29) in addition to (4.27) means that
DiF andD;G are not “parallel” or in other words (see Appendix B) tiratnd
G are not correlated. Indeed,Ff is a (smooth) nontrivial (nonconstant) function
of G, such a process; clearly does not exist sindg;F is proportional toD;G.

Remark 4.6 The above approach can be extended to situations where we condi-
tion expectations with respect to vector-valued random variableSne simply
iterates the above argument choosing for instance “integrating” proaglssesh

that

T
E|:/ DthUtidtO'(F,G):| = ¢ forl<i,j<m
0

requires, of course, thab(, . . . , Gy,) are not correlated i.e. thdd(Gy, . .. ,DiGn)
is a free system or, for instance, that the Malliavin covariance mai;D;G;)
is “invertible” enough.

Remark 4.7 With the above choices af;, we also have for “any” functior)

E[o(F)¥(G)] =E [¢(F)¥7(G)5(U) - ¢'(F).2(G) /O ' DtFutdt:|
where¥’ =+, and thus ifu; satisfies (4.29)
E[o(F)¥(G)] = E[o(F)#(G)i(u)].
This equality shows in particular that, if we set= 6(u)
E [7|o(F,G)] = o

wheren has been determined in the preceding Sect. (4.1).

And, exactly as in Sect. 2, one may check thgt= 5(u®) whereu? =
E [Diqo(F, G)|.7%] and thatu®, in general, satisfies (4.27) and (4.29). Indeed, we
have for allp andvy

.
E [¢(F)Z(G)s(u%)] = E [ /0 Dy {#(F)¥(G)} uPdt}

T T
=E { / DiFuldt).¢ (F)¥(G) + p(F )i (G)( / DtGutodt)]
0 0

Hence, we have for alp and v
T
E {gb(F)w(G) [1 -E [/0 DtGutOdt|a(F,G)]} }

.
= E{gb’(F).W(G)E UO DtFutodt|o—(F,G)]H
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T

or %(q,p) =divy(rp) on R" x R, if 1 — E [/ D:Guldt|o(F,G)| = q(F,G)
0

and .

E [/ D:Fuldt|o(F,G)| =r(F,G). Therefore, ifgp andrp vanish at infinity,

0
thenqg=r =0.

Finally, exactly as in Sect. 2 is among all weights the one that minimizes
the variance ofp(F)¥(G)r.

Remark 4.8 As mentioned before, our weights allow to repladg ) by any
couple ,¥) such thaty’ = 1. One may use this fact in order to localize
the integration by parts as we explained in Sect. 3. Indeed, we may consider

a smooth bump functionyy supported in fa,+a] for somea > 0 such that
+a

wdy = 1 : take for instance)y = % 1_a+a. Then, we set) = jp —
—a
1o and choosel such that¥’ = ¢ and ¥ has compact support in-fa, +a]
y
(W(y) = 7/ Yo(z)dz +H (y)>. Then, we may write

E [¢(F)do(G)] = E[¢(F)vo(G)] + E[¢(F)¢(G)]
= E[o(F)[¥o(G) +¥(G)r]] .

Remark 4.9 At this stage, we wish to mention in passing that everything we did
in Part | [1] or that we are doing here can be adapted to situations involving,
in addition to the Brownian motiolWV, a jump process like a Poisson process
provided it is assumed to be independeny\of

4.3 Application : Global pricing and hedging of a European option

In this section, we present the first application of the approach developed in the
previous Sects. (4.1-4.2) to Numerical Finance. Roughly speaking, we show that
the representations we obtained above allows to determine the price and greeks
of a European option for alf (initial position) and for allt; € (0, T) using

only the process that startstat= 0, § fixed. In other words, one can determine
the solution (and its differentials) of a diffusion parabolic equation at all points
and at all positive times using only the trajectories of the process that start
initially at a fixed position. In some sense, this completely modifies the general
understanding of the use of Monte-Carlo methods for the computation of the
solution of diffusion parabolic equation or of the price (and hedges) of a European
option. Indeed, one would usually think that Monte-Carlo methods compute the
solution at a single point (in space-time) while PDE numerical schemes compute
the solution everywhere (at least on a predetermined grid). Our approach shows
that this is not the case since one can compute (in a completely parallel way) the
solution everywhere by a Monte-Carlo method involving a single generation of
trajectories emanating from a given point!
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We first explain how one can derive closed form formulas and, at the end of
this section, we present a numerical example for the “global” computation of a
European option by a Monte-Carlo Method.

We thus introduce some notation. The underlying process (contingent asset)
S is assumed to solve

dS =o(S)dW; +b(S)dt, S=S att=0, (4.31)
and we consider foral > 0,S € R (or S > 0)
V(S,t) = Es[¢(S)e "]

where ¢ is the pay-off, a given measurable function (with at most polynomial
growth at infinity),r > 0 is the interest rate (assumed to be constant to simplify
the presentation)(S) is the volatility. And we assume thatandb are smooth
functions ofS with ¢’ andb’ bounded. We also assume tlrais non degenerate
(c? > 0). Finally, we denote byEs the usual expectation involving which
starts att = 0 at the pointS (i.e. solves (4.31)) in order to emphasize the nature
of the trajectories we use.

Specific examples include the Brownian case d.esconstanthb = 0 or the
lognormal case i.es(S) = ¢S with ¢ > 0 (and a trivial degeneracy & = 0),

b(S) =bS andb € R.

We also wish to point out that we only consider here the one-dimensional
situation in order to simplify the presentation even though everything we do may
be adapted to multidimensional settings.

We next recall thaV solves uniquely the following linear partial differential
equation

il
0S?

aiv — }02(5)

oV
% 2 —b(8)£+rv—0 for SER, t>0

V| = ¢(S) for SER.
t=0
Finally, we recall that the Markov property immediately yields the following
formula forall0<t < T and forallS, S € R

Es [6(S1)|S=S] = V(S, T —t) TV,

We may thus fixS§ € R (S > 0 in the lognormal case) and > O (the
maturity of the option) and we want to compute or determine in a “com-
putable” wayEg, [¢>(Sr)|3 = S} together with various differential like, for in-
stance ZEg, [¢(Sr)|S = S] i.e. the delta.

We then begin to apply the method introduced in the preceding section (4.2)
in the case whem is smooth. We then choose = %& 10.n(S) where&
denotes the tangent flow defined by

dfs = O”(%)gsdws + b/(&)ﬁsds, §o=1.
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Recalling thatDsS = 0(&_,)% 1o, (s), se see that (4.27) holds. Therefore, we
find
Es [¢(S)IS =S| =
T
= By {sb(Sr)H(S —S)o(u) — ¢'(SrH(S — S)'/O DsSr ust}
= Es [0S (8 - 950 - (sIHGE -9

and we have

R 1/ & D&
ow) = tft/o a(&)dw“t/o (& @ =

There remains to determili®¢;, a computation which we isolate in the following

Lemma 4.1l Let ¢; = % i.e. the solution of the following SDE

4 = {'()G +o" ()} e + {D'(S) +b ®)Ff ot =0, (4.32)

Then, Ds; = { 72)G +0'(S)6 — o(S) § &} Loy L
Admitting temporarily this fact, we finally obtain the
Theorem 4.2 We havefor all S, t € (0, T]

Es(#(Sr)[S =9)
=Eg {(b(S()H (S —S)m—¢'(SHH(S - S)Z] (Es[H(S —9)) ",

where 7 is given by

— i ' fs Q t , ES _é
T ([t e gs) . e

Proof of Lemma 4.1 Applying the usual Malliavin calculus rules, we find

{ d(Ds&) = 0’(S)(Ds&)dW, + 0 (S)(DsS)& AW, +

+ b'(S)(Ds&)dt + b (Sr)(DsS)&: dt, fort >s,

with Dg&| = 0'(S)&. Hence, we have

t=s

o(S)

2dVV+
g S

d(Ds&) = o (Sr)(Ds&)dW + 0 (S)

7(S)

S eldt, fort>s
&s

+b'(S)(Dsér)dt + b (S)
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Therefore,p; = Ds&; — SS) (; solves

der =0'(S)erdW +b'(S)erdt, for t>s

and thus
Yt = %052 = (UI(Ss)fs 0’(585) ) fs
=786 - TP

O
If we do not want to use the smoothness¢gfwe need to apply Corollary
4.1 and thus we choose

s 1 l
Us = O(és)f { Loy(s) — 1(tT(S)}

so that (4.27) and (4.29) hold with this choice.
Then, we set

.
7 =6(u) = é ( ft afi)dws — T—ft/t Uf;)dws> +

t
Q 1 UI(Ss) = g
EYE [ (e o tft/o e &

and we deduce from Corollary 4.1 the

Theorem 4.3 We have for all S,b € (0, T)

- S)m
Es (4(S1)/S =) = E%E(iﬁ)(g(fsm) ) (4.35)

(4.34)

with 7 given by (4.34).
Remark 4.10 If we wish to compute the delta namegg Es (¢(Sr)|S = S), we
see from the previous formula that we only need to compute

)
Eq, [6(S1)0s(S)7] = Es, /0 De {6(SH (S — S)} .uswds]

)
= Es, {éﬁ(ST)H (S - S)r? — $(SHH(S — S) /0 usosﬂds}

and one can comput@sr from the explicit formula (4.34). It involves however
tedious but straightforward computations that we do not wish to include here and
we shall only mention them in the context of the examples that follow.

We next detail the preceding formula in the Brownian caSe=(& + oW,),
and in the log normal casés = Soexp{avvt — ("72 — b) t})
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Example 4.1 The Brownian case.
In that case&; = 1, ¢ = 0 and we obtain

 [G(SHH(S — S — ¢/(SHH(S - )]
Es [H(S —S)i%]

Es [(SH)W — tod/(ST)H (S — 9)]
Es [H(S — S)W]
as a consequence of Theorem 4.2, and by Theorem 4.2
Es, [#(SH (S — S)2(% — Y4=1%)]
Es [(8 - 9)2(% - V“)]

_ Es [4(SDH (S — S)(TW, — tw)]
Es[H(S - S)(TW — tWe)]

Es(0(S1)[S =9) =

Es (oSS =S) =

Example 4.2 The Iognormal case.
In that case&; = and (¢ = 0. We thus deduce from theorem 4.2

ES>(¢(ST)\3 =)
Es, [0(SDH (S — S)(toS) *W +10) — ¢/(SDH(S - 9)F |
Es, [H(S — S)(teS) (W +10)]
Es, [6(SH (S — S)S™"(Wk +10) — to¢/(SH(S — S)SrS "]
Es, [H(S — 98 "W +10)

And, similarly, we deduce from theorem 4.3
Es, [#(SH S - 9) {(05) (% — M=) + 571}
Es, [H(S - 9) {(05) (% — =) + 571}

Es(¢(Sr)IS =9) =

Es, [0(SDH(S — 9§ (M= + 1) |
Es [H(S - 95 (MM +on)|

We conclude this section by a brief presentation of a numerical illustration of
the preceding formula. We performed simulations for the BS model and computed
the conditional expectation by the previous formula on a predefined grid. We
compared the results obtained by these simulations and our filtering formula
with the exact price given by the Black-Scholes formula for values of the grid
up to one standard deviation from the money.

More precisely, we have chosen a grid of sidex M whereN,M stand
respectively for the number of steps in time and spacetilet... <ty and

X = {Xij =Soexp<<r —022> t; +iUAXi>, AX; :\/5}7
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the grid on which we evaluate the conditional expectations.K dte the num-

ber of trajectories (starting frorfy)) we have simulated, we have computed the
following terms and compared them to exact prices given by Black-Scholes for-
mula.

Es, (e7"T79(Sr —K)i|S = %) ~

(Tt it )

K
E37(8r00 — KIH(SK) - x)§ 0 (0 —

e (M-t k=0

TVVt(k) tWr(k)

— at)

& Z H (1K) — %i)S (k)

k=0
This is a crude estimator. There are many variations of this estimator which
give improvements for this particular case. But we want to show the performance

of the formula without any statistical optimization.

16 T T T T T T T T T
— "hisgnu.txt’ ——
14 -

12 1

10 | — E

-1 -05 0 05 1 15 2 25

Fig. 1. Histogramme of relative error (%)

For the simulations, we used a very simple method of generation of low
discrepancy trajectories, the so-called brownian bridge method using Sobol points
at timesT /2, T.

We present the results in the Figs. 1 and 2.

One sees that the filtering formula is quite accurate close to the initial time,
and becomes less efficient when the time goes toward the maturity. The formula
is also better around the money. It gives a larger relative error out of the money.
This means that the number of trajectories is too small in these areas.

These are crude numerical results. We will show in a forthcoming paper how
to improve these simulations in a way which will allow to solve the problem of
American options with a satisfying accuracy.
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Fig. 2. Relative error of filtering formula for BS model with paramet&s= 100, rater = 0.1,
volatility o = 0.1, maturityT = 1 year. We use some low discrepancy Monte Carlo generation and
10000 trajectories

4.4 Application to a stochastic volatility model

The application we shall develop here is a prototypical example of the condi-
tioning of one component by another component of a multidimensional diffusion
process. We present here a particular example which is significant in numeri-
cal Finance for the so-called calibration of stochastic volatility models. We thus
consider a simple stochastic volatility model

d§ = ot SdWl+bSdt, $>0
_ 2 (4.36)

dot = aor dWfF+ Godt, 09> 0
wherea, 3,b € R and W, W?) are independent Brownian motions. The in-
dependence assumption is not essential for the analysis which follows but it
certainly simplifies the explicit computations that we perform.

In order to calibrate such models on market data, it is useful to be able to
compute

E [0f | Sr=S] (4.37)
whereT > 0 is fixed. And we refer to forthcoming papers for more details on the
financial application. This is indeed rather easy thanks to our general approach.

First, we notice thab,o1 = 0 sinceW! andW? are independent and that (4.29)
holds thus for anyu. Next, we observe that we have fob> s

d(DsS) = 01(DsS)dW! + b(DsS)dt, fort >s
DSS‘ = 0sS.

t=s
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Hence,DsS = 0sS. Therefore, we may choosg = ﬁ and both conditions
(4.27) and (4.29) hold. Finally, we compute

T1 DS
Tsr/ith T/o ot Sgdt

- 7/%+i
TS Jo o S

We have thus shown the following formula

™= 5(u)

Ot

E[H(sr—sosrl(ﬂ/o )

We conclude this section by a numerical illustration of the preceding formula.

We performed Monte Carlo simulations in the same spirit as in the previous
example. We allowed the maturiffy to vary between 0 and.® year and the
conditional spoS at timeT to vary around the forward of one standard deviation
for o = og constant. We computed the formula (4.38) by the standard Monte Carlo
estimator. We present the results in the Fig. 3.

We see that the conditional volatility is (as it should be) higher when condi-
tioning to values ofS; out of the money.

]
E {a%H(ST —g) ST +/ dW‘)}
E [02|Sr =S| =

(4.38)

0.0435 -

7
g ~;..~/"’"’££${{"'4/£’£I/’l"ll

.
A'Av.v <4
0.0405 K&

0.04

~
TSIV .‘,-aA

110

Fig. 3. Values ofE [cr% | Sr = S] for parameters = 100, rater = 0.1, initial volatility og = 0.2,
a=01ands=0.2

5 Anticipating Girsanov transforms
5.1 Introduction

In this section, we develop one more application of Malliavin calculus namely the
possibility of using anticipating Girsanov transforms. Before going into the math-
ematical details, let us first explain the heuristic idea behind our developments.
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Let us consider a European option whose pay-off vanishes when the contingent
asset at maturity does not belong to a certain interval. Then, all Monte-Carlo
trajectories that do not hit that region at maturity do not contribute to the pay-
off and are thus wasted. Therefore, it is natural to try to replace the underlying
process by another one with a greater probability of hitting the “target zone” at
maturity. This however means transforming the process or changing variables
and we then need to be able to compute the Jacobian of this transform. Let us
also observe that this transform is a priori anticipative since we should use the
value of the process at the final time i.e. the maturity.

If the transform were not anticipative, one could and may apply the standard
theory of Girsanov transforms that precisely does the job. Examples of appli-
cations of this type to Numerical Finance are presented in E. Fowtnal. [2]
for out of the money contingent claims (the transform is then determined by
the theory of large deviations) and E. Fo@mt al. [3] for stochastic volatility
models (where the transform is determined by a “constant volatility submodel”).
Both examples involve situations where the optimal transform (optimal since it
induces a zero variance) associated with importance sampling, namely the ra-
tio (delta / price) at each point and each time, which is of course unknown in
general, is approximated using a convenient asymptotic theory.

However, here, as explained above, we need to use the theory of anticipating
Girsanov transforms and we refer the interested reader to D. Nualart [6] and
S. Kusuoka [4] for a more complete presentation of the theory which involves
the “usual” Girsanov exponential together with an extra term which is really
a weighted Jacobian. Our main concern in the next Sect. 5.2 will be to have
explicit expressions for a class of transforms that covers our needs in the context
of Numerical Finance. Then, in Sect. 5.3, we briefly present some applications.

5.2 Anticipating Girsanov theorems for a terminal transform

Let T > O be fixed. We begin with a simple transformation defined by
dW, = dW +o(Wr)dt for 0<t<T, (5.39)

in other words, we consider the transformation on paths +— & where
D(t) — p(@(T)t = w(t). Here and belowyp is a Lipschitz function such that
the mappingv — @ is well-defined and bijective. This is obviously the case if
Tsupcg ¢'(z) < 1. And, in order to simplify the presentation, we shall always
assume that this condition holds. Finally, we only consider the one-dimensional
case eventhough everything we do adapt immediately to higher dimensions.
Then, we claim that there exists a measBrender which is a Brownian
motion and for allF € .7#

E[F) = € |F.exp(WeotW) - 5°0) ) (1-To/@) | (540)

WhereIE(W) =F (W), andE denotes expectation under Let us begin with the
trivial case wherd= = F (Wr).
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Then, we have setting=y — T(y)

EF] = [F@ _Zdz—/ Ew) inwz(l Ty

- [r® e I Ty

- E [F(Wr)~eXp (wTso(Wr) - ;soz(WTQ - T@'(WT»} :
More generally, ifN > 1, F =F(Ay,..., An), 4j = —Wi_yn, h=g,

then we write

|
e
/F(zl,...,zN) PRy

/[/:\(YL e »yN)(ZWh) N/2 eXp (_|y 2 (Zyl) h|2) Ddy

j=1

E(F)

N

whereD =det ¢ — ¢'(>__y))h &j), ¢ =1forall 1<i,j <N.
j=1

Hence, we deduce

|y\2 N T N
2
EF) = [ P gmyree <<Zy'> ’ (,Zlyj) 2 (2”)) Y

There remains to comput@ which is a consequence of the “classical’ matrix
lemma.

Lemma5.1 Let D = det@; — a ® b), wherea,b € RV. Then, D =1 (a, b).

Admitting temporarily this lemma, we conclude the proof of (46) since

N N
D=1-Nhy (Zy,-) = 1-Ty (Zyj) :
j:]_ j=l

Proof of Lemma 5.1 Many proofs are possible. A nice one consists in writing
f(b) = 1—det@; —a®b) wherea is fixed. Obviouslyf is smooth and by direct
inspection we check thd{0) = 0,f’(0) =a, f " (0) = 0. Next, since§; — a ® b)

(6j —a®c)=6 —a®b—a®[c(l— (a,b))] we deduce that we have

f(b)+f(c) —f(b)f(c) = f(b+c(l- (a,b))).
Differentiating twice this relationship with respect toand settingc = 0, we

obtain
a(l—f(b) =f'(b)(1-(a,b))
0 =" (b)(1 - (a, b))?
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hencef " (b) = 0 on R' andf is linear sincef (0) = 0.
Therefore, we deduce from the first equation th@) = (a, b). |

In fact the above argument extends to a more general transformation defined
by (w — @) where

Ot) —to(Ar,..., Ay) =w(t) forall te[0,T]

and Ei =) — o(ti_1), wheretg =0 < t; <tp < ... <ty =T is an arbitrary
partition of [0, T] and is a smooth function on iRsuch that — & is bijective.
And we obtain in place of (5.40)

E[F]=E [ﬁ.exp(ww(ﬁl, AN — ng(jl,...,ﬁN)) .
- (1 — 5 — ) ZE(A .. AAn))}
or in other words

E[F]=E [ﬁ.exp(wlrgo(ﬁl, AN+

T
- %@Z(A]_,...,AN)) (l_/ Dt@dt>:|
0

where we denote bﬁ the Malliavin derivative in the transformed Wiener space
(£2, P, W). This with a little extra work extends to a general transformation of
the form (v — &) where

(5.41)

5(t) — te@) = w(t) forallt e[0,T]

T
assuming thap is smooth, ¢ — @) is bijective and (- / 6t<pdt) Z0 a.s.
0

If we compare the above considerations with the literature we are aware of
(see [6], [5] and the references therein), we have changed notations and more
importantly we have isolated a special class of transformation for which the
Carleman-Fredholm determinant is computable (here, it is, up to various irrel-

T

evant changes of signs, ﬂ/ I5t<pdt)exp(\/\h<p — d(p)) where, as usualy
o}

denotes the Skorohod integral @f.

Remark 5.1 We have deliberately defined the paths transformations in an implicit
way in order to simplify the expressions of some jacobians. If we insist on a
more traditional formulation namely

dW, = dW + o(Wr)dt

or more generally -
dW, = dW; + dt

whereyp is a smooth function of paths (restricted tg TQ) then we may translate
the above results in the following way
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E[F]=E {ﬁ exp <<p\N—r - ;/92) <1 +/OT Dtgpdt)] (5.42)

whereF = F(W).
Finally, the multidimensional analogue of the preceding formula consists in re-

T T
placing eWr by 0. Wr, »? by |p|? and 1 +/ Di by det(l +/ Dt<pdt).
0 0

5.3 Applications

The first application we present concerns European options involving a pay-off
which vanishes if the contingent asset at matugitywanishes on the complement

of an interval K1, Ko] where 0< K; < K, < +0o. More precisely, we consider

E [#(Sr)] whereg is Borel measurable, bounded and supportecKin K]. For
instance, we may take

#(S) = (S —Ku)+ Ls<ky (5.43)

i.e. a call with a knock-out, or

#(S) = Lk,<s<ky) (5.44)

i.e. a digital with a knock-out. And we consider, in order to simplify the presen-
tation, the simple situation whei® = § + oW, + bt, o > 0, b € R (Brownian
case) or wher&§ =& exp W, + (b — %Z)t), o > 0,b € R (lognormal case).
We begin with the Brownian case and we note first th¢dr) = «(Wr) where
P(X) = ¢(S+bT +ox) is now supported inll;, L] wherel; = K=2=bT (j = 1 2).

We then choosé = S5k2, (x) = —IR if x < —R, = 60x if x € [-R,+R], = R

if x > R wheref € (0,1), R > 0. We shall use the following transformation

dW = W — Tp(Wr L)t

sothatWr —L = Wy — L — p(Wr — L).
Then, applying the results of the previous section , we have

CE0s) = E@MW)) =
= E [0(Wh) exp(— 2o (Wr)Wr — o2(W)) (1 - ¢/ (W)]

In order to estimate what we gained with this transformation, we observe that
¢(Sr) vanishes ifSr ¢ [Ky, Kz] and thus the probability of hitting that interval
at timeT is given by

Lo g-lyf2/2T

P Ly, L)) = A
(Wr € [Ly, L2]) L JzTTy’

(5.45)
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while ¢(Wh) vanishes ifWr ¢ [Li1, Lo] and thus the probability of reaching that
interval at timeT is given by

PWr—oWr —L) €Ly, La]) = P(L+R<Wr <L, +0R) +

+ — IR < <L-R)+ - - '
PlLi-0R<Wr <L-R) P<WT€[19 1-61-9 19])

In particular, ifR > 1%9 max(L — Ly, Ly — L), this probability reduces to
Lo—L1 Ly—1L4
P (wee |39 - 7a-9))
which is obviously greater than (5.45) and in fact goes to # gees to 1.
In the lognormal case, the analysis is the same defining®ply, Lo, by

500=0 (expex+b-51).

1 Ki, o2 o
L = - (Iog(%) + (7 — b)T) , fori=12

Appendix A
A PDE interpretation for the representation of the delta

Let us consider an expectation of the form
Elp(Xr)] = V(x,T) (A.1)

where ¢ is a Borel measurable function on R with at most polynomial growth
at infinity, T > 0 andX; is a non degenerate process given by

dX, = o(X)dW, + b(X)dt ,  Xo =X (A.2)

whereo, b are smoothg? > 0 on R, ¢’,b’ are bounded on R.
As is well known,V is the unique solution of

%—\:—LV:O on Rx (0,+o0), V| =¢ on R (A.3)
t=0

wherel = %0286722 +bZ.

Let us immediately emphasize the fact that we consider here only a one-
dimensional setting although everything we discuss below adapts trivially to
higher dimensions.

Our goal here is to explain the partial differential equation interpretation of
various representation formula for the delta i.e. %r(x, T). The first one is the
following classical formula obtained by differentiating (A.1) with respeckto
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This, of course, requireg to have some smoothness like, for instantégcally
Lipschitz and¢’ grows at in a polynomial way at infinity. We then have

oV
&(th) = E[¢'(X)&] (A.4)
where¢; solves
dé& = o' (X)&dW + b/ (X)&dt, =1 (A.5)
The PDE interpretation of this formula is clear. We introduce a diffusion
process X, Y;) whereY; solves
dY; = o' (X)YedW, +b'(X)Yedt, Yo=Yy (A.6)
so thatY; = y&. And, obwously (X, 1)y =W(x,y,t) should be the solution of

W

at — 29 axz

AW 1 _29°W oW 1 W
Gt 2005 —bG = (YA G — o'y &

—p oW

y%F =0 on R x (0, +c0)

(A7)

W| = ¢(x)y on R.

t=0

This can be checked directly by differentiating (A.3) with respect tand mul-
tiplying by y. We then find indeed
oW 0 62V OV
0?W . MLW N 0’°W
Oxoy y oy “ ay?

for any function« since W is linear iny. In particular, we observe thay/
solves any parabolic equation of the form (A.7) where we repleé)®y? by
any functiona > 3(0”)?y?

Therefore, we can even make such an equation uniformly parabolic by choos-
ing a > 3(o’)%y2.

We now turn to representation formula deduced from Malliavin calculus (see
[1] for more details). And we begin with the simplest case namely the Brownian
case § =1, b =0). Then, (A.3) reduces to the standard heat equation

oV

S éAv = 0. (A.8)

And, we have tVV (x,t) = E[o(x, W)W].

LW +yoo’

Once more, the analytical interpretation of that formula is clear : we solve

ouU ~ ~
E—EAV =0 U| =x¢ (A.9)
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and the preceding formula simply means that we have
tVV (X, t) = U (x,t) — xV(x,t) . (A.10)

Indeed, we have

0 1 0 1
<at > )(U—XV)—VV <8t 2A)(tVV)

while U — xV

= tVV' = 0. In other words, the crucial fact here is the

t=0 t=0
following property of the commutation ofA and the multiplication operator by
X namely
[A,x] =

For a general diffusion proceXs, the interpretation is more elaborate. Indeed,
let us recall first the formula

(x t) = E[ (%) / (Xs)dws] . (A.11)

We then introduce a diffusion procef%, Y;, Z;) whereY; is defined as above
(i.e. Y; = y&) and Z; satisfies

dz, = X )dV\/t, Z=12 (A.12)

Then, the above lationship (A.11) can be interpreted as
t({;—\;(x,t)y = F(x,y,z,t) — 2V (x,t) (A.13)
whereF(x,y, z,t) is given by
F(x,y,z,t) = E[o(X)Z] (A.14)
and thusF solves the following degenerate parabolic equation

OF — 1,2(y)9F Iy )2y2 O°F 4 1 5°F
Tt = 3020 5z + 30" (Y25 éag(x)ﬁ“‘

2

(A.15)

+2 2 I +b(X) 2 + b (X)y 5

F = o(X)z .

t=0

The relationship (A.13) can be checked directly by writing down the equation
satisfied byG(x, y, z,t) = t 2£(x, t)y +2V (x, t). Indeed, differentiating (A.3) with
respect tax and multlplymg byty, we obtain easily
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00 | VLG 0B Y v
at ox Y27 a2 PPax TV ke TP
_ 1pPG 06 PG 06 OV
- 27 o TPax Yl X0y y 8y Yox
_ 1,0%6 06, PG . 0G, 0°G
2 a OX y Oxoy y y yaxaz
and thus
5 = 10259 +DIS +yo' £ 4y S5 +
(A.16)
ty axaz 8y2 +ﬁ 822 Bygz
for any functionsa, 3,7 since dy2 = ‘?;? = g’ygz = 0. In particular, we
may choosen = 3(0’)%y?, 8 = 1% and~y = Zy? in which case (A.16) re-

duces to (A.15) and we conclude thit = G since the equation (A.1) is
degenerate parabolic if and only if > 3(c’)%? 3 > 1y Iy — y2%’|2 <

522
(a = 3y?) (8- 3%).

Let us observe that (A. 13) also holds whérsolves (A.16) instead of (A.15)
with o > 3oy, 6> 3%, (1-¥22)" < (@ - oA - ). In par-
tlcular (A 16) can be made uniformly parabolic provided we take é(a’)zy ,
B> 3%, (1 Y22 < (a - 3B - 15).

We conclude this appendix by giving the PDE interpretation of the classical
Girsanov transform for diffusion processes. We mention in passing this fact since
we are not aware of any previous reference on that subject and the interpretation
follows the same lines as above.

We thus introduce another diffusion proceéssolution of

dX; = o(X;)DW; +b(X;)dt (A.17)
t _ t _
and we setv! = exp{/ o 1(b — b)(Xs)dWs — %/ lo~(b — b)z(Xt)ds}.
0 0

Then we have
V(x,t) = E [¢(XOM{]. (A.18)

Once more, we introduce the diffusion proceXs, M;) whereM; is defined by
dM = o~ (Xe)(b — b)(X) McdW , Mo =m (A.19)

so thatM; = mM. Then,W(x, m,t) = E [¢(X;)M;] solves

G2PW %J*Z(b _ B)ZmZ% +
(A.20)

+ (b — b)ym 20+ p W Wt O:¢(x)m
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while W = V (x,t)m solves

(9W_1 28W BW 8W E)W
at — 29 ta +(b— b)mdxdm+bdx’

ot 2 ox2 A ome
w ‘ = ¢(x)m
t=0

(A.21)

for any functiona and thus in particular for = 10=?(b — b)?m?. Since (A.20)

is degenerate parabolic, we conclude that W.

Let us once more remark th&/ = Vm solves (A. 21) for anyw and that
this equation is degenerate parabolic if and onlw it a—z(b — b)m? (and
uniformly parabolic ifa > Jo=2(b — b)®m?) ..

Appendix B
Functional dependence and Malliavin derivative

As is well known, the covariance provides a tool to analyze the linear correlation
between two random variablés and G. We briefly propose here a tool based
upon Malliavin derivative to analyze the “nonlinear” correlation between two
random variable¥ and G. We assume for instance th&t and G are .74 -
measurable and are smooth, ddy for instance, Without loss of generality, we
may takeT = 1 by a simple time rescaling. Then, i = ©(G) for some, say,
Lipschitz ¢, we have obvioushDiF = ¢'(G)D(G a.s. and thu®;F and D;G

are a.s. proportional as functions tofThis leads us to consider

2 1 1
/(/0 \DtF|2dt)(/0 DtGZdt>

(B.1)
where we agree that this ratio is 1DtF or D;G vanishes identically on [@].
Obviously, C(F,G) = 1 if F is a function ofG (and conversely)C(F,G) =
C(e(F),¥(G)) for any ¢, which are Lipschitz (for instance) and thus, by
extension and density; (F, G) is constant orv(F) x o(G).

1
C(F,G) = supes / D;FD; Gdt
¢ 0

Let us also mention th& (F, G) = 0 means thab;F andD;G are orthogonal
in L?(0,1) a.s. and the relationship between that property and the independence
of F andG has been studied in A.&Istiinel and M. Zakai [9], [10].

In order to form an idea of what does, it is worth looking at the case
whenF = QD(\NtUVVtz 7\Ntl""an*VVtm—1)* G = 1/’(th~-~,Wl - \Ntm—l)
Wherem >2,=0<t; <t < ... < tm =1 andy, ) are smooth. Then,

Diy = Z ( ), .1)(t) andDyep = Z )1 _)(t), so that

B aw T oY
C(F.G)= sup 'Zhafan (Z' )(Z a>q>

i=1
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with hy =t —t;_;. In particular,C(F, G) = 1 means tha¥/p andV+ are colinear
at each poink € R", which is the usual criterion for a functional dependence
betweeny and. If Vi vanishes at some point, then we cannot deduceghat
is a function ofy as is well-known : consider for instange= Ix; — $xZ + 3x2,
p=ypon{y>0tU{yY <0,x>0} p=00n{y <0, x, <0}.

For simpleG, it is possible to conclude th&t if G-measurable iC(F,G) =
1. First, if DiF = 0, and thusC(F,G) = 1 for anyG by convention, then by
Clark-Ocone formulaF is constant and thus is indeedG measurable for any
G.

Another example consists in taking = W, thenC(F,G) = 1 means that
D:F is independent of a.s. and we claim that this implies thé -measurability
of F. A simple proof consists in using the following one-parameter family of
paths transformation$, (6 < [0, 1)) defined by

(Tow)(t) = (1 — O)w(t) + Otw(1)

which is clearly bijective and falls within the class of anticipating Girsanov
transforms studied in Sect. 5. Then, one shows easily by density (using for
instance the anticipating Girsanov theorems) that, for 6acto, 1], FoT, € H?!

and

1
Di(FoTy) = (1 — 0)(D:F)oTy + 0/ (DsF)oTyds = (DF)oTy
0

sinceD:F is independent of. And, thusD;(FoTy) is independent of.

Clearly, there just remains to show tHadTy is independent of. In order
to do so, we fixfp € [0,1) and we consider a regularization of the paths : for
instance, letN > 1, let WN = Wi + (t — ) (W% fw%) if £ <t <kl
0 < k < N — 1. Then, arguing once more by density, we obtain Hosmall
enough

C?—h (Fngo) (w +h(WN — tw(l)))

1 1
= / (Dt FOTQO) dVVtN - (/ Dt FOTQO dt) Wl = 0
0 0

Hence, lettindN go to +oo, FoTy, (w + h(w — tw(1))) = FoTy, for h small enough
i.e. FoT, = FoTy, for 6 close enough tdp, and we conclude.

Let us mention that this argument can be adapted to more general situations
whenD;F = a(w)b(t) for some deterministic functioh, but we shall not pursue
in that direction here.
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