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Estimation of the Libor Market Mode!:
Combining Term Structure Data and Option
Prices

Abstract

Previous empirical work on term structure models has estimated and tested these models on
the basis of either interest rate data or derivative price data. In this paper, we anayze the
benefits of combining these two data setsfor estimating and testing multi-factor Libor market
models. We use US data on interest rates and prices of caps and swaptions from 1995 to
1999. Weadllow for the presence of measurement error in both theinterest rates and the option
prices. The results on the fit of atwo-factor model show that, in case of estimation based on
option prices only, the model does not accurately fit the standard deviations of interest rate
changes, and, in case of estimation on the basis of interest rate data, the model misprices caps
and, especialy, swaptions. Thus, the two-factor model cannot fit the main features of the two
data setsat the sametime. Thisresult illustratesthe benefit of using both interest rate dataand
option price data for testing term structure models. A three-factor model provides a much
better fit to both the interest rate data and the option price data. In particular, the humped
shape of the volatility term structure is fitted more accurately.

JEL Codes: G12, G13, E43.

Keywords: Term Structure Models, Market Models; Interest Rate Derivatives; Volatility Hump.



1 Introduction

Previous empirical work on term structure models has estimated and tested these models on the
basis of interest rate data (for example, Buhler et al. (1999), Dai and Singleton (2000), De Jong
(2000), Pearson and Sun (1994)), or derivative price data (Amin and Morton (1994), Flesaker
(1993)). Thereare several potential benefits of combining these two data setsto estimate and test
term structure models. First, model parameters might be estimated more precisely. In particular,
for estimating multi-factor term structure models (that have alarge number of parameters) using
both interest rate data and option prices seems beneficial. Second, using both data sets to test
term structure modelswill likely give stronger tests of these models. For example, it might bethe
case that a given model provides a reasonable fit of the main features of interest rate data, but
considerably mispricesinterest rate options. Therefore, in this paper, we estimate and test multi-
factor term structure models using both interest rate data and option price data, and investigate
the benefits of using both data sets.

The modelsthat we analyze arein the class of the Libor Market Models (Brace, Gatarek, and
Musiela (1997), Miltersen, Sandmann, and Sondermann (1997), and Jamshidian (1997)). We
specify amulti-factor Libor Market Model with correlated factors, where each factor hasatime-
homogeneousvolatility function that correspondsto mean-reverting behaviour of thefactor. This
way, the model is related to the affine class of term structure models (Duffie and Kan (1996)),
and, in particular, to the stochastic mean model of Jegadeesh and Pennacchi (1996). In the latter
model, the short rate is mean reverting around a ‘shadow’ rate, that itself is (Sowly) mean
reverting around a constant mean. By allowing the factors to be correlated, the model is ableto
generate a humped shape for the term structure of interest rate volatilities.

For the empirical analysis, we use weekly US data on Libor and swap rates and prices for
caps and swaptions from 1995 to 1999. The model setup explicitly allows for the presence of
measurement error in both the interest rates and derivative prices. Given this model setup,
moment restrictions are derived for both variances and covariances of changesin forward Libor
interest rates of different forward maturities, and for the expected prices of several caps and
swaptions. Estimation is performed by applying the Generalized Method of Moments (GMM,
Hansen (1982)). We estimate both two-factor and three-factor models, thereby extending the
analysis of De Jong, Driessen, and Pelsser (2000), where one-factor Libor Market Models are
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analyzed. For comparison, we al so estimate the model s both only on the basis of interest rate data
and only on the basis of option price data.

First, we analyze whether using both interest rate and option price data leads to more
accurate parameter estimates. For both the two-factor and three-factor model, wefind that, when
estimating the model using both interest rate and option price data, the standard errors of the
parameter estimates are not always smaller than the standard errorsthat result when only interest
rate data or option price data are used for estimation.

Second, we analyzethefit of the modelson theinterest rate and option price data. Theresults
for the two-factor model show that, in case of estimation based on option prices only, the model
does not accurately fit the standard deviations of forward Libor rate changes, and, in case of
estimation on the basis of interest rate data, the model misprices capsand, especially, swaptions.
Thus, the two-factor model cannot fit the main features of the two data sets at the same time.
Thisresult illustrates the benefit of using both interest rate data and option price datato test term
structure models. In case of joint estimation, there is a trade off between the fit on the option
price data and the fit on the interest rate data, but the two-factor model still poorly fits both the
forward Libor rate (co)variance structure and the maturity patterns in the cap and swaption
prices. In particular, the model is not capable of both fitting the humped shape of the term
structure of interest rate volatilities and the cross-correlations between forward Libor rate
changes.

Thethree-factor model provides abetter fit to both the interest rate data and the option price
data. Both the humped shape of the standard deviations of forward Libor rate changes, and the
humped shape of the cap implied volatility curve are fitted more accurately. Still, the model
dightly overprices swaptions, and the model implies correlations between forward Libor rate
changes that are a bit lower than in the data.

In line with results of Dai and Singleton (2000) and De Jong (2000), we find that the
correlations between the factorsare significantly different from zero. These nonzero correlations
are necessary to generate a hump shaped volatility curve. The results also show that allowing for
measurement error in theinterest ratesis an important aspect of the model setup. Neglecting this
measurement error structure would lead to overpricing of caps and too low standard deviations
of forward Libor rate changes. However, for all modelsthe estimate for the variance of the Libor
measurement error isunrealistically large, which might be caused by too restrictive assumptions



on the measurement error structure.

The remainder of this paper is organized as follows. Section 2 discusses and motivates the
modeling framework. Section 3 describes the interest rate data and option price data, aswell as
the estimation methodology. Section 4 contains the estimation results for two-factor and three-
factor models. Section 5 concludes.

2 Modeling Framework

2.1 Libor Market Model

To jointly analyze both term structure data and option price data, we choose the Libor Market
Model (LMM) as modeling framework. The reason for using the LMM isthreefold. First of all,
the LMM isoften used by financial institutions. Second, our option price data.consist of implied
Black (1976) volatility quotes for caps and swaptions, and the LMM implies smple Black-type
pricing formulasfor caps (and approximate pricing formulasfor swaptions), which facilitatesthe
estimation of the model. Third, De Jong, Driessen, and Pelsser (2000) provide evidence that the
LMM outperforms the Swap Market Model (SMM) in pricing caps and swaptions. In De Jong,
Driessen, and Pelsser (2000) other advantages of the market models are mentioned.

We describe the LMM formulation based on a finite number of bond prices, following
Jamshidian (1997). We start with defining afinitesetof dates T, < T, < ... < T, theso-called
tenor structure. We also define &, = T, , - T, i=1,..,N-1 asthe so-caled daycount fractions,
which are determined by the maturity of the Libor rate that is used to determine caplet payoffs
and are most often equal to 3 or 6 months. Associated with each tenor date T, is a bond that

i+1

matures at this date, and its time t price is denoted with P (t). These N bond prices, with
maturities T,,..., Ty, determine (N-1) forward Libor rates.
We analyze a multi-factor LMM with K factors. This multi-factor LMM implies that the

P (t
forward Libor rate L (t), definedby L (t) = i( Y
6, Pt

- 1), satisfiesthefollowing It process
under the true probability measure



dL (t) = L (Hu (Hdt + L Oy, O/ dWt), n=1,.,N-1 1)

Thefunction p (t) isthedrift function of the forward Libor rate, andy (t) isa, deterministic, K-
dimensional vector that is often referred to as the volatility function. W(t) is a K-dimensional
vector of correlated Brownian motions. The correlation between the i component and |
component of W(t) is denoted by p;- BY choosing one of the N bonds as the numeraire asset,
we can obtain the process of the forward Libor rates under the equivalent martingale measure
associ ated with this numeraire choice. Under such an equivalent martingale measure, the drift of
theforward Libor ratesiscompletely determined by thevolatility functions y (t), n=1,..,N-1, see
Jamshidian (1997). For example, if we take the longest maturity bond P(t) asthe numeraire,
we obtain the so-called terminal measure Q N, under which forward Libor rates follow the
process

N-L S L(D)y. () 2y (t
dl_n(t) = Ln(t)(_ Z i |( )Y|() Yn()

i=n+1 1+6i Li(t) dt + Yn(t) dw-(t)), n=1,..,N-1 2

where W*(t) isaK-dimensional Brownian motion under the terminal measure, and where X is
the instantaneous correlation matrix of this Brownian motion, so that X isaK by K matrix with
the (i,j)"" component equal to p; .

Equation (2) implies that, in order to price and hedge interest rate derivatives, only the
volatility functions vy (t) haveto be determined. Werefer to Brace, Gatarek, and Musiela(1997)
and Jamshidian (1997) for the pricing formulasfor caps and swaptions. Most importantly, these
formulas show that, in the LMM, cap prices depend on conditional variances of forward Libor
rates, whereas swaption prices both depend on conditional variances of forward Libor rates, and
conditional covariances between forward Libor rates of different maturities.

2.2 Specification of Volatility Functions

De Jong, Driessen, and Pelsser (2000) show that models with a time-inhomogeneous volatility
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function can lead to overfitting to option prices, and aso provide empirical evidence in favour
of adeclining volatility function instead of a constant volatility function. Furthermore, Dai and
Singleton (2000) illustrate that allowing for nonzero correl ations between factorsin (affine) term
structure modelsisimportant for accurately describing USinterest rate behaviour. Therefore, we
choose the following time-homogeneous specification for the volatility functionsin the LMM

v, = (o,exp( %, (T, -1)),.....o,exp( - %, (T, -1)), n=1,..N-1 (3)

and allow for an unrestricted correlation matrix X for the Brownian motions'. In the remainder,
we will refer to the parameter o, asthe volatility parameter of factor i and to the parameter «,
as its decay parameter.

Thesevolatility functionsare very similar to the volatility functionsimplied by the affineterm
structure models of Duffie and Kan (1996). In particular, consider a K-factor version of the
Vasicek (1977) model. In this model, the instantaneous short rate r(t) isthe sum of a constant
andK factors,i.e, r(t) = 6 + Z,Kl X.(t) , where each factor follows a mean reverting process
under the true probability measure with parameter ., that determines the strength of the mean
reversion, and volatility parameter o,

dX(t) = -k X (tdt + o dZ(t) 4)

The vector of Brownian motions Z(t) = (Z,(t),...,Z.(t))" is assumed to have instantaneous
correlation matrix X. Itiseasy to show that, if thefactor risk prices are deterministic, this model
implies the following process for instantaneous forward rates f(t,T)?

df(t,T) = driftdt + XKj o,exp(—x, (T-t)) dZ(t) (5)

i=1

T he instantaneous covariance matrix of the Brownian motions has to be symmetric and positive definite.
These restrictions are imposed when estimating the model parameters.

2f(t,'l') isthetimet forward rate for instantaneous lending at time T.
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under the true probability measure. Under the equival ent martingal e measure, the diffusion terms
in equation (5) remain unchanged and only the drift changes. Equation (5) shows that, in the K-
factor Vasicek model, changes in instantaneous forward rates are determined by K correlated
factors with volatility functions o, exp(-x, (T-t)) . Because the factor is strictly mean reverting,
this volatility function is decreasing in the time to maturity (T-t). The parameter k, determines
the decay in the volatility function: strong mean reversion for afactor implies that the volatility
function declines quickly.

Equation (3) shows that we choose the same volatility functions for the LMM, which then
apply to the changes in log forward Libor rates instead of instantaneous forward rates. This
choice facilitates the interpretation of the decay parameter x;: it islinked to the mean reversion
of factor i.

In case of atwo-factor model, the Vasicek instantaneous spot rate model has a particularly
interesting interpretation, since this model can be rewritten as®

dr(t) = a(B(t) - r(t)dt + o.dzZ(t)
do(t) = b(® - B(t)dt + o,dZ°(t) (6)
Cov(dZ '(t),dZ°(t)) = p,0, 0yt

Thisisthe central tendency model of Jegadeesh and Pennacchi (1996). In such acentral tendency
model the short rate is mean reverting around a ‘shadow rate’ (the central tendency). This
shadow rateitself ismean reverting around a constant mean. Jegadeesh and Pennacchi claim that
this model is much more adequate in describing the dynamics of Eurodollar futures prices than
aone-factor model. Also, Jegadeesh and Pennacchi show that the central tendency model isable
to generate a humped structure for forward Libor rate volatilities, which is afeature of the US
Libor rate data and the cap data that we analyze. One can show that, to generate a humped
voldtility structure, the mean reversion of r(t) to the ‘spread’ 0(t) - r(t) has to be strong (i.e.,
alargevauefor aisrequired), the mean reversion of the shadow rate 0(t) hasto be slow, and
the two Brownian motions have to be sufficiently negatively correlated.

3This follows from choosing X,(t) = (r(t)-6) - (6(t)-0)a/(a-b) and X,(t) = (B(t)-6)a/(a-b).
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3 Data and Estimation M ethod

3.1 Data

We use two data sets: one data set containing US money-market rates and swap rates and
another data set containing implied Black (1976) volatilities of US caps and swaptions. For both
data sets we have 232 weekly observations from January 1995 until June 1999.

We use the US money-market rates with maturitiesof 1, 3, 6, 9, and 12 months, and the data
on US swap rates with maturities ranging from 2 to 15 years to estimate the instantaneous
forward rate curve using an exponentia splines specification. This way, we obtain a trade off
between fit of the money-market and swap rates and smoothness of theforward rate curve. Since
estimatesfor forward (Libor) rates are very sensitive to small differences between money market
or swap rates of nearly the same maturity, a perfect fit of all underlying money market and swap
rates generally leads to unrealistically high estimates for the standard deviations of historical
forward (Libor) rate changes, and low correl ations between theseforward Libor rates. Therefore,
we impose some smoothness conditions on the shape of the forward interest rate curve viathe
exponentia splines specification. This gives us at each week instantaneous forward rates f(t, T),
from which we construct forward Libor ratesfor different forward maturities and 3-month Libor
maturity. In Table 1 we give the correlation matrix of weekly changes in the logarithm of these
forward Libor rates and in Figure 1 the annualized standard deviations of these changes are
plotted. In line with results presented in Amin and Morton (1994), and Moraleda and Vorst
(1997), Figure 1 showsthat thereis evidence for ahumped volatility structurefor forward Libor
rate changes.

The derivatives data that we use are weekly quotes for the implied Black (1976) volatilities
of at-the-money-forward US caps and swaptions, in total 63 instruments. The caps have
maturities ranging from 1 to 10 years, and their payoffs are defined on 3-month Libor rates. The
1-year cap consists of 3 caplets with maturities of 3, 6, and 9 months, and the 10-year cap
consists of 39 caplets, with maturitiesranging from 3 monthsto 9 years and 9 months. The other
caps are constructed in asimilar way. The strike of each cap is equal to the corresponding swap
rate with quarterly compounding. In Figure 2 we plot the time series average of the implied
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volatilities of the caps. Again there is evidence for a hump shaped volatility structure.

For the swaptions, the option maturities range from 1 month to 5 years, while the swap
maturities range from 1 to 10 years. The strike of an at-the-money swaption is equal to the
corresponding forward swap rate. These dataagain provide evidencefor ahump shaped volatility
structure.

3.2 Estimation M ethodology

In this paper, we focus on estimating the diffusion parameters or volatility functions of the
forward Libor rate processes. To estimate these parameters, we derive moment restrictions that
can be applied to the forward Libor rate data and the cap and swaption price data, and use the
Generalized Method of Moments to estimate the models. We use two sets of moment
restrictions:

1. Variances of log forward Libor rate changes and covariances between log forward Libor rate
changes of different forward maturities.

2. Expected cap implied volatilities and swaption implied volatilities.

We refer to estimation on the basis of thefirst set of moments asinterest-rate-based estimation,
and to estimation on the basi s of the second set of moments as option-based estimation. The use
of both sets of moment restrictionsisreferred to asjoint estimation. All moment restrictions are
formulated under the true probability measure.

Thefirst set of moment restrictionsis based on the fact that the LMM impliesthat (under the
true probability measure)

Cov(dInL(®),dInL(®) = y,®'Zy,@Odt, ij=1..,N-1 @)



By approximation, this relation holds for small time intervals At.* The use of variances and
covariancesfor estimation can be motivated by thefact that, if we neglect the drift of Libor rates,
the (conditional) distribution of log forward Libor ratesisnormal. In line with previous research
on term structure models (for example, De Jong (2000), Duan and Simonato (1999), Duffee
(1999)), we assume that the log forward Libor rate that we observe, InL;’(t), isequal to thetrue
log forward Libor rate InL,(t) , plusazero-expectation error term e (t), that isindependently and
identically distributed over time and forward maturities, and independent of thetruelog forward
Libor rate InL (t):

InL,"(®) = InL(t) + e(t), E(e(t) = 0, i=1,.,N-1 (8)

For simplicity, we assume that the error terms are maturity-specific and that the error variance
is constant over forward maturities

V() = o7 Covl(e(t),e() = 0, i,j=L,...N-1, i#] (9)

There are several reasons to include the error term in the log forward Libor rate. First of al, the
forward Libor rates are estimated using the exponential splines specification, which might induce
someestimation error in theforward Libor rate estimates. Second, the underlying money-market
and swap data might contain measurement error due to illiquidity and time-of-the-day effects.
Third, the weekly first-order autocorrelation in the log-forward Libor rate changesis, averaged
over al forward maturities, equal to -0.185, whereas the higher-order autocorrel ations are close
to zero or even positive. This supports the model, since it is easy to show that, abstracting from
the drift of forward Libor rates that is implied by the model, (1) and (8) lead to negative
first-order autocorrelation for discrete-time changes in the forward Libor rate, and zero
higher-order autocorrel ations.

“This approximate relation is only exact if the drift of the log forward Libor ratesis deterministic, whichis
in genera not the case. If the market prices of interest rate risk are very volatile or if the mean reversion
parameter is extremely large, the approximation error might be important.
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Note that the measurement error assumption in (8) changesthe variance of the forward Libor
rate changes, whereas it |eaves the covariances between forward Libor rates unchanged. This
way, the first set of moment restrictions is given by®

V(AINL ®) = v,0)/Sy,0At + 262 i=1,.,N-1
(10)
Cov(AInL (), AInL'(®) = v,®'SyOAL ij=1..,N-1

In Section 5.4.1 similar moment restrictions are formulated for changesin instantaneousforward
rates and HIM models, but without the measurement error variance. Using data on the log
forward Libor rates, we can estimate the right hand sides of equation (10) and confront these
estimates with the model-implied (co)variances. For estimation, we annualize the (co)variances
by multiplying (10) with 1/At such as to obtain the same scaling for these restrictions as the
implied volatilities (see below).

To derive the moment restrictions for derivative prices, we assume that the (square of the)
observed implied Black volatility quotefor acap or swaptionisequal to the (square of the) Black
impliedvolatility that correspondsto themodel price, plusanindependent zero-expectation error
term,® that represents measurement error in the observed implied volatility quote. For caps, we
thus get

>To perform GMM on variance and covariance restrictions, we add auxiliary moment restrictions of the form
E(AInL (1) = a, i=1,...,N-1, where the «;s are free coefficients that are estimated along with the other
parameters. Evenif thetruemeans (i.e., the o, *s) are equal to zero, which would bethe caseif forward Libor rates
are stationary, Cochrane (2001) notes that, in small samples, better estimates are obtained if one uses variances
and covariancesinstead of second moments. In our case, the sample means are very small relative to the variance
of the forward Libor rates, so that imposing that the o, s are equal to zero hardly affects the GMM parameter
estimates.

*The assumption that this error term has zero expectation should be interpreted as an approximate moment
restriction, due to the dependence of the LMM Black volatility 1V<"M(t, T.) on the underlying forward Libor
rates. If this dependence would be linear, the presence of measurement error in the forward Libor rates would not
change the unconditional expectation of 1V<"MM(t, T). Inreality, this dependenceis, however, not linear, so that
the expectation of 1V<-MM(t, T.) will depend on the variance of the measurement error in the forward Libor rates
(and higher-order moments of the measurement error distribution). A Taylor expansion shows that, for at-the-
money-forward caps and swaptions, this is a second order effect, and we will therefore neglect this effect in
estimating the model.
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[(VEELT? = [IVERME T + ni(), E(m(®) = 0 (11)

where IV €(t, T,) is the observed implied volatility for the cap with maturity T,, and where
IVEMMt, T ) is the implied volatility for this cap that corresponds to the cap price implied by
the LMM. A similar expression results for swaptions. We take the square of the implied
volatilities so that these moment restrictions are measured with the same scale asthe restrictions
in (7). By taking the expectation on both sides of equation (11) we obtain moment restrictions
for caps and swaptions’.

By approximation, the measurement error variance of the forward Libor rates does not enter
the moment restrictions for caps and swaptions. Thus, by combining the forward Libor rate
moment restrictions and the cap and swaption restrictions, the measurement error variance can
be estimated precisely. Because the measurement error variance does not enter the cap and
swaption moment restrictions, this measurement error variance cannot be estimated in case of
option-based estimation. In this case, given the option-based parameter estimates, the
measurement error variance is estimated from the forward Libor variance moment restrictions.

Asnoted above, inthe LMM, the prices of caps depend on the conditional variances of Libor
rates, whereas the prices of swaptions depend both on conditional variances of forward Libor
rates, and on the conditional covariances between forward Libor rates of different forward
maturities. Thus, both setsof moment restrictionsinvolve(conditional) variancesand covariances
of forward Libor rates, and from both sets of moment restrictions it is possible to identify the
parameters of models with multiple factors.

We use the Generalized Method of Moments (Hansen (1982)) to estimate the parameters of
two- and three-factor LMMs. We select some forward maturities and option maturities for the
moment restrictions, to obtain roughly the same number of moment restrictionsfor interest-rate-
based estimation and option-based estimation. For the forward Libor rate variance restrictions,
we choose the following forward maturities (in years): 0.25, 0.75, 1.25, 1.75, 2.75, 3.75, 4.75,
6.75, and 9.75, in total 9 moment restrictions. These maturities are related to the cap maturities.

This expectation istaken under the true probability measure, since the option prices are observed under this
measure. Of course, to calculate the option prices implied by the LMM, one uses an equivalent martingale
measure.
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For the covariancerestrictions, wetake the covariances between forward Libor rate changeswith
forward maturities of 0.25 years, 1.25 years, 2.75 years, 4.75 years, and 9.75 years, in total 10
moment restrictions.

For the cap moment restrictions, we use all 7 option maturities that are available in the cap
data, ranging from the 1-year cap to the 10-year cap. Since there are 56 different swaptionsin
the data set, we select a subset of these swaptions. We choose three option maturities, 3 months,
1 year, and 5 years, and three swap maturities, 1 year, 3 years, and 5 years. Taking all
combinations gives us 9 moment restrictions for the swaptions.

In thefirst step of GMM, we choose an identity weighting matrix. Recall that we formulated
al moment restrictions such that they all refer to annualized variances and covariances, so that
giving equal weightsto all moment restrictionsis not unreasonable. Also, the number of moment
restrictions is roughly the same for the Libor variances, Libor covariances, cap volatilities, and
swaption volatilities, so that none of these four sets of restrictions dominates the first-step
estimation resullts.

It turns out that the covariance matrix of these estimated moment restrictions is close to
singularity®. In other words, the estimated moment restrictions are highly correlated (especially
therestrictionsfor the caps and swaptions). The efficient, second step of GMM requiresthat the
inverse of the covariance matrix of the estimated moment restrictions is used as the weighting
matrix. As shown by Hansen (1982), thisisthe optimal choice for a correctly specified model in
the sense that it yields the lowest asymptotic variance for the GMM parameter estimates.
However, as noted by Cochrane (2001), if the covariance matrix of the moment restrictionsis
close to singularity, using this covariance matrix as weighting matrix implies that one fits the
model parametersto linear combinations of the origina moment restrictionsthat have very large
positive and negative weights on the origina moment restrictions. Using these linear
combinations of moment restrictions to estimate the model might be statistically optimal for a
correctly specified model (that is, asymptotically), but one can question whether these extreme
linear combinations are the most i nteresting moment restrictions from an economic point of view
(see Cochrane (2001)). Focusing on these extreme linear combinations might, therefore,
substantially reduce the robustness of the estimation procedure.

8We use the method of Newey and West (1987) to correct this covariance matrix for heteroskedasticity and
autocorrelation.
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We find that, when using the optimal weighting matrix, the model is essentialy fitted to the
differences between the moment restrictions rather than to the level of the moment restrictions,
since, dueto the high correl ations between the estimated moment restrictions, the standard errors
of these differences are much lower than the standard errors of the levels’. When performing
two-stage GMM estimation for our two-factor and three-factor models, we find that the shape
of the Libor variance term structure, the Libor covariance structure, and the cap and swaption
implied volatility term structures are fitted quite accurately, whereas the level of these term
structures is not fitted well. Therefore, we use in the empirical analysisin the next section only
the first-stage GMM estimator, that is obtained using an identity weighting matrix. Of course,
if themodel is correctly specified, thisestimator isstill consistent and asymptotically normal, and
standard errors and tests are constructed in a straightforward way. In subsequent research, we
will analyze to what extent the differences between the first-stage and second-stage GMM
estimates are due to misspecification of the model and, in particular, to the restrictive
specification of the measurement error structure.

An alternative explanation for the current findingsisthat transaction costsfor the optionsare
ignored. Driessen, Melenberg, and Nijman (1999) show that, without transaction costs, portfolios
with large short and long positionsin near-maturity bonds are mispriced and lead to thergjection
of standard term structure models. If transaction costsareincluded, these portfoliosareno longer
mispriced. One might expect a similar result here, now applied to positions in near-maturity
interest rate options instead of bonds. For simplicity, we do not explicitly include transaction
costs in this paper and use only first-stage GMM.

The near-singular covariance matrix of the moment restrictions also causes the GMM J-
statistic, that can be used to jointly test the overidentifying restrictions, to be very large for all
models that we estimate. Therefore, we will report individual t-ratios™ for the origina moment

*To seethisinasi mple example, suppose one fits a one-parameter model to the 1-year and 2-year forward
Libor variances. These Libor variance estimates are highly positively correlated. If one performs a Cholesky
decomposition of the optimal weighting matrix (the inverse of the covariance matrix), one finds that the
second-step GMM estimates are obtained by fitting to the 1-year forward Libor variance, and to the difference
between the 2-year and 1-year forward Libor variances, where this second moment restriction has amuch higher
weight than the first moment restriction.

Oor a given moment restriction, this t-ratio is defined by the ratio of the model error for this moment
restriction and the standard error of this model error. This standard error is calculated using the asymptotic
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restrictions to analyze the statistical accuracy of the models.

4 Empirical Results

There is much empirical evidence against one-factor term structure models. Also, given our
specification for the volatility functionsin equation (3), it directly followsthat one-factor models
cannot generate a humped volatility structure. Therefore, we focus on a two-factor and
three-factor model. As explained in the previous section, we will estimate both models three
times. on the basis of interest-rate-based estimation, option-based estimation, and joint
estimation.

4.1 Two-Factor Results

In this subsection we focus on the two-factor results. In Table 2, we give the parameter
estimates. First of all, we notethat joint estimation does not always give more accurate parameter
estimates than interest-rate-based and option-based estimation. For all three estimation
methodologies, we find that the first factor has arelatively low decay parameter, whereas the
second factor has a high decay parameter. Thisimplies that only forward Libor rates with very
short forward maturities are influenced by the second factor, and that the other forward Libor
rates are driven by the first factor only, which causes these forward Libor rates to be (almost)
perfectly correlated. The estimate for the correlation between the two factors is negative and
closeto -1*. Thislarge negative correlation is needed to generate a humped volatility structure
for forward Libor rates and cap implied volatilities.

In case of option-based estimation, the volatility parameters and the decay parameters are
somewhat higher than for interest-rate-based estimation. On the basi s of option-based estimation

covariance matrix of the estimated moment restrictions (see also Gourieroux and Monfort (1995)).

™11 caseof interest-rate based estimation, thiscorrelation parameter isestimated at thelower bound of -0.999.
In this case, for the calculation of standard errors and tests of moment restrictions the correlation parameter is
treated as a constant.
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we thus find a stronger decay in the volatilities as function of maturity than based on
interest-rated based estimation.

I rrespective of the estimation methodology that isused, wefind alarge estimate for the Libor
measurement error standard deviation. For example, in case of joint estimation, thismeasurement
error standard deviation is estimated at 0.0088, implying that the forward Libor rates are
measured with an error that has a standard deviation roughly equal to 88 basis points. Thus, the
model impliesthat forward Libor rates are measured very imprecisely, and, although we argued
in Section 2 that it islikely that there is some measurement error in the forward Libor rates, this
amount of measurement error seems to be too large. This large estimate for the Libor
measurement error variance either implies that the term structure model is misspecified, or that
the assumptionson themeasurement error structureareincorrect. For example, we have assumed
constant variance of the measurement error across forward Libor maturities, and no correlation
between measurement errors of different forward Libor rates. In future research we plan to
examinewhether other measurement error assumptionslead to more reasonabl e estimatesfor the
size of the measurement error. In particular, one could argue that forward Libor rates with long
forward maturities are measured with higher error, since these rates are more sensitive to
measurement error in the underlying swap rate data.

For the three sets of parameter estimates for the two-factor model, the fit on the standard
deviations of forward Libor rates is shown in Figure 1. The figure shows that, athough all
parameter estimates generate a humped standard deviation structure, the shape of the
model-implied standard deviation structure is clearly different from the standard deviation term
structure observed in the data. Also, the shape of the Libor standard deviation structure implied
by option-based estimation is different from the shapes implied by the other two estimation
methods: for long forward maturities, option-based estimation leads to lower forward Libor
standard deviations. Note also that, if we would not include the Libor measurement error in the
model, the option-based estimates would imply forward Libor standard deviations that are all
much lower than the observed standard deviations. Table 3 gives the average absolute t-ratios
for theindividua moment restrictions. In case of interest-rate-based estimation, noneof theLibor
variance moment restrictions is misfitted significantly by the model. In case of option-based
estimation, two out of the nine Libor variance moment restrictions are significantly misfitted by
the model.
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Table 1 gives the implications of the two-factor model for the cross-correlations of forward
Libor rates. As mentioned above, all three sets of parameter estimates imply that the two-factor
model itself yields ailmost perfect correlation between forward Libor rate changes of different
maturities. However, the presence of the forward Libor measurement error term generates some
decorrelation between forward Libor rates of different maturities. Since the Libor measurement
error varianceislargest in case of option-based estimation, these parameter estimates|ead to the
lowest correlations between Libor rates. However, Table 1 shows that none of the three sets of
parameter estimates leads to a very good fit of the correlation structure. In the data, the
correlation between forward Libor rates decreases when the difference between the two forward
maturities increases, and all three two-factor models do not always imply such a correlation
structure. Thisis confirmed by the t-ratios of the covariance moment restrictionsin Table 3, that
show that at least three of the ten covariance moment restrictions are rejected by al three two-
factor models.

Figure 2 depicts the observed implied volatility term structure for caps, and the cap volatility
structuresimplied by thetwo-factor model . Of course, the option-based parameter estimates|ead
to the best fit of these cap volatilities. Both interest-rate based estimation and joint estimation
lead to cap volatility structuresthat aretoo flat. Comparing these results with the forward Libor
standard deviations shows that the decay in the cap volatility term structure is larger than the
decay in the term structure of forward Libor rate standard deviations. Still, due to the large
variation and the large autocorrelation in cap implied volatilities over time, none of the models
imply significant mispricing of the caps.

Finally, in Figure 3 we plot the fit of the two-factor models on the swaption implied
volatilities. First of all, the figure shows that interest-rate-based estimation leads to too high
pricesfor swaptions, and Table 3 showsthat the pricing errors are mostly statistically significant.
Still, the shape of the swaption volatility term structure that isimplied by the interest-rate based
estimatesisvery similar to the observed shape. I n case of option-based estimation, the two-factor
model givesabetter fit of thelevel of swaption volatilities, but it does not accurately fit the shape
of the swaption volatility term structure: option-based estimation leadsto swaption volatility term
structures that are too humped and that decline too much for longer maturities. Table 3 aso
shows that, even in case of option-based estimation, some swaptions are still significantly
mispriced. As expected, in case of joint estimation, the fit on the swaption volatilities is worse
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than thefit in case of option-based estimation and better than thefit in case of interest-rate based
estimation. In general, the two-factor model is not able to fit both the cap volatility structure,
which exhibits a strong hump and is declining for long maturities, and the swaption volatility
structure, which has only a small hump.

Summarizing, the two-factor model does not give a satisfactory fit of the data. First of al,
there are some inconsi stencies between estimation based on interest-rate data and estimation on
the basis of option price data. In case of option-based estimation, the model does not accurately
fit the standard deviations of forward Libor rate changes. In case of interest-rate based
estimation, the model does not give agood fit of caps and, especially, swaptions. Second, even
incase of joint estimation, Table 3 showsthat there are still some Libor (co)variances and option
pricesthat are significantly misfitted by the model. In particular, the two-factor model misfitsthe
correlation structure of forward Libor rates. The reason for thisisthe following. To generate a
humped volatility structure, the two factors need to be very highly negatively correlated, and one
factor needs to have a very high decay parameter. This implies that this factor only influences
very short maturity forward Libor rates, so that most forward Libor rates are essentialy driven
by only onefactor. Thetwo-factor model thusimpliesamost perfectly correlated forward Libor
rates. Only due to the presence of the forward Libor measurement error structure, the model
generates some decorrelation between forward Libor rates, but the model-implied correlation
structure is quite different from the observed correlation structure. Therefore, in the next
subsection we analyze three-factor models.

4.2 Three-Factor Results

Table 4 presents the parameter estimates for the three-factor model for the three sets of moment
conditions. Again, joint estimation does not always give more accurate parameter estimates than
interest-rate-based and option-based estimation. For the three estimation methods, the estimates
for the volatility and decay parameters are quite similar to each other. One factor has a high
decay parameter, implying a quickly declining volatility function, another factor has avery low
decay parameter, implying aflat volatility function, and thethird factor hasan intermediate decay
parameter. Using interest rate data only and different estimation methods, Dai and Singleton
(2000) and De Jong (2000) find qualitatively similar results for three-factor models. The
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correl ations between thefactorsthat follow from option-based estimati on are somewhat different
fromthefactor-correlationsimplied by interest-rate-based estimation and joint estimation. Below,
wediscusstheimplications of thisdifference. Finally, the Libor rate measurement error standard
deviation is around 70 basis points for all three estimation methods, which is roughly the same
asin the two-factor model. Therefore, adding athird factor does not * solve’ the problem of the
(too) large estimate for the Libor measurement error variance.

Figure 4 shows that al three estimation strategies provide a reasonable fit of the standard
deviations of forward Libor rates, and Table 3 shows that none of the forward Libor standard
deviationsismisfitted significantly. Table5 givestheforward Libor correlation structuresimplied
by the three estimation strategies. Clearly, the fit is much better than in case of the two-factor
model, although the correlations are on average a bit too low. Only in case of option-based
estimation, the correlationsimplied by the three-factor model are significantly too low (see Table
3). Thus, the correlations implicit in swaption prices are lower than the correlations in the
forward Libor data.

Figure5 presentsthefit of the three-factor modelson the cap volatility structure. Interest-rate
based estimation leads to a reasonable fit of cap volatilities, and the pricing error is never
(individualy) significant. Note that, if we would not have included the Libor measurement error
structure in our model, interest-rate based estimation would have led to cap volatilities that are
much higher, which shows the importance of including the measurement errors. The other two
estimation strategies also lead to agood fit of the cap volatility structure.

The fit on the swaptions volatilities is given in Figure 6. In case of interest-rate based
estimation and joint estimation, swaptions are overpriced by the three-factor model. The reason
for thisis that the forward Libor rate correlations, as estimated using the interest rate data, are
higher than the correlations implicit in swaption prices. Since lower correlations lead to lower
swaption prices, this implies that, in case of interest-rate based estimation, swaptions are
overpriced. In case of joint estimation, there is a trade off in the fit of the covariances (or,
correlations) of forward Libor rates and the fit of swaption volatilities. In the end, the model
parameter estimates imply forward Libor rate correlations that are somewhat lower than in the
interest rate data, and swaption volatilitiesthat are higher than the observed swaption vol tilities.

Summarizing, the three-factor model is a clear improvement over the two-factor model,
although the estimate for the Libor measurement error variance is still unredistically large. The
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fitonall four setsof moment restrictions, Libor variances, Libor covariances, cap volatilities, and
swaption volatilities, is better, and the differences between the implications of option-based
estimation and interest-rate based estimation are much smaller than in case of the two-factor
model. Only for the correlation structure of forward Libor rates and swaption prices, these two
estimation methodsyield somewhat different results. Thejoint estimation strategy illustrateshow
informationin interest-rate dataand option price data can be combined to accurately estimatethe
three-factor model, and Table 3 confirms that, in case of joint estimation, ailmost all moment
restrictions are fitted accurately.

5 Summary and Conclusion

In this paper we examine multi-factor Libor Market Models. We specify amodel with correlated
factors, where each factor hasavolatility function that corresponds to mean-reverting behaviour
of the factor. Thisway, the model is related to the affine class of term structure models (Duffie
and Kan (1996)), and the stochastic mean model of Jegadeesh and Pennacchi (1996).

To estimate and test such multi-factor models, we combine the information in interest rate
data with the information in the prices of interest rate options. Previous empirical work on term
structure models has estimated and tested models on the basis of either interest rate data, or
derivative price data. In this paper, we analyze the benefits of combining these two data sets for
estimating and testing term structure models. For comparison, we also estimate the model s both
only on the basis of interest rate data and only on the basis of option price data.

We useweekly USdataon Libor and swap ratesand pricesfor caps and swaptionsfrom 1995
to 1999. The model setup explicitly allows for the presence of measurement error in both the
interest rates and derivative prices. Given the model setup, moment restrictions are derived for
both variances and covariances of changesin forward Libor rates, and for the expected prices of
caps and swaptions. Estimation is performed by applying the Generalized Method of Moments
(GMM, Hansen (1982)). We estimate both two-factor and three-factor models.

First, we analyze whether using both interest rate and option price data leads to more
accurate parameter estimates. For both the two-factor and three-factor model, wefind that, when
estimating the model using both interest rate and option price data, the standard errors of the
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parameter estimates are not always smaller than the standard errorsthat result when only interest
rate data or option price data are used for estimation.

Second, we anayzethefit of the modelson theinterest rate and option price data. Theresults
for the two-factor model show that, in case of estimation based on option prices only, the model
does not accurately fit the standard deviations of forward Libor rate changes, and, in case of
estimation on the basis of interest rate data, the model misprices capsand, especially, swaptions.
Thus, the two-factor model cannot fit the main features of the two data sets at the same time.
Thisresult illustrates the benefit of using both interest rate data and option price datafor testing
term structure models.

Thethree-factor model provides abetter fit to both the interest rate data and the option price
data. Both the humped shape of the standard deviations of forward Libor rate changes, and the
humped shape of the cap implied volatility curve are fitted more accurately. Still, the model
dightly overprices swaptions, and the model implies correlations between forward Libor rate
changes that are a bit lower than in the data.

Theresultsalso show that allowing for measurement error intheinterest ratesisan important
aspect of themodel setup. Neglecting thismeasurement error structurewould lead to overpricing
of caps and too low standard deviations of forward Libor rate changes. However, although the
three-factor model givesareasonably good fit of both theinterest rate dataand option price data,
the estimate for the variance of the measurement error in the forward Libor rates seems to be
unrealistically large. In this paper, we have assumed that the forward Libor measurement errors
are uncorrelated across forward Libor maturities, and have the same variance. It would be
interesting to analyze whether more redlistic estimates for the size of the measurement error
result if these assumptions are relaxed or if transaction costs are taken into account.
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Table 1. Fit 2-Factor Models: Correlations Forward Libor Rates.

The 2-factor LMM in equations (2) and (5) is estimated using first-stage GMM on the basis of three sets of
moments as described in the text. The table reports the correlations between forward Libor rate changes of

different forward maturities, asimplied by the 2-factor models.

Data Interest-Rate Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75
0.25 0.895 0.727 0.704 0.576 0.863 0.854 0.839 0.786
1.25 - 0.847 0.832 0.688 - 0.882 0.866 0.811
2.75 - - 0.958 0.632 - - 0.858 0.803
4.75 - - - 0.821 - - - 0.789

Option Estimation Joint Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75
0.25 0.814 0.784 0.728 0.525 0.762 0.748 0.726 0.653
1.25 - 0.806 0.749 0.540 - 0.814 0.790 0.711
2.75 - - 0.722 0.520 - - 0.776 0.698
4.75 - - - 0.483 - - - 0.678

Table 2. Parameter Estimates 2-Factor M oddl.

The 2-factor LMM in equations (2) and (5) is estimated using first-stage GMM on the basis of three sets of
moments: variances and covariances of forward Libor rate changes, cap and swaption implied volatilities, and
these two sets together. The table reports parameter estimates and standard errors, which are corrected for
heteroskedasticity and 20th-lag autocorrelation using Newey-West (1987).

Interest-Rate-Based Estimation ~ Option-Based Estimation Joint Estimation
0, 0.222 (0.019) 0.246 (0.013) 0.212 (0.010)
o, 0.131 (0.095) 0.504 (0.017) 0.484 (0.001)
Ky 0.064 (0.018) 0.134 (0.018) 0.066 (0.001)
K, 3.234 (1.166) 8.526 (0.882) 7.617 (0.716)
P12 -0.999 -0.996 (0.052) -0.859 (0.091)

o, 0.0071 (0.0008) 0.0091 (0.0028) 0.0088 (0.0018)




Table 3. Average Absolute T-ratios M oment Restrictions.

For the 2-factor and 3-factor models, thet-ratiosof theindividual moment restrictionsare calcul ated, correcting
for heteroskedasticity and 20th-lag autocorrelation using Newey-West (1987). The table reports for each set of
moments the average of the absolute value of these t-ratios, and the number of moment restrictions that is
individualy rejected at the 5% significance level.

Interest-Rate-Based Option-Based Joint Estimation
Estimation Estimation

2-Factor Model
Libor Variances (9) 0.919 (0) 1.853(2) 0.988 (1)
Libor Covariances (10) 1.670 (3) 2.593 (6) 2.201 (3)
Caps (7) 0.946 (0) 0.580 (0) 0.748 (0)
Swaptions (9) 3.973 (7) 1.318(2) 1.801 (4)

3-Factor Model
Libor Variances (9) 0.225 (0) 0.390 (0) 0.243 (0)
Libor Covariances (10) 0.338 (0) 1.725 (3) 0.426 (0)
Caps (7) 0.443 (0) 0.317 (0) 0.439 (0)
Swaptions (9) 2173 (4) 0.978 (1) 1.608 (3)

Table 4. Parameter Estimates 3-Factor M oddl.

The 3-factor LMM in equations (2) and (5) is estimated using first-stage GMM on the basis of three sets of
moment restrictions. The table reports parameter estimates and standard errors, which are corrected for
heteroskedasticity and 20th-lag autocorrelation using Newey-West (1987).

Interest-Rate-Based Estimation  Option-Based Estimation Joint Estimation
0, 0.147 (0.015) 0.149 (0.045) 0.143 (0.014)
o, 0.908 (1.18) 0.508 (0.024) 0.687 (0.422)
O3 0.754 (1.17) 0.387 (0.053) 0.505 (0.448)
Ky 0.000 (0.008) 0.003 (0.044) 0.000 (0.016)
K, 1.670 (0.566) 2.964 (1.01) 2.038 (0.656)
K3 0.969 (0.450) 0.544 (0.024) 0.876 (0.344)
P12 -0.635 (0.083) -0.429 (0.633) -0.634 (0.305)
P13 -0.974 (0.090) -0.805 (0.192) -0.941 (0.103)
P23 0.529 (0.138) -0.106 (0.354) 0.486 (0.343)
O, 0.0067 (0.0008) 0.0070 (0.0037) 0.0072 (0.0028)




Table5. Fit 3-Factor Models: Correlations Forward Libor Rates.

The 3-factor LMM in eguations (2) and (5) is estimated using first-stage GMM on the basis of three sets of
moments as described in the text. The table reports the correlations between forward Libor rate changes of

different forward maturities, asimplied by the 3-factor models.

Data Interest-Rate Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75
0.25 0.895 0.727 0.704 0.576 0.636 0.538 0.479 0.465
1.25 - 0.847 0.832 0.688 - 0.856 0.782 0.762
2.75 - - 0.958 0.632 - - 0.839 0.828
4.75 - - - 0.821 - - - 0.831

Option Estimation Joint Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75
0.25 0.665 0.428 0.191 0.059 0.596 0.501 0.444 0.428
1.25 - 0.797 0.608 0.484 - 0.837 0.760 0.738
2.75 - - 0.777 0.709 - - 0.813 0.801
4.75 - - - 0.798 - - - 0.803




Figurel. Libor Volatilities 2-Factor Model. The 2-factor LMM (equations (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in thetext. Thefigure plotsthe annualized standard
deviations of forward Libor rate changes, asimplied by the 2-factor models.
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Figure 2. Cap Volatilities 2-Factor Model. The 2-factor LMM (equation (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in the text. The figure plots the cap Black
volatilities for different option maturities, asimplied by the 2-factor models.
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Figure 3. Swaption Volatilities 2-Factor Model. The 2-factor LMM (equations (2) and (5)) is estimated using
first-stage GMM on the basis of three sets of moments as described in thetext. The figure plotsthe swaption Black
volatilities for different option maturities, asimplied by the 2-factor models.
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Figured. Libor Volatilities 3-Factor Model. The 3-factor LMM (equations (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in thetext. Thefigure plotsthe annualized standard
deviations of forward Libor rate changes, asimplied by the 3-factor models.
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Figureb5. Cap Volatilities 3-Factor Model. The 3-factor LMM (equations (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in the text. The figure plots the cap Black
volatilities for different option maturities, asimplied by the 3-factor models.
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Figure6. Swaption Volatilities 3-Factor Models. The 3-factor LMM (equations (2) and (5)) is estimated using
first-stage GMM on the basis of three sets of moments as described in the text. The figure plotsthe swaption Black
volatilities for different option maturities, asimplied by the 3-factor models.
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