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Estimation of the Libor Market Model:

Combining Term Structure Data and Option

Prices

Abstract
Previous empirical work on term structure models has estimated and tested these models on

the basis of either interest rate data or derivative price data. In this paper, we analyze the

benefits of combining these two data sets for estimating and testing multi-factor Libor market

models. We use US data on interest rates and prices of caps and swaptions from 1995 to

1999. We allow for the presence of measurement error in both the interest rates and the option

prices. The results on the fit of a two-factor model show that, in case of estimation based on

option prices only, the model does not accurately fit the standard deviations of interest rate

changes, and, in case of estimation on the basis of interest rate data, the model misprices caps

and, especially, swaptions. Thus, the two-factor model cannot fit the main features of the two

data sets at the same time. This result illustrates the benefit of using both interest rate data and

option price data for testing term structure models. A three-factor model provides a much

better fit to both the interest rate data and the option price data. In particular, the humped

shape of the volatility term structure is fitted more accurately.

JEL Codes: G12, G13, E43.
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1  Introduction

Previous empirical work on term structure models has estimated and tested these models on the

basis of interest rate data (for example, Buhler et al. (1999), Dai and Singleton (2000), De Jong

(2000), Pearson and Sun (1994)), or derivative price data (Amin and Morton (1994), Flesaker

(1993)). There are several potential benefits of combining these two data sets to estimate and test

term structure models. First, model parameters might be estimated more precisely. In particular,

for estimating multi-factor term structure models (that have a large number of parameters) using

both interest rate data and option prices seems beneficial. Second, using both data sets to test

term structure models will likely give stronger tests of these models. For example, it might be the

case that a given model provides a reasonable fit of the main features of interest rate data, but

considerably misprices interest rate options. Therefore, in this paper, we estimate and test multi-

factor term structure models using both interest rate data and option price data, and investigate

the benefits of using both data sets.

The models that we analyze are in the class of the Libor Market Models (Brace, Gatarek, and

Musiela (1997), Miltersen, Sandmann, and Sondermann (1997), and Jamshidian (1997)). We

specify a multi-factor Libor Market Model with correlated factors, where each factor has a time-

homogeneous volatility function that corresponds to mean-reverting behaviour of the factor. This

way, the model is related to the affine class of term structure models (Duffie and Kan (1996)),

and, in particular, to the stochastic mean model of Jegadeesh and Pennacchi (1996). In the latter

model, the short rate is mean reverting around a ‘shadow’ rate, that itself is (slowly) mean

reverting around a constant mean. By allowing the factors to be correlated, the model is able to

generate a humped shape for the term structure of interest rate volatilities.

For the empirical analysis, we use weekly US data on Libor and swap rates and prices for

caps and swaptions from 1995 to 1999. The model setup explicitly allows for the presence of

measurement error in both the interest rates and derivative prices. Given this model setup,

moment restrictions are derived for both variances and covariances of changes in forward Libor

interest rates of different forward maturities, and for the expected prices of several caps and

swaptions. Estimation is performed by applying the Generalized Method of Moments (GMM,

Hansen (1982)). We estimate both two-factor and three-factor models, thereby extending the

analysis of De Jong, Driessen, and Pelsser (2000), where one-factor Libor Market Models are
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analyzed. For comparison, we also estimate the models both only on the basis of interest rate data

and only on the basis of option price data.

First, we analyze whether using both interest rate and option price data leads to more

accurate parameter estimates. For both the two-factor and three-factor model, we find that, when

estimating the model using both interest rate and option price data, the standard errors of the

parameter estimates are not always smaller than the standard errors that result when only interest

rate data or option price data are used for estimation.

Second, we analyze the fit of the models on the interest rate and option price data. The results

for the two-factor model show that, in case of estimation based on option prices only, the model

does not accurately fit the standard deviations of forward Libor rate changes, and, in case of

estimation on the basis of interest rate data, the model misprices caps and, especially, swaptions.

Thus, the two-factor model cannot fit the main features of the two data sets at the same time.

This result illustrates the benefit of using both interest rate data and option price data to test term

structure models. In case of joint estimation, there is a trade off between the fit on the option

price data and the fit on the interest rate data, but the two-factor model still poorly fits both the

forward Libor rate (co)variance structure and the maturity patterns in the cap and swaption

prices. In particular, the model is not capable of both fitting the humped shape of the term

structure of interest rate volatilities and the cross-correlations between forward Libor rate

changes.

The three-factor model provides a better fit to both the interest rate data and the option price

data. Both the humped shape of the standard deviations of forward Libor rate changes, and the

humped shape of the cap implied volatility curve are fitted more accurately. Still, the model

slightly overprices swaptions, and the model implies correlations between forward Libor rate

changes that are a bit lower than in the data. 

In line with results of Dai and Singleton (2000) and De Jong (2000), we find that the

correlations between the  factors are significantly different from zero. These nonzero correlations

are necessary to generate a hump shaped volatility curve. The results also show that allowing for

measurement error in the interest rates is an important aspect of the model setup. Neglecting this

measurement error structure would lead to overpricing of caps and too low standard deviations

of forward Libor rate changes. However, for all models the estimate for the variance of the Libor

measurement error is unrealistically large, which might be caused by too restrictive assumptions
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on the measurement error structure.

The remainder of this paper is organized as follows. Section 2 discusses and motivates the

modeling framework. Section 3 describes the interest rate data and option price data, as well as

the estimation methodology. Section 4 contains the estimation results for two-factor and three-

factor models. Section 5 concludes.

2  Modeling Framework

2.1  Libor Market Model

To jointly analyze both term structure data and option price data, we choose the Libor Market

Model (LMM) as modeling framework. The reason for using the LMM is threefold. First of all,

the LMM is often used by financial institutions. Second, our option price data consist of implied

Black (1976) volatility quotes for caps and swaptions, and the LMM implies simple Black-type

pricing formulas for caps (and approximate pricing formulas for swaptions), which facilitates the

estimation of the model. Third, De Jong, Driessen, and Pelsser (2000) provide evidence that the

LMM outperforms the Swap Market Model (SMM) in pricing caps and swaptions. In De Jong,

Driessen, and Pelsser (2000) other advantages of the market models are mentioned.

We describe the LMM formulation based on a finite number of bond prices, following

Jamshidian (1997). We start with defining a finite set of dates , the so-calledT1 < T2 < ... < TN

tenor structure. We also define  as the so-called daycount fractions,*i ' Ti%1&Ti, i'1,..,N&1

which are determined by the maturity of the Libor rate that is used to determine caplet payoffs

and are most often equal to 3 or 6 months. Associated with each tenor date Tn is a bond that

matures at this date, and its time t price is denoted with . These N bond prices, withPn(t)

maturities T1,...,TN, determine (N-1) forward Libor rates. 

We analyze a multi-factor LMM with K factors. This multi-factor LMM implies that the

forward Libor rate , defined by , satisfies the following Itô processLn(t) Ln(t) '
1
*n

(
Pn(t)

Pn%1(t)
& 1)

under the true probability measure
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dLn(t) ' Ln(t) (& j
N&1

i'n%1

*iLi(t)(i(t)
)E(n(t)

1%*i Li(t)
dt % (n(t)

)dW ((t) ), n'1,...,N&1 (2)

dLn(t) ' Ln(t)µn(t) dt % Ln(t)(n(t)
)dW(t) , n'1,...,N&1 (1)

The function  is the drift function of the forward Libor rate, and  is a, deterministic, K-µn(t) (n(t)

dimensional vector that is often referred to as the volatility function.  is a K-dimensionalW(t)

vector of correlated Brownian motions. The correlation between the ith component and jth

component of  is denoted by . By choosing one of the N bonds as the numeraire asset,W(t) Dij

we can obtain the process of the forward Libor rates under the equivalent martingale measure

associated with this numeraire choice. Under such an equivalent martingale measure, the drift of

the forward Libor rates is completely determined by the volatility functions , n=1,..,N-1, see(n(t)

Jamshidian (1997). For example, if we take the longest maturity bond  as the numeraire,PN(t)

we obtain the so-called terminal measure , under which forward Libor rates follow theQ N

process

where  is a K-dimensional Brownian motion under the terminal measure, and where  isW ((t) E

the instantaneous correlation matrix of this Brownian motion, so that  is a K by K matrix withE

the (i,j)th component equal to .Dij

Equation (2) implies that, in order to price and hedge interest rate derivatives, only the

volatility functions  have to be determined. We refer to Brace, Gatarek, and Musiela (1997)(n(t)

and Jamshidian (1997) for the pricing formulas for caps and swaptions. Most importantly, these

formulas show that, in the LMM, cap prices depend on conditional variances of forward Libor

rates, whereas swaption prices both depend on conditional variances of forward Libor rates, and

conditional covariances between forward Libor rates of different maturities.

2.2  Specification of Volatility Functions

De Jong, Driessen, and Pelsser (2000) show that models with a time-inhomogeneous volatility
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These restrictions are imposed when estimating the model parameters.

2f(t,T) is the time t forward rate for instantaneous lending at time T.
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dXi(t) ' &6iXi(t)dt % Fi dZi(t) (4)

df(t,T) ' drift dt % j
K

i'1

Fiexp(&6i (T&t))dZi(t) (5)

(n(t) ' (F1 exp(&61 (Tn& t)),....,FKexp(&6K(Tn& t)))), n'1,...,N&1 (3)

function can lead to overfitting to option prices, and also provide empirical evidence in favour

of a declining volatility function instead of a constant volatility function. Furthermore, Dai and

Singleton (2000) illustrate that allowing for nonzero correlations between factors in (affine) term

structure models is important for accurately describing US interest rate behaviour. Therefore, we

choose the following time-homogeneous specification for the volatility functions in the LMM

and allow for an unrestricted correlation matrix G for the Brownian motions1. In the remainder,

we will refer to the parameter  as the volatility parameter of factor i and to the parameter Fi 6i

as its decay parameter.

These volatility functions are very similar to the volatility functions implied by the affine term

structure models of Duffie and Kan (1996). In particular, consider a K-factor version of the

Vasicek (1977) model. In this model, the instantaneous short rate  is the sum of a constantr(t)

and K factors, i.e., , where each factor follows a mean reverting processr(t) ' 2 % jK
i'1 Xi(t)

under the true probability measure with parameter , that determines the strength of the mean6i

reversion, and volatility parameter Fi

The vector of Brownian motions  is assumed to have instantaneousZ(t) ' (Z1(t),...,ZK(t)))

correlation matrix . It is easy to show that, if the factor risk prices are deterministic, this modelE

implies the following process for instantaneous forward rates 2 f(t,T)
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dr(t) ' a(2(t) & r(t))dt % FrdZ r(t)

d2(t) ' b(2 & 2(t))dt % F2dZ 2(t)

Cov( dZ r(t),dZ 2(t) ) ' Dr2FrF2dt

(6)

under the true probability measure. Under the equivalent martingale measure, the diffusion terms

in equation (5) remain unchanged and only the drift changes. Equation (5) shows that, in the K-

factor Vasicek model, changes in instantaneous forward rates are determined by K correlated

factors with volatility functions . Because the factor is strictly mean reverting,Fiexp(&6i (T&t))

this volatility function is decreasing in the time to maturity (T-t). The parameter  determines6i

the decay in the volatility function: strong mean reversion for a factor implies that the volatility

function declines quickly.

Equation (3) shows that we choose the same volatility functions for the LMM, which then

apply to the changes in log forward Libor rates instead of instantaneous forward rates. This

choice facilitates the interpretation of the decay parameter : it is linked to the mean reversion6i

of factor i.

In case of a two-factor model, the Vasicek instantaneous spot rate model has a particularly

interesting interpretation, since this model can be rewritten as3

This is the central tendency model of Jegadeesh and Pennacchi (1996). In such a central tendency

model the short rate is mean reverting around a ‘shadow rate’ (the central tendency). This

shadow rate itself is mean reverting around a constant mean. Jegadeesh and Pennacchi claim that

this model is much more adequate in describing the dynamics of Eurodollar futures prices than

a one-factor model. Also, Jegadeesh and Pennacchi show that the central tendency model is able

to generate a humped structure for forward Libor rate volatilities, which is a feature of the US

Libor rate data and the cap data that we analyze. One can show that, to generate a humped

volatility structure, the mean reversion of  to the ‘spread’  has to be strong (i.e.,r(t) 2(t)& r(t)

a large value for a is required), the mean reversion of the shadow rate  has to be slow, and2(t)

the two Brownian motions have to be sufficiently negatively correlated.
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3  Data and Estimation Method

3.1  Data

We use two data sets: one data set containing US money-market rates and swap rates and

another data set containing implied Black (1976) volatilities of US caps and swaptions. For both

data sets we have 232 weekly observations from January 1995 until June 1999.

We use the US money-market rates with maturities of 1, 3, 6, 9, and 12 months, and the data

on US swap rates with maturities ranging from 2 to 15 years to estimate the instantaneous

forward rate curve using an exponential splines specification. This way, we obtain a trade off

between fit of the money-market and swap rates and smoothness of the forward rate curve. Since

estimates for forward (Libor) rates are very sensitive to small differences between money market

or swap rates of nearly the same maturity, a perfect fit of all underlying money market and swap

rates generally leads to unrealistically high estimates for the standard deviations of historical

forward (Libor) rate changes, and low correlations between these forward Libor rates. Therefore,

we impose some smoothness conditions on the shape of the forward interest rate curve via the

exponential splines specification. This gives us at each week instantaneous forward rates f(t,T),

from which we construct forward Libor rates for different forward maturities and 3-month Libor

maturity. In Table 1 we give the correlation matrix of weekly changes in the logarithm of these

forward Libor rates and in Figure 1 the annualized standard deviations of these changes are

plotted. In line with results presented in Amin and Morton (1994), and Moraleda and Vorst

(1997), Figure 1 shows that there is evidence for a humped volatility structure for forward Libor

rate changes. 

The derivatives data that we use are weekly quotes for the implied Black (1976) volatilities

of at-the-money-forward US caps and swaptions, in total 63 instruments. The caps have

maturities ranging from 1 to 10 years, and their payoffs are defined on 3-month Libor rates. The

1-year cap consists of 3 caplets with maturities of 3, 6, and 9 months, and the 10-year cap

consists of 39 caplets, with maturities ranging from 3 months to 9 years and 9 months. The other

caps are constructed in a similar way. The strike of each cap is equal to the corresponding swap

rate with quarterly compounding. In Figure 2 we plot the time series average of the implied
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Cov ( d ln Li(t), d ln Lj(t)) ' (i(t)
)E(j(t) dt, i,j'1,...,N&1 (7)

volatilities of the caps. Again there is evidence for a hump shaped volatility structure.

For the swaptions, the option maturities range from 1 month to 5 years, while the swap

maturities range from 1 to 10 years. The strike of an at-the-money swaption is equal to the

corresponding forward swap rate. These data again provide evidence for a hump shaped volatility

structure.

3.2  Estimation Methodology

In this paper, we focus on estimating the diffusion parameters or volatility functions of the

forward Libor rate processes. To estimate these parameters, we derive moment restrictions that

can be applied to the forward Libor rate data and the cap and swaption price data, and use the

Generalized Method of Moments to estimate the models. We use two sets of moment

restrictions:

1. Variances of log forward Libor rate changes and covariances between log forward Libor rate

changes of different forward maturities.

2. Expected cap implied volatilities and swaption implied volatilities.

We refer to estimation on the basis of the first set of moments as interest-rate-based estimation,

and to estimation on the basis of the second set of moments as option-based estimation. The use

of both sets of moment restrictions is referred to as joint estimation. All moment restrictions are

formulated under the true probability measure.

The first set of moment restrictions is based on the fact that the LMM implies that (under the

true probability measure)
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in general not the case. If the market prices of interest rate risk are very volatile or if the mean reversion

parameter is extremely large, the approximation error might be important.
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lnL (

i (t) ' lnLi(t) % ,i(t), E(,i(t)) ' 0, i'1,..,N&1 (8)

V(,i(t)) ' F2
,, Cov(,i(t),,j(t)) ' 0, i,j'1,...,N&1, i…j (9)

By approximation, this relation holds for small time intervals .4 The use of variances and)t

covariances for estimation can be motivated by the fact that, if we neglect the drift of Libor rates,

the (conditional) distribution of log forward Libor rates is normal. In line with previous research

on term structure models (for example, De Jong (2000), Duan and Simonato (1999), Duffee

(1999)), we assume that the log forward Libor rate that we observe, , is equal to the trueln L (

i (t)

log forward Libor rate , plus a zero-expectation error term , that is independently andln Li(t) ,i(t)

identically distributed over time and forward maturities, and independent of the true log forward

Libor rate :ln Li(t)

For simplicity, we assume that the error terms are maturity-specific and that the error variance

is constant over forward maturities

There are several reasons to include the error term in the log forward Libor rate. First of all, the

forward Libor rates are estimated using the exponential splines specification, which might induce

some estimation error in the forward Libor rate estimates. Second, the underlying money-market

and swap data might contain measurement error due to illiquidity and time-of-the-day effects.

Third, the weekly first-order autocorrelation in the log-forward Libor rate changes is, averaged

over all forward maturities, equal to -0.185, whereas the higher-order autocorrelations are close

to zero or even positive. This supports the model, since it is easy to show that, abstracting from

the drift of forward Libor rates that is implied by the model, (1) and (8) lead to negative

first-order autocorrelation for discrete-time changes in the forward Libor rate, and zero

higher-order autocorrelations.



5To perform GMM on variance and covariance restrictions, we add auxiliary moment restrictions of the form

, where the `s are free coefficients that are estimated along with the otherE() lnL (

i (t)) ' "i, i'1,...,N&1 "i

parameters. Even if the true means (i.e., the `s) are equal to zero, which would be the case if forward Libor rates"i

are stationary, Cochrane (2001) notes that, in small samples, better estimates are obtained if one uses variances

and covariances instead of second moments. In our case, the sample means are very small relative to the variance

of the forward Libor rates, so that imposing that the `s are equal to zero hardly affects the GMM parameter"i

estimates.

6The assumption that this error term has zero expectation should be interpreted as an approximate moment

restriction, due to the dependence of the LMM Black volatility  on the underlying forward LiborIV C,LMM(t, Ti)

rates. If this dependence would be linear, the presence of measurement error in the forward Libor rates would not

change the unconditional expectation of . In reality, this dependence is, however, not linear, so thatIV C,LMM(t, Ti)

the expectation of  will depend on the variance of the measurement error in the forward Libor ratesIV C,LMM(t, Ti)

(and higher-order moments of the measurement error distribution). A Taylor expansion shows that, for at-the-

money-forward caps and swaptions, this is a second order effect, and we will therefore neglect this effect in

estimating the model.
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V ( ) ln L (

i (t)) ' (i(t)
)E(i(t))t % 2F2

,, i'1,...,N&1

Cov ( ) ln L (

i (t), ) ln L (

j (t)) ' (i(t)
)E(j(t))t, i,j'1,...,N&1

(10)

Note that the measurement error assumption in (8) changes the variance of the forward Libor

rate changes, whereas it leaves the covariances between forward Libor rates unchanged. This

way, the first set of moment restrictions is given by5

In Section 5.4.1 similar moment restrictions are formulated for changes in instantaneous forward

rates and HJM models, but without the measurement error variance. Using data on the log

forward Libor rates, we can estimate the right hand sides of equation (10) and confront these

estimates with the model-implied (co)variances. For estimation, we annualize the (co)variances

by multiplying (10) with  such as to obtain the same scaling for these restrictions as the1/)t

implied volatilities (see below).

To derive the moment restrictions for derivative prices, we assume that the (square of the)

observed implied Black volatility quote for a cap or swaption is equal to the (square of the) Black

implied volatility that corresponds to the model price, plus an independent zero-expectation error

term,6 that represents measurement error in the observed implied volatility quote. For caps, we

thus get



7This expectation is taken under the true probability measure, since the option prices are observed under this

measure. Of course, to calculate the option prices implied by the LMM, one uses an equivalent martingale

measure.
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[IV C(t, Ti)]
2 ' [IV C,LMM(t,Ti))]

2 % 0i(t), E(0i(t)) ' 0 (11)

where  is the observed implied volatility for the cap with maturity Ti, and whereIV C(t, Ti)

 is the implied volatility for this cap that corresponds to the cap price implied byIV C,LMM(t,Ti)

the LMM. A similar expression results for swaptions. We take the square of the implied

volatilities so that these moment restrictions are measured with the same scale as the restrictions

in (7). By taking the expectation on both sides of equation (11) we obtain moment restrictions

for caps and swaptions7.

By approximation, the measurement error variance of the forward Libor rates does not enter

the moment restrictions for caps and swaptions. Thus, by combining the forward Libor rate

moment restrictions and the cap and swaption restrictions, the measurement error variance can

be estimated precisely. Because the measurement error variance does not enter the cap and

swaption moment restrictions, this measurement error variance cannot be estimated in case of

option-based estimation. In this case, given the option-based parameter estimates, the

measurement error variance is estimated from the forward Libor variance moment restrictions.

As noted above, in the LMM, the prices of caps depend on the conditional variances of Libor

rates, whereas the prices of swaptions depend both on conditional variances of forward Libor

rates, and on the conditional covariances between forward Libor rates of different forward

maturities. Thus, both sets of moment restrictions involve (conditional) variances and covariances

of forward Libor rates, and from both sets of moment restrictions it is possible to identify the

parameters of models with multiple factors.

We use the Generalized Method of Moments (Hansen (1982)) to estimate the parameters of

two- and three-factor LMMs. We select some forward maturities and option maturities for the

moment restrictions, to obtain roughly the same number of moment restrictions for interest-rate-

based estimation and option-based estimation. For the forward Libor rate variance restrictions,

we choose the following forward maturities (in years): 0.25, 0.75, 1.25, 1.75, 2.75, 3.75, 4.75,

6.75, and 9.75, in total 9 moment restrictions. These maturities are related to the cap maturities.



8We use the method of Newey and West (1987) to correct this covariance matrix for heteroskedasticity and

autocorrelation.
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For the covariance restrictions, we take the covariances between forward Libor rate changes with

forward maturities of 0.25 years, 1.25 years, 2.75 years, 4.75 years, and 9.75 years, in total 10

moment restrictions.

For the cap moment restrictions, we use all 7 option maturities that are available in the cap

data, ranging from the 1-year cap to the 10-year cap. Since there are 56 different swaptions in

the data set, we select a subset of these swaptions. We choose three option maturities, 3 months,

1 year, and 5 years, and three swap maturities, 1 year, 3 years, and 5 years. Taking all

combinations gives us 9 moment restrictions for the swaptions.

In the first step of GMM, we choose an identity weighting matrix. Recall that we formulated

all moment restrictions such that they all refer to annualized variances and covariances, so that

giving equal weights to all moment restrictions is not unreasonable. Also, the number of moment

restrictions is roughly the same for the Libor variances, Libor covariances, cap volatilities, and

swaption volatilities, so that none of these four sets of restrictions dominates the first-step

estimation results. 

It turns out that the covariance matrix of these estimated moment restrictions is close to

singularity8. In other words, the estimated moment restrictions are highly correlated (especially

the restrictions for the caps and swaptions). The efficient, second step of GMM requires that the

inverse of the covariance matrix of the estimated moment restrictions is used as the weighting

matrix. As shown by Hansen (1982), this is the optimal choice for a correctly specified model in

the sense that it yields the lowest asymptotic variance for the GMM parameter estimates.

However, as noted by Cochrane (2001), if the covariance matrix of the moment restrictions is

close to singularity, using this covariance matrix as weighting matrix implies that one fits the

model parameters to linear combinations of the original moment restrictions that have very large

positive and negative weights on the original moment restrictions. Using these linear

combinations of moment restrictions to estimate the model might be statistically optimal for a

correctly specified model (that is, asymptotically), but one can question whether these extreme

linear combinations are the most interesting moment restrictions from an economic point of view

(see Cochrane (2001)). Focusing on these extreme linear combinations might, therefore,

substantially reduce the robustness of the estimation procedure.



9To see this in a simple example, suppose one fits a one-parameter model to the 1-year and 2-year forward

Libor variances. These Libor variance estimates are highly positively correlated. If one performs a Cholesky

decomposition of the optimal weighting matrix (the inverse of the covariance matrix), one finds that the

second-step GMM estimates are obtained by fitting to the 1-year forward Libor variance, and to the difference

between the 2-year and 1-year forward Libor variances, where this second moment restriction has a much higher

weight than the first moment restriction. 

10For a given moment restriction, this t-ratio is defined by the ratio of the model error for this moment

restriction and the standard error of this model error. This standard error is calculated using the asymptotic
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We find that, when using the optimal weighting matrix, the model is essentially fitted to the

differences between the moment restrictions rather than to the level of the moment restrictions,

since, due to the high correlations between the estimated moment restrictions, the standard errors

of these differences are much lower than the standard errors of the levels9. When performing

two-stage GMM estimation for our two-factor and three-factor models, we find that the shape

of the Libor variance term structure, the Libor covariance structure, and the cap and swaption

implied volatility term structures are fitted quite accurately, whereas the level of these term

structures is not fitted well. Therefore, we use in the empirical analysis in the next section only

the first-stage GMM estimator, that is obtained using an identity weighting matrix. Of course,

if the model is correctly specified, this estimator is still consistent and asymptotically normal, and

standard errors and tests are constructed in a straightforward way. In subsequent research, we

will analyze to what extent the differences between the first-stage and second-stage GMM

estimates are due to misspecification of the model and, in particular, to the restrictive

specification of the measurement error structure.

An alternative explanation for the current findings is that transaction costs for the options are

ignored. Driessen, Melenberg, and Nijman (1999) show that, without transaction costs, portfolios

with large short and long positions in near-maturity bonds are mispriced and lead to the rejection

of standard term structure models. If transaction costs are included, these portfolios are no longer

mispriced. One might expect a similar result here, now applied to positions in near-maturity

interest rate options instead of bonds. For simplicity, we do not explicitly include transaction

costs in this paper and use only first-stage GMM.

The near-singular covariance matrix of the moment restrictions also causes the GMM J-

statistic, that can be used to jointly test the overidentifying restrictions, to be very large for all

models that we estimate. Therefore, we will report individual t-ratios10 for the original moment



covariance matrix of the estimated moment restrictions (see also Gourieroux and Monfort (1995)).

11In case of interest-rate based estimation, this correlation parameter is estimated at the lower bound of -0.999.

In this case, for the calculation of standard errors and tests of moment restrictions the correlation parameter is

treated as a constant.
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restrictions to analyze the statistical accuracy of the models.

4  Empirical Results

There is much empirical evidence against one-factor term structure models. Also, given our

specification for the volatility functions in equation (3), it directly follows that one-factor models

cannot generate a humped volatility structure. Therefore, we focus on a two-factor and

three-factor model. As explained in the previous section, we will estimate both models three

times: on the basis of interest-rate-based estimation, option-based estimation, and joint

estimation.

4.1  Two-Factor Results

In this subsection we focus on the two-factor results. In Table 2, we give the parameter

estimates. First of all, we note that joint estimation does not always give more accurate parameter

estimates than interest-rate-based and option-based estimation. For all three estimation

methodologies, we find that the first factor has a relatively low decay parameter, whereas the

second factor has a high decay parameter. This implies that only forward Libor rates with very

short forward maturities are influenced by the second factor, and that the other forward Libor

rates are driven by the first factor only, which causes these forward Libor rates to be (almost)

perfectly correlated. The estimate for the correlation between the two factors is negative and

close to -111. This large negative correlation is needed to generate a humped volatility structure

for forward Libor rates and cap implied volatilities.

In case of option-based estimation, the volatility parameters and the decay parameters are

somewhat higher than for interest-rate-based estimation. On the basis of option-based estimation
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we thus find a stronger decay in the volatilities as function of maturity than based on

interest-rated based estimation.

Irrespective of the estimation methodology that is used, we find a large estimate for the Libor

measurement error standard deviation. For example, in case of joint estimation, this measurement

error standard deviation is estimated at 0.0088, implying that the forward Libor rates are

measured with an error that has a standard deviation roughly equal to 88 basis points. Thus, the

model implies that forward Libor rates are measured very imprecisely, and, although we argued

in Section 2 that it is likely that there is some measurement error in the forward Libor rates, this

amount of measurement error seems to be too large. This large estimate for the Libor

measurement error variance either implies that the term structure model is misspecified, or that

the assumptions on the measurement error structure are incorrect. For example, we have assumed

constant variance of the measurement error across forward Libor maturities, and no correlation

between measurement errors of different forward Libor rates. In future research we plan to

examine whether other measurement error assumptions lead to more reasonable estimates for the

size of the measurement error. In particular, one could argue that forward Libor rates with long

forward maturities are measured with higher error, since these rates are more sensitive to

measurement error in the underlying swap rate data.

For the three sets of parameter estimates for the two-factor model, the fit on the standard

deviations of forward Libor rates is shown in Figure 1. The figure shows that, although all

parameter estimates generate a humped standard deviation structure, the shape of the

model-implied standard deviation structure is clearly different from the standard deviation term

structure observed in the data. Also, the shape of the Libor standard deviation structure implied

by option-based estimation is different from the shapes implied by the other two estimation

methods: for long forward maturities, option-based estimation leads to lower forward Libor

standard deviations. Note also that, if we would not include the Libor measurement error in the

model, the option-based estimates would imply forward Libor standard deviations that are all

much lower than the observed standard deviations. Table 3 gives the average absolute t-ratios

for the individual moment restrictions. In case of interest-rate-based estimation, none of the Libor

variance moment restrictions is misfitted significantly by the model. In case of option-based

estimation, two out of the nine Libor variance moment restrictions are significantly misfitted by

the model.
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Table 1 gives the implications of the two-factor model for the cross-correlations of forward

Libor rates. As mentioned above, all three sets of parameter estimates imply that the two-factor

model itself yields almost perfect correlation between forward Libor rate changes of different

maturities. However, the presence of the forward Libor measurement error term generates some

decorrelation between forward Libor rates of different maturities. Since the Libor measurement

error variance is largest in case of option-based estimation, these parameter estimates lead to the

lowest correlations between Libor rates. However, Table 1 shows that none of the three sets of

parameter estimates leads to a very good fit of the correlation structure. In the data, the

correlation between forward Libor rates decreases when the difference between the two forward

maturities increases, and all three two-factor models do not always imply such a correlation

structure. This is confirmed by the t-ratios of the covariance moment restrictions in Table 3, that

show that at least three of the ten covariance moment restrictions are rejected by all three two-

factor models.

Figure 2 depicts the observed implied volatility term structure for caps, and the cap volatility

structures implied by the two-factor model. Of course, the option-based parameter estimates lead

to the best fit of these cap volatilities. Both interest-rate based estimation and joint estimation

lead to cap volatility structures that are too flat. Comparing these results with the forward Libor

standard deviations shows that the decay in the cap volatility term structure is larger than the

decay in the term structure of forward Libor rate standard deviations. Still, due to the large

variation and the large autocorrelation in cap implied volatilities over time, none of the models

imply significant mispricing of the caps.

Finally, in Figure 3 we plot the fit of the two-factor models on the swaption implied

volatilities. First of all, the figure shows that interest-rate-based estimation leads to too high

prices for swaptions, and Table 3 shows that the pricing errors are mostly statistically significant.

Still, the shape of the swaption volatility term structure that is implied by the interest-rate based

estimates is very similar to the observed shape. In case of option-based estimation, the two-factor

model gives a better fit of the level of swaption volatilities, but it does not accurately fit the shape

of the swaption volatility term structure: option-based estimation leads to swaption volatility term

structures that are too humped and that decline too much for longer maturities. Table 3 also

shows that, even in case of option-based estimation, some swaptions are still significantly

mispriced. As expected, in case of joint estimation, the fit on the swaption volatilities is worse
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than the fit in case of option-based estimation and better than the fit in case of interest-rate based

estimation. In general, the two-factor model is not able to fit both the cap volatility structure,

which exhibits a strong hump and is declining for long maturities, and the swaption volatility

structure, which has only a small hump.

Summarizing, the two-factor model does not give a satisfactory fit of the data. First of all,

there are some inconsistencies between estimation based on interest-rate data and estimation on

the basis of option price data. In case of option-based estimation, the model does not accurately

fit the standard deviations of forward Libor rate changes. In case of interest-rate based

estimation, the model does not give a good fit of caps and, especially, swaptions. Second, even

in case of joint estimation, Table 3 shows that there are still some Libor (co)variances and option

prices that are significantly misfitted by the model. In particular, the two-factor model misfits the

correlation structure of forward Libor rates. The reason for this is the following. To generate a

humped volatility structure, the two factors need to be very highly negatively correlated, and one

factor needs to have a very high decay parameter. This implies that this factor only influences

very short maturity forward Libor rates, so that most forward Libor rates are essentially driven

by only one factor. The two-factor model thus implies almost perfectly correlated forward Libor

rates. Only due to the presence of the forward Libor measurement error structure, the model

generates some decorrelation between forward Libor rates, but the model-implied correlation

structure is quite different from the observed correlation structure. Therefore, in the next

subsection we analyze three-factor models.

4.2  Three-Factor Results

Table 4 presents the parameter estimates for the three-factor model for the three sets of moment

conditions. Again, joint estimation does not always give more accurate parameter estimates than

interest-rate-based and option-based estimation. For the three estimation methods, the estimates

for the volatility and decay parameters are quite similar to each other. One factor has a high

decay parameter, implying a quickly declining volatility function, another factor has a very low

decay parameter, implying a flat volatility function, and the third factor has an intermediate decay

parameter. Using interest rate data only and different estimation methods, Dai and Singleton

(2000) and De Jong (2000) find qualitatively similar results for three-factor models. The
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correlations between the factors that follow from option-based estimation are somewhat different

from the factor-correlations implied by interest-rate-based estimation and joint estimation. Below,

we discuss the implications of this difference. Finally, the Libor rate measurement error standard

deviation is around 70 basis points for all three estimation methods, which is roughly the same

as in the two-factor model. Therefore, adding a third factor does not ‘solve’ the problem of the

(too) large estimate for the Libor measurement error variance.

Figure 4 shows that all three estimation strategies provide a reasonable fit of the standard

deviations of forward Libor rates, and Table 3 shows that none of the forward Libor standard

deviations is misfitted significantly. Table 5 gives the forward Libor correlation structures implied

by the three estimation strategies. Clearly, the fit is much better than in case of the two-factor

model, although the correlations are on average a bit too low. Only in case of option-based

estimation, the correlations implied by the three-factor model are significantly too low (see Table

3). Thus, the correlations implicit in swaption prices are lower than the correlations in the

forward Libor data.

Figure 5 presents the fit of the three-factor models on the cap volatility structure. Interest-rate

based estimation leads to a reasonable fit of cap volatilities, and the pricing error is never

(individually) significant. Note that, if we would not have included the Libor measurement error

structure in our model, interest-rate based estimation would have led to cap volatilities that are

much higher, which shows the importance of including the measurement errors. The other two

estimation strategies also lead to a good fit of the cap volatility structure.

The fit on the swaptions volatilities is given in Figure 6. In case of interest-rate based

estimation and joint estimation, swaptions are overpriced by the three-factor model. The reason

for this is that the forward Libor rate correlations, as estimated using the interest rate data, are

higher than the correlations implicit in swaption prices. Since lower correlations lead to lower

swaption prices, this implies that, in case of interest-rate based estimation, swaptions are

overpriced. In case of joint estimation, there is a trade off in the fit of the covariances (or,

correlations) of forward Libor rates and the fit of swaption volatilities. In the end, the model

parameter estimates imply forward Libor rate correlations that are somewhat lower than in the

interest rate data, and swaption volatilities that are higher than the observed swaption volatilities.

Summarizing, the three-factor model is a clear improvement over the two-factor model,

although the estimate for the Libor measurement error variance is still unrealistically large. The
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fit on all four sets of moment restrictions, Libor variances, Libor covariances, cap volatilities, and

swaption volatilities, is better, and the differences between the implications of option-based

estimation and interest-rate based estimation are much smaller than in case of the two-factor

model. Only for the correlation structure of forward Libor rates and swaption prices, these two

estimation methods yield somewhat different results. The joint estimation strategy illustrates how

information in interest-rate data and option price data can be combined to accurately estimate the

three-factor model, and Table 3 confirms that, in case of joint estimation, almost all moment

restrictions are fitted accurately.

5 Summary and Conclusion

In this paper we examine multi-factor Libor Market Models. We specify a model with correlated

factors, where each factor has a volatility function that corresponds to mean-reverting behaviour

of the factor. This way, the model is related to the affine class of term structure models (Duffie

and Kan (1996)), and the stochastic mean model of Jegadeesh and Pennacchi (1996).

To estimate and test such multi-factor models, we combine the information in interest rate

data with the information in the prices of interest rate options. Previous empirical work on term

structure models has estimated and tested models on the basis of either interest rate data, or

derivative price data. In this paper, we analyze the benefits of combining these two data sets for

estimating and testing term structure models. For comparison, we also estimate the models both

only on the basis of interest rate data and only on the basis of option price data.

We use weekly US data on Libor and swap rates and prices for caps and swaptions from 1995

to 1999. The model setup explicitly allows for the presence of measurement error in both the

interest rates and derivative prices. Given the model setup, moment restrictions are derived for

both variances and covariances of changes in forward Libor rates, and for the expected prices of

caps and swaptions. Estimation is performed by applying the Generalized Method of Moments

(GMM, Hansen (1982)). We estimate both two-factor and three-factor models.

First, we analyze whether using both interest rate and option price data leads to more

accurate parameter estimates. For both the two-factor and three-factor model, we find that, when

estimating the model using both interest rate and option price data, the standard errors of the
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parameter estimates are not always smaller than the standard errors that result when only interest

rate data or option price data are used for estimation.

Second, we analyze the fit of the models on the interest rate and option price data. The results

for the two-factor model show that, in case of estimation based on option prices only, the model

does not accurately fit the standard deviations of forward Libor rate changes, and, in case of

estimation on the basis of interest rate data, the model misprices caps and, especially, swaptions.

Thus, the two-factor model cannot fit the main features of the two data sets at the same time.

This result illustrates the benefit of using both interest rate data and option price data for testing

term structure models.

The three-factor model provides a better fit to both the interest rate data and the option price

data. Both the humped shape of the standard deviations of forward Libor rate changes, and the

humped shape of the cap implied volatility curve are fitted more accurately. Still, the model

slightly overprices swaptions, and the model implies correlations between forward Libor rate

changes that are a bit lower than in the data. 

The results also show that allowing for measurement error in the interest rates is an important

aspect of the model setup. Neglecting this measurement error structure would lead to overpricing

of caps and too low standard deviations of forward Libor rate changes. However, although the

three-factor model gives a reasonably good fit of both the interest rate data and option price data,

the estimate for the variance of the measurement error in the forward Libor rates seems to be

unrealistically large. In this paper, we have assumed that the forward Libor measurement errors

are uncorrelated across forward Libor maturities, and have the same variance. It would be

interesting to analyze whether more realistic estimates for the size of the measurement error

result if these assumptions are relaxed or if transaction costs are taken into account.
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Table 1. Fit 2-Factor Models: Correlations Forward Libor Rates.

The 2-factor LMM in equations (2) and (5) is estimated using first-stage GMM on the basis of three sets of

moments as described in the text. The table reports the correlations between forward Libor rate changes of

different forward maturities, as implied by the 2-factor models.

                         Data                                                           Interest-Rate Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75

0.25 0.895 0.727 0.704 0.576 0.863 0.854 0.839 0.786

1.25 - 0.847 0.832 0.688 - 0.882 0.866 0.811

2.75 - - 0.958 0.632 - - 0.858 0.803

4.75 - - - 0.821 - - - 0.789

Option Estimation                                                          Joint Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75

0.25 0.814 0.784 0.728 0.525 0.762 0.748 0.726 0.653

1.25 - 0.806 0.749 0.540 - 0.814 0.790 0.711

2.75 - - 0.722 0.520 - - 0.776 0.698

4.75 - - - 0.483 - - - 0.678

Table 2. Parameter Estimates 2-Factor Model.

The 2-factor LMM in equations (2) and (5)  is estimated using first-stage GMM on the basis of three sets of

moments: variances and covariances of forward Libor rate changes, cap and swaption implied volatilities, and

these two sets together. The table reports parameter estimates and standard errors, which are corrected for

heteroskedasticity and 20th-lag autocorrelation  using Newey-West (1987).

Interest-Rate-Based Estimation Option-Based Estimation Joint Estimation

F1 0.222 (0.019) 0.246 (0.013) 0.212 (0.010)

F2 0.131 (0.095) 0.504 (0.017) 0.484 (0.001)

61 0.064 (0.018) 0.134 (0.018) 0.066 (0.001)

62 3.234 (1.166) 8.526 (0.882) 7.617 (0.716)

D12 -0.999 -0.996 (0.052) -0.859 (0.091)

F, 0.0071 (0.0008) 0.0091 (0.0028) 0.0088 (0.0018)



Table 3. Average Absolute T-ratios Moment Restrictions.

For the 2-factor and 3-factor models, the t-ratios of the individual moment restrictions are calculated, correcting

for heteroskedasticity and 20th-lag autocorrelation using Newey-West (1987). The table reports for each set of

moments the average of the absolute value of these t-ratios, and the number of moment restrictions that is

individually rejected at the 5% significance level.

Interest-Rate-Based

Estimation

Option-Based

Estimation

Joint Estimation

2-Factor Model

Libor Variances (9) 0.919 (0) 1.853 (2) 0.988 (1)

Libor Covariances (10) 1.670 (3) 2.593 (6) 2.201 (3)

Caps (7) 0.946 (0) 0.580 (0) 0.748 (0)

Swaptions (9) 3.973 (7) 1.318 (2) 1.801 (4)

3-Factor Model

Libor Variances (9) 0.225 (0) 0.390 (0) 0.243 (0)

Libor Covariances (10) 0.338 (0) 1.725 (3) 0.426 (0)

Caps (7) 0.443 (0) 0.317 (0) 0.439 (0)

Swaptions (9) 2.173 (4) 0.978 (1) 1.608 (3)

Table 4. Parameter Estimates 3-Factor Model.

The 3-factor LMM in equations (2) and (5) is estimated using first-stage GMM on the basis of three sets of

moment restrictions. The table reports parameter estimates and standard errors, which are corrected for

heteroskedasticity and 20th-lag autocorrelation  using Newey-West (1987).

Interest-Rate-Based Estimation Option-Based Estimation Joint Estimation

F1 0.147 (0.015) 0.149 (0.045) 0.143 (0.014)

F2 0.908 (1.18) 0.508 (0.024) 0.687 (0.422)

F3 0.754 (1.17) 0.387 (0.053) 0.505 (0.448)

61 0.000 (0.008) 0.003 (0.044) 0.000 (0.016)

62 1.670 (0.566) 2.964 (1.01) 2.038 (0.656)

63 0.969 (0.450) 0.544 (0.024) 0.876 (0.344)

D12 -0.635 (0.083) -0.429 (0.633) -0.634 (0.305)

D13 -0.974 (0.090) -0.805 (0.192) -0.941 (0.103)

D23 0.529 (0.138) -0.106 (0.354) 0.486 (0.343)

F, 0.0067 (0.0008) 0.0070 (0.0037) 0.0072 (0.0028)



Table 5. Fit 3-Factor Models: Correlations Forward Libor Rates.

The 3-factor LMM in equations (2) and (5) is estimated using first-stage GMM on the basis of three sets of

moments as described in the text. The table reports the correlations between forward Libor rate changes of

different forward maturities, as implied by the 3-factor models.

                         Data                                                           Interest-Rate Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75

0.25 0.895 0.727 0.704 0.576 0.636 0.538 0.479 0.465

1.25 - 0.847 0.832 0.688 - 0.856 0.782 0.762

2.75 - - 0.958 0.632 - - 0.839 0.828

4.75 - - - 0.821 - - - 0.831

Option Estimation                                                          Joint Estimation

Maturity 1.25 2.75 4.75 9.75 1.25 2.75 4.75 9.75

0.25 0.665 0.428 0.191 0.059 0.596 0.501 0.444 0.428

1.25 - 0.797 0.608 0.484 - 0.837 0.760 0.738

2.75 - - 0.777 0.709 - - 0.813 0.801

4.75 - - - 0.798 - - - 0.803



Figure 1. Libor Volatilities 2-Factor Model. The 2-factor LMM (equations (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in the text. The figure plots the annualized standard
deviations of forward Libor rate changes, as implied by the 2-factor models.

0 1 2 3 4 5 6 7 8 9 10
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Fit 2-Factor Model: Forward Libor Standard Deviations

Forward Maturity

A
nn

ua
liz

ed
 S

ta
nd

ar
d 

D
ev

ia
tio

n

Data 

Joint 

Option 

Interest-Rate 

Figure 2. Cap Volatilities 2-Factor Model. The 2-factor LMM (equation (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in the text. The figure plots the cap Black
volatilities for different option maturities, as implied by the 2-factor models.
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Figure 3. Swaption Volatilities 2-Factor Model. The 2-factor LMM (equations (2) and (5)) is estimated using
first-stage GMM on the basis of three sets of moments as described in the text. The figure plots the swaption Black
volatilities for different option maturities, as implied by the 2-factor models.
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Figure 4. Libor Volatilities 3-Factor Model. The 3-factor LMM (equations (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in the text. The figure plots the annualized standard
deviations of forward Libor rate changes, as implied by the 3-factor models. 
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Figure 5. Cap Volatilities 3-Factor Model. The 3-factor LMM (equations (2) and (5)) is estimated using first-
stage GMM on the basis of three sets of moments as described in the text. The figure plots the cap Black
volatilities for different option maturities, as implied by the 3-factor models. 
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Figure 6. Swaption Volatilities 3-Factor Models. The 3-factor LMM (equations (2) and (5)) is estimated using
first-stage GMM on the basis of three sets of moments as described in the text. The figure plots the swaption Black
volatilities for different option maturities, as implied by the 3-factor models.
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