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Abstract

In a market model of forward interest rates, a specification of the volatility structure of the
forward rates uniquely determines their instantaneous drifts via the no-arbitrage condition. The
resulting drifts are state-dependent and are sufficiently complicated that an explicit solution to
the forward rate stochastic differential equations cannot be obtained. The lack of an analytic
solution could be a major obstacle when pricing derivatives using Monte Carlo if it implied
that the market could only be accurately evolved using small time steps. In this paper we
use a predictor-corrector method to approximate the solutions to the forward rate SDEs and
demonstrate that the market can be accurately evolved as far as twenty years in one step.

1 Introduction

The LIBOR market model, or BGM/J, approach to pricing exotic interest-rate derivatives has
become very popular in recent years [BGM97, Jam97]. To price an exotic interest-rate derivative,
we evaluate its risk-neutral expectation as a function of a finite set of forward rates, which move
according to geometric Brownian motion with an indirectly stochastic drift, on a discrete set of
times. Most interest-rate derivatives, including Bermudan swaptions and trigger swaps, can be
fitted into this framework. The main difficulty in implementation is that forward-rates are not
tradable assets and therefore need not be martingales in the risk-neutral measure. Indeed, in
general, their drifts are not just non-zero but also state-dependent which gives rise to non-lognormal
distributions in the terminal measure. This means that there is no analytic solution to the stochastic
differential equation describing the forward rates’ evolution. Therefore, when pricing via Monte
Carlo, we must numerically approximate the probability density function. One solution is to
small-step using an Euler scheme which is the commonly used approach by practitioners, albeit
that this involves an obvious time-penalty. Despite the availability of various textbooks on the
numerical solution of stochastic differential equations such as the classic work by Kloeden and
Platen [KP99], very little has been published on improvements over the simple Euler method in the
context of the BGM/J market model. An exception to this is a research paper by Kurbanmuradov
et. al. [KSS99], in which the authors, nonetheless, only discuss approximations that either result in
terminal distributions that are log-normal or, again, require frequent sub-stepping in order to reduce
the simulation bias to a tolerable level. Here, we present a method that allows long steps and does
not result in a log-normal probability density function. The approach we take is to approximate
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the drift over the mentioned long time steps, which reduces the calculation time considerably. To
substantiate our claims, we demonstrate that the new method is indeed sufficiently accurate to be
used in pricing. In particular, we show that the forward rates can be evolved over a 20 year time
horizon in a single step.

We consider a LIBOR market model based on the N forward LIBOR rates fi (i = 0, .., N−1)
that each span a time period from ti to ti+1. Let Zi be the price of a zero-coupon bond expiring
at time ti. Assume that each forward rate fi is driven by a standard Brownian motion Wi with
a time dependent log-normal volatility and a time dependent instantaneous correlation structure
E [dWidWj ] = ρijdt. The forward rate dynamics are then

dfi

fi
= µidt + σidWi, (1)

where the drift µi is determined by the no-arbitrage conditions and will depend on the choice of
probability measure. If we take the numéraire to be the zero-coupon bond expiring at one of the
reset times tη, the instantaneous drifts are

µi (f(t), t) = −σi

η−1∑
k=i+1

fk(t)τk

1 + fk(t)τk
σkρik︸ ︷︷ ︸

non-zero for i<η−1

+ σi

i∑
k=η

fk(t)τk

1 + fk(t)τk
σkρik︸ ︷︷ ︸

non-zero for i≥η

. (2)

2 Numerical Algorithm

We wish to evolve the system of forward rates from their initial values fi(0) at time 0 to some time
t in the future. For simplicity of notation, all N Brownian motions are used to drive the simulation,
although in practice fewer could be used. As it is simpler to work in log space, we define Yk = log fk

and obtain the system of stochastic differential equations

dYk =
[
µk(Y, t)− 1

2
σ2

k

]
dt + σkdWk . (3)

A single Euler step to evolve all of the state variates Yk from time 0 to time t is given by

Y E
k (t) = Yk(0) +

[
µk (Y (0), 0)− 1

2
σ2

k(0)
]

t + σk(0) ·
√

t · ẑk (4)

where ẑk are N(0, 1) random variables which are correlated according to E [zizj ] = ρij(0). For
time dependent instantaneous volatility, the simple Euler method (4) is improved by the use of the
integrated covariance matrix elements Cij =

∫ t
0 ρij(s)σi(s)σj(s)ds which can be split into its pseudo-

square root A defined by Cik =
∑N−1

j=0 AijAkj . There are a variety of methods that can be used to
generate a valid matrix Aij such as Cholesky, spectral, or angular decomposition [PTVF92, RJ00].
Using this definition of the integrated covariance matrix C, we can express an improved constant
drift approximation µ̂k(Y, C) as

µ̂k(Y, C) = −
η−1∑

j=k+1

Cij
τjeYj

1 + τjeYj
+

i∑
j=η

Cij
τjeYj

1 + τjeYj
. (5)

This leads to what we refer to as the log-Euler scheme,

Y E
k (t) = Yk(0) + [µ̂k(Y (0), C)− 1

2
Ckk] +

N−1∑
j=0

Akjzj , (6)
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with all of the zj now being independent N(0, 1) random variates. This algorithm does not attempt
to account for the state dependence of the drifts, but instead uses the initial values of the (logarithms
of the) forward rates in the formulas (5). However, the results produced by the log-Euler method
will be useful to compare against our improved method. Note that the dimension of t is in equation
(6) accounted for by the fact that C is an integral over time, and A is by dimension a square root
of C and thus of dimension

√
t.

There are a number of ways to improve on the Euler method for the numerical integration
of stochastic differential equations, many of which may be found in the canonical reference by
Kloeden and Platen [KP99]. Instead of using any of the well-known explicit, implicit, or standard
predictor-corrector methods, we employ a hybrid technique whereby we integrate the terms σkdWk

directly as if the drift coefficient is constant over any one time step. This is essentially consistent
with the standard Euler method. However, in addition, we account for the indirect stochasticity
of the drift term by using a Predictor-Corrector method. First, we predict the terminal values of
the forward rates using the initial data, and then use these values to correct the approximation in
the drift coefficient. Our algorithm for constructing one draw from the terminal distribution of the
forward rates over one time step is thus as follows.

1. Evolve the logarithms of the forward rates as if the drifts were constant and equal to their
initial values according to the log-Euler scheme (6).

2. Compute the drifts at the terminal time with the so evolved forward rates.

3. Average the initially calculated drift coefficients with the newly computed ones.

4. Re-evolve using the same normal variates as initially but using the new predictor-corrector
drift terms.

This is a very natural and simple way to incorporate the drift state-dependence. In the special case,
rarely arising in finance, that the volatilities are constant, this is the simplest predictor-corrector
method (equation (15.5.4) with α = 1/2 in [KP99])

Yk(t) = Yk(0) +
1
2
[µ̂k(Y E(t), C) + µ̂k(Y (0), C)− Ckk] +

N−1∑
j=0

Akjzj , (7)

whilst in the general case, we have a new hybrid method. Note that this hybrid depends heavily
on the fact that the SDE for the constant drift case is solvable. While further, potentially better,
approximations are possible, our approach has the advantage of being very simple to understand
and implement, and as we shall show in the next section, it is able to reproduce with a high degree
of accuracy both the forward rate probability distributions and derivative prices for actual market
data.

3 The explicit LIBOR-in-arrears density

When testing our numercial algorithm, it will be useful to have a non-trivial test case which can
be solved analytically for comparison. In order to avoid having to call on theoretical results, we
give a simple deduction of the risk-neutral density using the well-known fact that the risk-neutral
density is the second derivative of the call option price with respect to the strike.
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Define Φi,η to be the terminal probability distribution of the forward rate fi in the measure
where Zη is the numéraire. Choosing η := i + 1 as the numéraire index yields the price of a caplet
on fi struck at K as

C(0) = Zi+1(0)
∫ ∞

0
τi(fi −K)+Φi,i+1(fi) dfi . (8)

In this measure, fi is a martingale and has a log-normal probability distribution

Φi,i+1(f) =
1√
2π

e
− 1

2

[
ln

(
f

fi(0)

)
+1

2 σ̄2
i ti

]2

σ̄2
i

ti

f σ̄i
√

ti
with σ̄2

i ti =
∫ ti

0
σ2

i (s) ds. (9)

If we instead use Zi as the numéraire, the caplet price is

C(0) = Zi(0)
∫ ∞

0
τi(f −K)+

Φi,i(f)
1 + τif

df . (10)

The density Φi,i is also known as the LIBOR-in-arrears density due to it being precisely the
distribution required to value LIBOR-in-arrears contracts which pay immediately upon the setting
of a FRA, not at maturity of the FRA itself. Equating the two call option prices (8) and (10) and
differentiating them twice with respect to the strike yields

Φi,i(f) =
1 + τif

1 + τifi(0)
Φi,i+1(f) . (11)

Thus, we have an analytic value for the terminal probability density of fη (recall that η is the
index of the payment time of the numéraire). We can explicitly calculate the moments of this
distribution. It follows from equation (11) that if Ei[·] is expectation in the measure where Zi is
the numéraire, then

Ei[g(fi)] =
Ei+1[g(fi)] + τiEi+1[fig(fi)]

1 + τifi(0)
. (12)

Since the moments of the log-normal forward rate fi in its natural numéraire Zi+1 are given by
Ei+1[fn

i ] = fi(0)ne
1
2
n(n−1)σ̄2

i ti , we have for the LIBOR-in-arrears case

Ei[fn
i ] = fi(0)ne

1
2
n(n−1)σ̄2

i ti
1 + τifi(0)enσ̄2

i ti

1 + τifi(0)
(13)

which we will use as an analytical test for the accuracy of our numerical approximations.

4 Numerical tests for the Libor-in-arrears case

The covariance structure we use was suggested by Rebonato [Reb98]. The instantaneous forward-
rate volatilities are

σi(s) =

{
ki

{
[a + b(ti − s)] e−c(ti−s) + d

}
for s < ti

0 for s > ti
, (14)

where a, b, c and d are obtained from a least-squares fit to the market caplet volatilities, and the
ki’s are fixed by requiring that the caplet prices be recovered exactly. The instantaneous correlation
between forward rates is given by the time-independent function ρij = e−β|ti−tj | with β = 0.1. In
figure 1, we show the probability densities for the exact, Euler, and predictor-corrector methods
for the LIBOR-in-arrears case. As can be seen, the density resulting from the predictor-corrector
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Figure 1: Plot of probability densities for fη (LIBOR-in-arrears numéraire case) and the differences from
the exact solution. The 3-month forward rate value was 8%, the volatility was set at constant 24% for an

expiry of 30 years.

method is virtually identical to the analytical solution in a direct comparison. A closer look at the
actual differences reveals that the initial value (Euler) method incurs not only a much larger error
on an absolute scale, it also deviates from the analytically exact solution on a wider interval. In
other words, the error from the predictor-corrector method is more localised on the distribution’s
abscissa which yields to a much better match of the moments of the distribution.

As was discussed in section 3, we have
Method E[f ]

f0

E[f2]
f2
0

E[f3]
f3
0

E[f4]
f4
0

Scenario f0 = 8%, σ = 24%, T = 30

Exact 1.09077 9.01694 798.912 657870.

Euler 1.03446 6.02408 197.482 36443.9

Predictor-Corrector 1.09896 10.0732 1020.33 699711.

Scenario f0 = 8%, σ = 14%, T = 20

Exact 1.00941 1.51448 3.38384 11.2888

Euler 1.00772 1.50286 3.31699 10.8346

Predictor-Corrector 1.00950 1.51590 3.39706 11.4146

Scenario f0 = 8%, σ = 14%, T = 10

Exact 1.00425 1.22798 1.82864 3.31703

Euler 1.00385 1.22591 1.82126 3.29160

Predictor-Corrector 1.00426 1.22810 1.82935 3.32039

Table 1: Table of moments for three different LIBOR-in-
arrears numéraire calculations.

analytic formulas for the moments of the
distribution. For a constant drift µη, the
moments resulting from the single-step
Euler approximation are

Ei[(fE
i )n] = fi(0)nenµ(0)e

1
2
n(n−1)σ̄2

i ti .

(15)
However, an analytic expression for the
predictor-correc-tor method is not possi-
ble, and the moments must be calcula-
ted numerically1. In table 1 we summa-
rize the moments of the distributions for
a small set of parameter scenarios. To

conclude the tests for the LIBOR-in-arrears case, we present two more diagrams in figure 2. The
graphs show by how much the cash flow associated with a single forward rate agreement is mispriced
in the Libor in arrears case when a single step is taken out to its reset time. Since we are interested
in the error in the forward rate agreement itself, the discounting that was applied to the cashflow
in the expectation calculation was undone, i.e. the figures show E

[
fη(T )Zη(T )

Zη(0)

]
− fη. In order to

give the reader a feeling for the significance of the deviation, the (non-discounted) vega curve of the
at-the-money caplet was added to the diagrams. Figure 2 makes the superior performance of the

1We used the NIntegrate function of Mathematica 3.0 for this purpose.
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Figure 2: The error in the (un-discounted) FRA for the LIBOR-in-arrears numéraire as a function of time
to expiry and volatility.

predictor-corrector method over the initial-value-constant-drift approach very clear: for volatilities
as high as 24% one could take steps of up to 45 years and incur a maximum error of a couple of basis
points in the forward rate which constitutes the typical bid-offer spread of a FRA. Of course, with
increasing volatility and time to expiry, the approximation will deteriorate. It is striking, however,
how much the drift error of a single-step simulation can be reduced by the predictor-corrector drift
method.

5 Numerical tests for far-out numéraires

In figure 3, we present the error incurred by a single-step Monte Carlo simulation for a whole
sequence of individual 3-month forward-rate agreements. The data used for this calculation were
the rates and volatilities as they prevailed in the Sterling market on the 23rd of October 2000. The
calibration resulted in the values a = −6.29%, b = 11.7%, c = 0.6, and d = 14.8% to be used
in equation (14), and a vector of 79 values for the ki (all being near 1) which we can supply on
demand2. Again, we give the (non-discounted) vega curve of at-the-money caplets for comparison.
All of the calculations were done with a zero coupon bond of 19.75 years to maturity as numé-
raire. For each calculation, 131072 sample paths were used in conjunction with a Sobol’ sequence
generator, and all of the simulations were well converged. Any slightly non-smooth variations of
the curves are a consequence of the variations of both the actual yield curve and the caplet implied
volatilities on that day. One can clearly see in figure 3 that the drift error of the single step Euler
method for short-dated caplets is negligible. In other words, for the given setting, the drift error
exceeds 2 basis points only when an initial step size of around 3 years is exceeded. Beyond that,
the Euler-stepping drift error becomes quite marked, peaking at around 12 basis points for 12-year
steps. This is to be compared with an absolute error of less than 2 basis points of the predictor-
corrector method even for such large steps in time. As the expiry of the caplet approaches the
maturity of the numéraire bond, the drift errors decrease again, to be zero exactly when the expiry

2The market data used for the calculation can be found in appendix A.
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time plus accrual period of the caplet equals the maturity of the numéraire bond (in which case we
speak of the natural numéraire of the FRA). The very last data point in the diagram is a caplet
with expiry in 19.75 years, and payment in 20 years, which is again the familiar LIBOR-in-arrears
numéraire case.

Trigger swaps, amongst other de-
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Figure 3: FRA errors for one and the same long bond (19.75
years) as numéraire from a single step Monte Carlo simulation
using either the (log-)Euler scheme or the predictor-corrector

scheme.

rivatives, lend themselves particularly
well to simulation out to a single time
horizon, that is a single step Monte
Carlo simulation. This is due to the
fact that the choice of a long dated
zero coupon bond (maturing on or af-
ter the reset time of the last trigger
FRA) as numéraire enables us to for-
ward all cash flows caused by a trig-
ger event to maturity of the numéraire
bond using the reset (i.e. fixing) value
of each of the forward rates. By virtue
of the high accuracy of the predictor-
corrector drift approximation, we do
not need to step through all the time
horizons of the reset times of all the
forward rates. Instead, we simply let
the instantaneous volatility curve of

each forward rate drop to zero at the time of its fixing. Using this approach, we can calculate
the covariance matrix of the evolution of the forward rates from the time of inception of the con-
tract directly out to the reset time of the last involved forward rate. In doing so we can, of course,
still sub-step in order to obtain a better numerical integration of the stochastic differential equation,
and we can choose the sub-stepping intervals arbitrarily rather than being forced to loop over all
of the individual reset times.

In figure 4, the convergence diagrams of pricing calculations for a 20-year quarterly trigger swap
is shown. This contract depends on a total of 80 underlying LIBOR rates, the first one of which had
already reset, i.e. was fixed. All of the remaining 79 forward rates were allowed their own individual
(correlated) Wiener process, which means that the trigger swap was priced with a 79 factor model.
The market parameters and the yield curve are the same as those used for the previous calculations
whose results were shown in figure 3. The trigger swap starts with the first trigger opportunity
being in 3 months from now, and then every three months until the last possibility being in 19.75
years from now. The strike was set at 6.5% and the trigger level (above which any single resetting
3-month LIBOR rate has to be in order to trigger in the swap) was at 7.5%.

Each curve in the diagrams represents the convergence behaviour for a given number of sub-
steps out to the time horizon in 19.75 years from inception. Note that the scale of the abscissa
of the convergence diagram is logarithmic. Since we used the Sobol’ low discrepancy sequence
with a Brownian bridge Wiener path construction, the conventional standard error estimate is at
best a conservative figure, and at worst meaningless. Therefore, we present convergence diagrams
that extend on a logarithmic scale way well beyond the point of the flattening of the convergence
curve in order to provide substantial comfort that the calculation has actually converged. We also
carried out simulations using other number generators and confirmed that the convergence levels
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Figure 4: Convergence diagrams of a trigger swap over the same set of spanning forward rates and the same
market parameters as used for figure 3. The times mentioned next to the number of sub-steps for each
curve is the cpu time taken for the first (1024 sample paths) and the last (1048576 sample paths) data point
on a PII@333MHz. Note that the abscissa is on a logarithmic scale. Whilst this means that many of the
calculations were carried out to excessive accuracy and thus required much longer cpu times than acceptable

in a trading environment, it provides substantial confidence that the curves are well converged.

are the same, albeit that conventional Monte Carlo sampling took significantly longer until the error
margin had sufficiently decreased. Next to the legend entry of any curve we give the cpu times the
first and the last data point took to calculate on a Pentium II at 333MHz. The calculation time is
almost exactly linear in both the number of steps and the number of sample paths used, with the
predictor-corrector calculations taking approximately twice as long as the Euler method.

It can be seen in the diagrams in figure 4 that as little as two steps to maturity suffice for the
price to converge to within 5 basis points accuracy when the predictor-corrector scheme is used,
whilst 32 substeps are needed for the Euler scheme to achieve the same. Taking into account
the additional effort involved in the predictor-corrector scheme, this still provides a speedup of a
factor around 8. What’s more, in practice, we are usually satisfied with the accuracy given by
the single-step predictor-corrector scheme (which is around 8 basis points here), but we would
definitely discard the single-step Euler approximation which produces an error of almost 100 basis
points in the given example. Using the single step predictor-corrector method, even this extreme
case of a trigger swap priced using 79 driving Brownian motions takes no longer than a few seconds
on what can already be considered out-of-date computing hardware. In comparison, recombining
multi-factor tree, lattice, or convolution methods, are rarely any faster than this, even though they
don’t allow for the fully flexible volatility structure accessible by the BGM/J modelling approach.

We also note in figure 4 that even with the predictor-corrector method there is a small but
noticeable price dependence on the number of steps. This reflects the fact that we are doing a
simple approximation to a subtle density which may affect the price for highly path-dependent
options. Similar effects can be observed when comparing the prices of barrier options from log-
normal models with the BGM/J approach where the (indirect) stochasticity of the drift terms gives
rise to slight variations.
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6 Conclusion

In this article, we compared the conventional log-Euler method for the integration of the stocha-
stic differential equation arising in the BGM/J interest rate modelling framework with a hybrid
predictor-corrector drift method. We paid particular attention to the special case of LIBOR-in-
arrears, not just because it is analytically tractable and enables us to explicitly compare the proba-
bility densities, but also because it is the basic building block of all convexity corrections. Careful
numerical tests in addition to our analysis provided overwhelming evidence that the new method
outperforms the conventional Euler stepping approach. Our overall summary of this article is that
the new predictor-corrector approach is a powerful enhancement of BGM/J Monte Carlo simulati-
ons.
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A Market data used in section 5
GBP - 23 / Oct / 2000 Number of FRAs Caplet

t Fra discountfactor in residual curve implied Volatility k

0 6.149% 1.00000

0.25 6.121% 0.98486 79 11.17% 1.08442

0.5 6.155% 0.97002 78 11.17% 0.94146

0.75 6.178% 0.95532 77 11.14% 0.84566

1 6.214% 0.94079 76 12.40% 0.87004

1.25 6.249% 0.92640 75 14.66% 0.96865

1.5 6.265% 0.91214 74 16.34% 1.03112

1.75 6.281% 0.89808 73 17.04% 1.03724

2 6.289% 0.88420 72 17.37% 1.02821

2.25 6.279% 0.87051 71 17.48% 1.01286

2.5 6.263% 0.85705 70 17.70% 1.00898

2.75 6.247% 0.84384 69 18.16% 1.02249

3 6.227% 0.83087 68 18.37% 1.02450

3.25 6.211% 0.81813 67 19.03% 1.05468

3.5 6.215% 0.80562 66 18.57% 1.02446

3.75 6.215% 0.79330 65 18.49% 1.01718

4 6.167% 0.78116 64 18.61% 1.02229

4.25 6.166% 0.76930 63 18.51% 1.01656

4.5 6.155% 0.75762 62 18.45% 1.01350

4.75 6.155% 0.74614 61 18.30% 1.00689

5 6.081% 0.73483 60 18.16% 1.00063

5.25 6.080% 0.72383 59 17.98% 0.99318

5.5 6.056% 0.71299 58 17.84% 0.98795

5.75 6.056% 0.70236 57 17.68% 0.98215

6 6.032% 0.69188 56 17.57% 0.97903

6.25 6.032% 0.68160 55 17.53% 0.98008

6.5 6.008% 0.67148 54 17.54% 0.98375

6.75 6.008% 0.66154 53 17.57% 0.98886

7 6.000% 0.65175 52 17.49% 0.98767

7.25 6.000% 0.64212 51 17.38% 0.98489

7.5 5.975% 0.63263 50 17.34% 0.98571

7.75 5.975% 0.62332 49 17.29% 0.98660

8 5.932% 0.61415 48 17.19% 0.98416

8.25 5.932% 0.60517 47 17.17% 0.98630

8.5 5.906% 0.59633 46 17.16% 0.98882

8.75 5.906% 0.58765 45 17.14% 0.99084

9 6.004% 0.57910 44 16.77% 0.97239

9.25 6.004% 0.57054 43 16.75% 0.97412

9.5 5.991% 0.56210 42 16.74% 0.97635

9.75 5.991% 0.55381 41 16.71% 0.97757

10 5.838% 0.54563 40 16.76% 0.98302

10.25 5.835% 0.53779 39 16.71% 0.98269

10.5 5.805% 0.53005 38 16.69% 0.98442

10.75 5.805% 0.52247 37 16.65% 0.98481

11 5.793% 0.51500 36 16.70% 0.99004

11.25 5.793% 0.50765 35 16.67% 0.99028

11.5 5.765% 0.50040 34 16.64% 0.99097

11.75 5.765% 0.49329 33 16.61% 0.99170

12 5.598% 0.48628 32 17.15% 1.02578

12.25 5.598% 0.47957 31 17.06% 1.02284

12.5 5.561% 0.47295 30 17.07% 1.02569

12.75 5.561% 0.46646 29 16.99% 1.02257

13 5.518% 0.46007 28 16.93% 1.02117

13.25 5.518% 0.45381 27 16.87% 1.01938

13.5 5.480% 0.44763 26 16.81% 1.01770

13.75 5.480% 0.44158 25 16.74% 1.01557

14 5.435% 0.43561 24 16.68% 1.01325

14.25 5.435% 0.42977 23 16.60% 1.01044

14.5 5.396% 0.42401 22 16.53% 1.00770

14.75 5.396% 0.41837 21 16.47% 1.00571

15 5.390% 0.41280 20 16.35% 1.00000

15.25 5.390% 0.40731 19 16.33% 1.00000

15.5 5.339% 0.40190 18 16.31% 1.00000

15.75 5.338% 0.39660 17 16.28% 1.00000

16 5.280% 0.39138 16 16.26% 1.00000

16.25 5.280% 0.38628 15 16.24% 1.00000

16.5 5.236% 0.38125 14 16.22% 1.00000

16.75 5.236% 0.37632 13 16.20% 1.00000

17 5.191% 0.37146 12 16.18% 1.00000

17.25 5.191% 0.36670 11 16.16% 1.00000

17.5 5.150% 0.36200 10 16.14% 1.00000

17.75 5.150% 0.35740 9 16.12% 1.00000

18 5.100% 0.35286 8 16.10% 1.00000

18.25 5.100% 0.34842 7 16.09% 1.00000

18.5 5.057% 0.34403 6 16.07% 1.00000

18.75 5.057% 0.33974 5 16.05% 1.00000

19 5.024% 0.33549 4 16.04% 1.00000

19.25 5.024% 0.33133 3 16.02% 1.00000

19.5 4.976% 0.32722 2 16.00% 1.00000

19.75 4.976% 0.32320 1 15.99% 1.00000

20 0.31923
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