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Abstract

An important recent development in the pricing of interest rate derivatives is the emer-
gence of models that incorporate lognormal volatilities for forward Libor or forward swap rates
while keeping interest rates stable. These market models have three attractive features: they
preclude arbitrage among bonds, they keep rates positive, and, most distinctively, they price
caps or swaptions according to Black’s formula, thus allowing automatic calibration to market
data. But these features of continuous-time formulations are easily lost when the models are
discretized for simulation. We introduce methods for discretizing these models giving particu-
lar attention to precluding arbitrage among bonds and to keeping interest rates positive even
after discretization. These methods transform the Libor or swap rates to positive martingales,
discretize the martingales, and then recover the Libor and swap rates from these discretized
variables, rather than discretizing the rates themselves. Choosing the martingales proportional
to differences of ratios of bond prices to numeraire prices turns out to be particularly convenient
and effective. We can choose the discretization to price one caplet of arbitrary maturity without
discretization error. We numerically investigate the accuracy of other caplet and swaption prices
as a gauge of how closely a model calibrated to implied volatilities reproduces market prices.
Numerical results indicate that several of the methods proposed here often outperform more
standard discretizations.
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JEL classification: G14, F43
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1 Introduction

A major development in the modeling of interest rates for pricing term structure derivatives is the
emergence of models that incorporate lognormal volatilities for forward rates while keeping rates
stable. It was noted by Heath, Jarrow, and Morton [11] that in the general class of models they
developed based on continuously compounded forward rates, lognormal volatilities lead to rates
that become infinite in finite time with positive probability. By working instead with various types

of discretely compounded rates, Sandmann and Sondermann [23, 24], Brace, Gatarek, and Musiela



[5], Goldys, Musiela, and Sondermann [10], Miltersen, Sandmann, and Sondermann [19], Musiela
and Rutkowski [21], and Jamshidian [14, 15] have overcome this difficulty and developed well-
posed models that indeed admit deterministic diffusion coefficients for the logarithms of forward
rates — i.e., lognormal volatilities. The rates themselves are not simultaneously lognormal, but
each becomes lognormal under an appropriate change of measure.

This class of models — often referred to as market models because of their consistency with

market conventions — have three principal attractions:

o they preclude arbitrage among bonds (and just as in the HIM [11] framework this means that

the drift is determined once the volatilities are specified);

o they keep rates positive (a consequence of the lognormal form of the volatility that further

precludes arbitrage between bonds and cash);

o they price caplets or swaptions according to Black’s [3] formula, consistent with market prac-

tice.

The first property corresponds to what Musiela and Rutkowski [20] call a weak no-arbitrage con-
dition and the first two together make up their full no-arbitrage condition. The last feature means
that the models are easily calibrated to market data. Market participants quote caplet and swap-
tion prices according to their Black implied volatility; if these implied volatilities are used as inputs
to a market model, market prices are recovered exactly.

These attractive properties must, however, be understood as features of continuous-time mod-
els. (Though discretely compounded, the forward rates evolve continuously). Pricing complex
path-dependent instruments in these models typically requires numerical computation and thus
discretization. A casual discretization can easily lead to a model without any of the three at-
tractive properties identified above. Since it is ultimately the discretized model that is used for
pricing, the theoretical advantages of the continuous-time models are potentially lost in practice.
The gap between the discretized and continuous models can be substantial because rather coarse
time discretizations (e.g., with an increment of three months) are frequently used in practice.

This paper develops discretizations of lognormal forward Libor and forward swap rates that
preserve some, though not all of the attractive features of the continuous-time formulations, and
appear to be substantially better than naive discretizations in several respects. We put particular
emphasis on discretizations ensuring that bond prices deflated by a numeraire asset are martingales,
since this is the key condition for the absence of arbitrage.

There is a well-established practice in the derivatives industry of making adjustments to dis-

cretized versions of continuous-time models to keep them arbitrage-free. In the open literature,



such adjustments are commonly found in binomial models (e.g., [12]) where the discretization is in
both time and space. They seem to be less commonly employed in the Monte Carlo setting, where
the discretization may be in time alone. In simulating an HIM model using an Euler discretization,
a simple adjustment to the drift (reviewed in Section 2) keeps the discrete model arbitrage-free;
this adjustment appears to be widely known in the industry. It may be viewed as a special case of a
general strategy of solving for the correct higher-order adjustment to an otherwise straightforward
discretization.

For reasons that will be made clear in Section 2, this strategy is inapplicable to the simulation of
forward Libor and forward swap rates; depending on the discretization used, the desired adjusment
may not exist or may be intractable. We therefore develop a different strategy. For each model,
we find a change of variables that can be discretized in an arbitrage-free way and simulate those
variables instead, easily recovering the original Libor and swap rates along the way. For example, the
variables may be ratios of bond prices to the price of a numeraire asset, linear combinations of these
ratios, or logarithms of linear combinations. In several cases, the new variables are martingales if
and only if the model is arbitrage-free. This obviates the need to make a higher-order adjustment to
the drift to keep the model arbitrage-free — both the discrete and continuous drift are fixed at zero.
We also show how to develop discretizations that keep Libor and swap rates positive. And while it
does not seem possible to simultaneously price caplets of all maturities without discretization error,
we show how to simulate forward Libor rates to eliminate bias in any one caplet (not necessarily
the last). This flexibility may prove useful in adapting the choice of discretization to the instrument
to be priced.

There is, of course, a large literature on discretization schemes for stochastic differential equa-
tions that accelerate convergence to continuous-time limits; see, e.g., Kloeden and Platen [17]. We
view our approach as a complement rather than an alternative to these methods. For example,
although we detail only Euler discretizations of our transformed variables, one could also consider
higher-order discretizations like those of Milstein [18] and Talay [26]. This would potentially fur-
ther reduce discretization error while continuing to preclude arbitrage. At the same time, simply
applying a higher-order discretization to the original continuous-time equations would not by itself
make the discretized process arbitrage-free.

The rest of the paper is organized as follows. Section 2 reviews background on lognormal models
of forward Libor and the discretization of continuous-time term structure models. We work within
the discrete-tenor formulation of Jamshidian [14, 15] and Musiela and Rutkowski [20, 21] because
it is the best suited for simulation. Section 3 develops discretizations in the terminal measure used

by Brace, Gatarek, and Musiela [5] and Musiela and Rutkowski [20, 21], in the spot Libor measure



introduced by Jamshidian [14, 15], and in a hybrid that provides the flexibility to choose the bias-
free caplet. Section 4 carries out a similar analysis for swap rates, first discretizing in the terminal
measure, then in the spot Libor measure. In Section 5, we numerically compare our discretizations
with more standard approaches. We also take the arbitrage-free requirement one step further by
enforcing it in finite samples. We argue that the feasibility of such a finite-sample adjustment
depends critically on our discretization approach and observe through numerical examples that it

can lead to substantial variance reduction. All proofs are deferred to an appendix.

2 Preliminaries on Lognormal Libor Models

We begin with a brief review of discrete-tenor formulations of Libor market models based on finitely
many bonds, as developed by Jamshidian [14, 15] and Musiela and Rutkowski [20, 21]. The tenor

structure is a finite set of dates
0=To<Th < - <Tn<Tnu1

representing maturities spaced, e.g., three months or six months apart. We will assume throughout
that the day-count fractions 6; 2 Tiv1—T;,1=0,...,N, are all equal to a fixed ¢ (e.g., 6 = 0.25
vears). In practice, day-count conventions would make these slightly different; we use a fixed §
merely to lighten the notation. Define a right-continuous function n : [0, Ty41) — {1,...,N + 1}
by taking n(t) to be the unique integer satisfying

Thiy—1 <t < Ty

Associated with each tenor date T; is a zero-coupon bond maturing at that date; B;(t) is the price
of that bond at time ¢ € [0, T;] and B,;(T;) = 1.
The forward Libor rate at time t for the accrual period [T}, T;41], t < T; is
1/ Bt
Li(t):5<#§&)—1>, i=1,...,N. (1)
It is at times notationally convenient to extend the definition of L; beyond the ith tenor date; we
do so by setting L;(t) = L;(T;) for t > T;. At a tenor date T; the price of any bond B,,, n > i, that

has not yet matured is given by

o 1
B jl:[ L+ 6Li(T;)

more generally, at an arbitrary time ¢ < T}, we have

By(t) = H( +5L T (2)



As discussed by Jamshidian [14], this reveals an indeterminacy in the model: the bond prices cannot
be fully recovered from the forward Libor rates alone, because between tenor dates the forward
Libor rates do not specify how to discount back from the next tenor date to the current time. The
indeterminacy is removed by the choice of numeraire asset; different choices of numeraire lead to
different constructions of the forward Libor processes.

In the constructions we consider, the forward Libor processes are determined by a stochastic

differential equation of the form
dL,(t)
La(t)

in which W is a standard d-dimensional Brownian motion, the L, (0) are deterministic, and A,, ()

=...dt+ X (t)dW, n=1,...,N, (3)

are bounded, deterministic d-dimensional row vectors having at most finitely many discontinuities.
This is what is meant by a lognormal specification of the volatility. The drift in (3) is determined
by the choice of numeraire. (Throughout, we use W; to denote a standard Brownian motion under
the measure relevant to the context, rather than introduce a separate symbol for Brownian motion
under each measure. This notational simplification should not cause confusion because we seldom
consider more than one measure at a time.) If M is a strictly positive semimartingale, then to
construct forward Libor in the measure associated with numeraire M is to choose the drift in (3)
so that the deflated bond prices

b 2 21

which then precludes arbitrage from trades among the bonds. This is the weak no-arbitrage con-
dition of Musiela and Rutkowski [20]. See Musiela and Rutkowski [20, 21] and Jamshidian [15] for

a thorough development of these issues, and see Duffie [7] and El Karoui, Geman, and Rochet [8]

n=1,...,N+1, are martingales, (4)

for background on changes of numeraire and changes of measure.
Taking M; = Byn41(t) leads to the construction of forward Libor in the terminal (or forward)

measure used by Musiela and Rutkowski [20], in which

dL,(t) S SN (1) Li(t) -
L,(t) - _7_:;_1 1+ 6Li(t) dt + M\, (t)dW;, n=1,...,N, (5)

and in which the deflated bond prices become (cf. (2))

N
Dy(t) =[] (1 +6L;(t)), n=1,...,N+1. (6)
j=n
Under this measure, the time-0 price of a security paying ¢ at time 7, is
N
By 41(0)ECDW(T,)] = By 41 (0)E | ¢ [] (1+8L;(T)) (7)
Jj=n




(Here and throughout, we use E to denote expectation under whatever measure is relevant to the
context — in this case, the terminal measure.)
Jamshidian [14, 15] introduces the numeraire

By () "t By(T)

Bi(0) 5 Bjn(Ty)

B*(t) =

which may be interpreted as the result of buying 1/B1(0) bonds at time 0 maturing at 77, and
then at each tenor date selling the bonds that matured and investing the proceeds in the bond that
matures next. (Jamshidian’s  is left-continuous but for discretization the right-continuous version
will be preferable.) This is thus a discretely compounded analog of the money market account that
gives rise to the usual risk-neutral measure in, e.g., Heath et al. [11] and numerous other settings.

From B*, Jamshidian defines the spot Libor measure in which

dLn(t) 2 S (BN (1) Li(t)

—t = dt + A (t) dWr, =1,...,N.
T = 2 T ageng Ut dWe ®)
i=n(t)
The deflated bond prices become (cf. (2))
n—1 1
D,(t) = B —  n=1,...,N+1
0 = 8O 5 " v O
7j=1
n(t)—1 1 n—1 1
= B(0) )
0 it i

and the time-0 price of a security paying ¢ at time T,, is

n—1
ERDuT) = 502 < T H%(T)} . (10)
j=1
In Section 3.3, we introduce a hybrid of these two numeraires.

In a Monte Carlo implementation, we deal not with the continuous-time processes L,, but with
some approximation Ly, defined on a finite set of times 0 =ty < #; < --- < 5 and then possibly
extended to all times in [0, ;] by interpolation. For simplicity, we will take the ¢; to be evenly
spaced and further assume that their common spacing h divides the tenor spacing §. This ensures
that the tenor dates are among the simulated dates without burdening the notation. We call a
discretization arbitrage-free if the discrete deflated bond prices D,, defined by replacing L,, with
L, in (6) or (9) are discrete-parameter positive martingales on {0, h, 2h, .. .}.

This condition is by no means automatically satisfied. In particular, it is violated by the

standard Euler scheme

Lo((G + Dh) = Lu(jh) + Lu(§h) pn(Gh)h + Lo (GR) A (GR) Wi 119n — Winl, (11)



(with gy, the drift in either (5) or (8)) and also by the discretization

A A

LG+ D) = L) exp ([ 1a(7h) = 00 GG | B+ G0 W = Wil ). (12)

which corresponds to an Euler scheme for log L,,. (Because we take n to be right-continuous, if
jh = T then in computing p,(jh) according to (8) the summation starts at ¢ = k + 1 rather than
i = k. This is consistent with the recommendation in Sidenius [25].)

Similar issues arise in discretizing other models, but it is informative to contrast this setting with
the closely related HIM framework. A continuous-time HJM model (with scalar W; for simplicity)

sets

dfr(t) = pr(t) dt + op(t) dWy,

with fr(t) the forward rate for [T,7 + dT'| as of time ¢ and

pr(®) =21 [ ou(t) du (13)

under the risk-neutral measure. This choice of drift ensures that the deflated bond prices

exp <— '/tT fu(t) du)/exp <'/0t Su(uw) du)

are martingales (in ¢) under the regularity conditions detailed by Heath et al. [11]. Given a dis-
cretization fih(jh) in both time and maturity, the corresponding discrete no-arbitrage condition
reduces to

e~ Fnmh g 1o > Fin(G+DIhy _ = > Fin(i)h (14)

with Ej;, denoting expectation conditional on the history of the process over {0, h,...,ih}. This

condition will not be met by the Euler scheme
Fin(Gi+1D)h) = fin(h) + fgn(ih)h + o jn(ih) Vg1, (15)

with /i defined by replacing integration in (13) by summation and with vh& 1 = (Wiit1yn — Win].
Nevertheless, starting from a specification of the forward rate volatilities and inductively enforcing
(14) one can solve for the ji that satisfies (14) when the forward rates are simulated via a modified

Euler scheme that replaces fi with & in (15). The appropriate modified drift is

j 2 i1 2
fijn(ih) :g ( > Ukh/(ih)> - ( > Ukh,(ih)> ; (16)
k=it

k=i+1



this is a straightforward consequence of the fact that the conditional expectation in (14) involves
only the expectation of the exponential of normal random variables, which is available explicitly.
Formally letting h~ — 0 in this expression while holding # = 7h and T = jh yields

2
%% VtT u(t) d”] = or(t) /tT ou(t) du = pup(t). (17)

The modification to the drift is therefore negligible as h — 0 but for A > 0 is just enough to keep
the discretized model arbitrage-free. This adjustment is derived in Andersen [1] (in a more general
form that does not assume the same discretization for calendar time and maturity) and in Hull
[13].

An attempt to apply a similar adjustment to a forward Libor process is quickly defeated. To
make the discretization of (9) a martingale by replacing the p,, in (11) with some fi,, we would need

in particular (taking n = 2)

1 1
1+ 6L1(0)(1 + 1 (0)h + VEAL(0)E1) | 14 6L1(0)’

& ~ N(0,I);

but the expectation on the left is infinite for all choices of i1 (0). Using (12) (again with u,, replaced
by some [i,) entails, at a minimum, quantities of the form E[1/(1 + exp(X))] with X ~ N(a,b)
— an expression involving three infinite trigonmetric series (equation (56) of Johnson [16]). The
necessary adjustment quickly becomes intractable. One could replace the normal &; with, say,
Bernoulli increments without affecting the validity of the Euler scheme ([17, p.458]), but even this
does not lead to a tractable drift correction. Enforcing conditions on the apparently simpler case

of (6) becomes unmanageable too. A different approach is required.

3 Discretization of Forward Libor
3.1 Terminal Measure

Rather than discretize forward Libor and try to enforce the martingale property indirectly, we
simulate suitable martingales directly and then recover discretized Libor from these. There is some
flexibility in the choice of martingales and this can be used to advantage; differences of deflated
bond prices will turn out to be particularly effective and convenient. We begin with the specification

of forward Libor in (5), corresponding to the dynamics under the terminal measure. Set

N

Xalt) = Lo(t) TI (14 8Li(1)) = $(Dult) ~ Dua(1), n=1,....N. (18)
i=n-+1



Lemma 1 Fach X,, is a martingale and satisfies

ix, ( 5X);

Xn Ant Z 1+0X;+-

dw. 19
P e

Also,
Xn

1+ 6Xpi1 +-+6XN

(20)

n —

This immediately suggests an algorithm for arbitrage-free simulation: simulate a discretization

of the X,,, ensuring that the discretized process remains a martingale, and then use (20) to define

A

IA/ _ Xn
14 6Xpi1+--+6Xy

(21)

The discretized deflated bond prices (cf. (6))
N N
H1+§L =14+6) X; (22)
j=n j=n

are automatically positive martingales because the X j are. Enforcing the martingale property on
X, is straightforward and circumvents the need to make a drift adjustment to the L. Indeed, even
an Euler discretization of X, preserves the martingale property. We will see in Theorem 1 below
that discretizing log X, instead will keep the Libor rates positive. We use a modified Euler scheme
that accounts for time-varying volatilities. First, let A(#) be the N x d matrix with nth row equal

to Ap(t), n=1,...,N. With h fixed, let A(zh) denote any solution to the equation
. . 1 rh
AmAgny = 5 / AGih + u)AGih + ) du (23)
2 Jo

and let A, (ih) denote the nth row of A(ih). Now set

5o 5o 1 . . .
Rn((i + 1)h) = X (i) exp <-§an, (0o’ (im)h + Vhorg. (m)giH) (24)
with N .
5 OX A,
O'Xn =\, + Z = J7J —, (25)
o LH6X + -+ 60Xy
and &1, &, . . ., independent standard normal d-dimensional vectors. (The &; could be replaced with

other random vectors satisfying moment conditions discussed in Kloeden and Platen [17, p.458]
and Talay [26, p.307] but normal inputs give a better approximation to the desired distribution,
particularly when h is not very small.) This differs slightly from a standard Euler scheme for log X,

which would use \;(ih), j = n,..., N, in (25) rather than A;(ih). The two would coincide (or could



be made to by choosing A = A) if the ), were constant functions of time ¢. Over each interval
[ih, (i + 1)h), the scheme in (25) freezes the stochastic elements of the diffusion coefficient at their
values at ih but uses the average over the interval (in the sense of (23)) of the deterministically
time-varying elements. In practice, the distinction is unlikely to matter because in calibrating to
a finite number of cap prices one would typically choose piecewise constant A,, for which the two
methods are the same. The formulation in (25) is slightly more convenient for our analysis.

In Section 1 we noted that the defining property of market models of forward Libor is that they
price caplets according Black’s formula, the industry convention (cf. [5, 14, 15, 19, 21]). This means
that using implied volatilities for the A, automatically calibrates the model to market prices. This,
however, is strictly true only for the continuous-time forward Libor process; we examine the extent
to which it remains true after discretization.

Let

(26)

C(o, K, r,b,T) = 6b [@ <1°g(7“/K) + %UQT> ke <10g(T/K) — %aQTﬂ |

oT oT
with ® the standard normal cumulative distribution. This is Black’s formula for the price at time
0 of a caplet covering the interval [T,T + ¢], settled at time T + ¢ and struck at K, when the
forward rate at time O for [1,7 + ¢] is r, the implied volatility is o, and the price of a discount
bond maturing at 7'+ § is b; see, e.g., [21, §15.3] or [22, §1.4]. The expression in square brackets
on the right side of (26) evaluates

El(re 37 THoVTE _ k)4 €~ N(0,1). (27)

In terms of forward Libor, the payoff on a caplet over [T, T, +1] (received at time Ty,41) is §(Ln(Th)—
K)T. Under the terminal measure PN*+! associated with Ty 1, the time-0 value of a payoff of ¢
(say) at time 7,41 is By+1(0)E[¢/Bn+1(Th+1)]. Using superscripts on expectations to emphasize

the underlying measure, we have

N1 ¢ _ ~Na1 [~ Bot1(Tos1) Bn11(0)
Bra(0)F |:BN+1(T77,+1):| = Bun(0OF |:CBN+1(TT7,+1>B77,+1(0>

1>

Br1(0)E" (]

where the new measure P"*! is defined by

dpntl _ Bni1(t)Bn41(0)  Bn41(0) Al .
<dPN+1>t " Bni1(t)Bni1(0)  Bn:1(0) jl;[ﬂ(l + 0L;(t)). (28)

It follows from (28) that L, is a martingale under P"*! because X, is a martingale under PN+!

(in fact, P"*! is just the terminal measure associated with 7}, 11), so Girsanov’s theorem implies

10



that dL,, = A\pLy, dW under P"*! (W here denoting a standard Brownian motion under P"+1).
Consequently, the price of the nth caplet is
By () EVS(Ln(Ty) = K)Y /By (Tus1)] = 6Bus1(0)E" M (Ln(T) — K)*)

e C(An(Tn)7 K7 Ln(o)v Bn—|—1 (0>7 Tn)v

with
t

- 1
20 = / A ()N, () du,
L J0
using (26) and (27).
The pricing rule in the discretized model replaces D,, with D,, in (7). The price of the caplet is

N
By41(0)E[S(L(T,) — K)Y [ (1 +6L;(Ths))).
j=n-+1

Under our discretization (but not (11) or (12)), the product inside this expectation (which is simply
lA)n_,_l) remains a positive martingale even after discretization. Thus, it may still be used to define
a new measure, and L, is a martingale under this measure (Theorem 1(iii), below). Again, we
stress that this is a specific consequence of the scheme in (21) and (24) and would not hold under
standard discretizations of forward Libor.

At this point, however, we encounter a fundamental difference between discrete and continuous
time. In continuous time, any absolutely continuous change of measure that makes L, a martingale
must in fact make L,, lognormal. But in discrete time an absolutely continuous change of measure
for &1,&o, ..., &, may not simply correspond to a change of mean. So, we cannot conclude from the
fact that L, is a martingale under the new measure that it is lognormal under the new measure.
Indeed, to accomplish this would require that both log L,, and log D,, be linear in the &, and this
is clearly not possible. Thus, we cannot expect all caplets to be priced simultaneously by Black’s
formula in a discretized model; but the arbitrage-free discretization above arguably brings us closer
to this ideal by at least ensuring that each L, is a martingale in the discrete terminal measure
associated with T),41. We return to this issue in Section 3.3, in part (iv) of Theorem 1, and in the
numerical results of Section 5.

It remains to address the question of whether the L, defined above, in addition to having
various desirable properties already noted, actually bear some relation to their ostensive continuous-
time counterparts. To formulate a convergence result, it is useful to extend the definition of the
discretized variables to the interval [0,Tn11]. Proceeding by induction on i, over each interval

[ih, (i + 1)h) we may construct the solution to

) _ 5+ S 6X (i) (1)

X, (1) LT L+ 8XG(ih) + -+ + 6 XN (ih)

AWy (29)

11



and if we take Vh&i1 = Wiis1yn — Win then (24) will indeed coincide with the solution to (29)
at every grid point ih. We can apply (20) to obtain interpolated L, from X,. This makes L a
random element of Cr~ [0, Tiv11], the space of continuous functions from [0, T 1] to RY. Endow
this space with the topology of uniform convergence. Let P, be the measure on this space induced
by L and P that induced by L. Let = denote weak convergence. We summarize properties of Lin

the following result.

Theorem 1 (i) The discretization (18)-(21) makes the deflated bond prices D discrete-time positive
martingales and is thus arbitrage-free. (ii) The L,, remain strictly positive, almost surely. (iii)
For each n, {Ln(ih),i = 1,2,...} is a martingale with respect to the measure Pny1 defined by
AP = [(By11(0)Dpy1/Bny1(0)]dPNTL (i) The last caplet is priced without discretization
error; i.e.,

Bn41(0)8E[(Ln(Tn) — K)™] = C(AN(T), K, Ly (0), By+1(0), T );
(v) Pp =P as h — 0.
We conclude our discussion of discretization in the terminal measure with some remarks about

an alternative discretization. We could enforce the absence of arbitrage by directly discretizing the

deflated bond prices D,,, rather than the X,,. Observe that

dDy,
Dy

N
oL;
Zl+6L Aj AW

Suppose, for simplicity, that W; and the A;(#) are one-dimensional. This suggests the martingale

discretization

Dulli +1)h) = Du(ib)exp | —5 (Z %Axvm) oty lj@—% A |

with the & independent standard normals. Using (6), we can solve for the L,, to get
(1+ 6L, ((i +1)h)) =

- 1 & 6Li(ih) , R S6L;(ih) . i
(14 6L, (ih)) exp 5 _Z 1—')/\]-(7/}1/) h—5 Zlf&-(m) h

+
X exp <M (7h)h£7+1> (30)

1+ 6Ly (ih)

12



Simulating not L, itself but rather 1+ 6L, in this way thus leads to an alternative arbitrage-free

discretization. The expression in the exponent

2 2
h N L N SL(
(g ) (3 ahn
jon1 L+ 6L;(ih) jon LHOL;(ih)
is reminiscent of the adjusted discrete HJM drift (16). Indeed, one could view this as the appropriate
drift adjustment to keep an Euler scheme for log(1 + 6L,,) arbitrage-free. A drawback of this

discretization, compared to the one based on X,,, is that while it ensures that 14 6L, stays positive,

it does not ensure that L, itself stays positive. We compare them numerically in Section 5.

3.2 Spot Libor Measure

For discretization in the spot Libor measure, we introduce the variables

1

Ya(t) = T80,

n—1 N
Vat)=(1=Y,(t) [[Yi(t), n=1,....,N, and Vyyi=]]Yi(t)
= i=1

An expression for the deflated bond prices D,, was given in (9), from which it follows that V,,(t) =
(Dy(t) — Dpsa(t))/B1(0). Under our convention that L, (t) = L, (7T,) for t > T, the definitions
of Y, V,, and D,, extends to all of [0,Tny1]. We record some additional useful formulas in the

following lemma.

Lemma 2 Under the spot Libor measure, each Vy,, n=1,..., N 4+ 1, is a martingale and satisfies
dvy, %,+Vn,1+---+1/1—1> "1< Vi >

= An + Ai| dW, 31

Va < Vii+-+Vi—1 ! 2;7 Vig4--+Vi—1)"" (31)

with the convention A1, = 0. Also,

dDpi1 & <Di—|—1 )
e —— — 1) A\ dW, 32
Dy 72;7 D; (32)
n N+1
Dus = By(0) (1—2%) -5 Y ). (33)
i=1 i=n-+1
and
Dn - Dn,+1 Vn
6L, = ——— = 34
’ Dy 1-V,—-=-W (34)
Va
= : (35)

Vg1 + -+ Vit
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At first sight, (31) and (32) may seem problematic; in each case, multiplying both sides by the
denominator on the left makes plain that the diffusion coefficient as written fails to be Lipschitz.
This however is only a matter of appearance and is easily circumvented. An obvious consequence
of (8) and (9) is that D; > D;iq1 > 0 throughout [0,T;], so (32) is unchanged if we write it as
dDyy1 = Dpyiop, ., AW, with

n D
ODpi1 = — Z ¢ <1 - 17;_1) Ai (36)
i=n ’
and ¢(z) = min{1, 2" }. Similarly, we can use (33) in (31) to write (with the convention Dy,o = 0)
AV | Dpy1, 2 Di=Dig
S e W N i L5 WY P
Va D, " ;7 D; i A

and thus dV,, = Vyoy, dW with
oy, = [(ﬁ( n+1> A, - Z¢<D Dz+1> )\Z}

Vn+Vn1+-~+Vl—1> - < Vi >
- An — A 37
¢< Voa+--+Vi—1 ’ ;7(’5 -V, ——-W (37)

Rewriting the equations this way makes the diffusion coefficients op, D,, and oy, V,, Lipschitz func-

tions of the D; and V; respectively without affecting the continuous-time dynamics.

Lemma 2 suggests several possible discretizations. We can set
. . 1
Vo ((i+ 1)h) = V,(ih) exp <—§0 (ih)a, (th)h + oy, Zh)\/ﬁ@q_l) ) (38)
with oy, as in (37) but with the V; replaced by Vi and \; by \i; or we can set

Do((i + 1)h) = Dy (i) exp <—%aﬁn (i), (ih)h+ g, (ih)\/ﬁfiH) , (39)

with o the corresponding quantity from (36). Using (39), we then recover discretized forward
Libor rates L, from the first equality in (34). Using (38) and the second equality in (34) we can
set

§L, = _ Va —, n=1,...,N, (40)

leading (via (9)) to

n—1
D, = B1(0) <H 1 +16L ) <1 _ Z v) (41)

14



Alternatively, we can use (35) to define

5L, = i
Y Ve 4+ Vv

n=1,...,N. (42)

In continuous time, Vj + -+ + Vyy1 = 1 (this is implicit in (34)-(35)), so

D, (t) = B1(0) <ﬁ T1L7(t)> (Vi(t) + -+ V(1)

is equivalent to the representation of the deflated bond prices in (9). We may therefore choose to

define the discrete deflated bond prices as

n—1 1

11 m) (Vi4- 4 Vi), (43)
i—1 i

Dy, = Bi(0) <

which simplifies to

D), = B1(0) > Vi (44)

Depending on whether we use (40) or (42), we replace D,, with D,, or D/, in the pricing rule (10).

We summarize properties of the discretizations in this section in the following result. Interpolate
V and D to continuous time the way we interpolated X in the previous section. Let 75h, Py, and
P}, be the measures on CRra[0, Ty+1] associated with the interpolations of L, L, and L' resulting
from (34) (40) and (42), respectively, and let P denote the corresponding measure induced by L

under the spot Libor measure.

Theorem 2 (i) The discretizations above make the deflated bond prices D and D, and D' discrete-
time martingales. (i) The D,, are decreasing in n, the D, remain positive, and the D!, are both
positive and decreasing in n. (iii) The L., are positive. (i) Each Ly, is a discrete-time martingale
with respect to the measure ]5,7,_,_1 defined by d]:’n_,_l = (Bl(O)lN)n_,_l/BnH(O))dP*, with P* the spot
Libor measure. Each L;, is a discrete-time martingale with respect to the measure P, defined by

dP! = (B1(0)D),1/Bns1(0)dP*. (v) As h — 0, P, = P, P, = P, and P} = P.

This result suggests that the discretization of V;, combined with (42) and (44) is the most
attractive from a theoretical viewpoint. It makes the deflated bond prices positive martingales and
it keeps all forward Libor rates positive. Numerical results in Section 5, however, indicate that there
are sometimes advantages to using V,, with (40) and (41). None of the caplets is priced exactly by
Black’s formula under any of these discretizations, essentially because no L,, is a martingale under

the spot Libor measure. This motivates the approach of the next section.
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3.3 A Hybrid Numeraire

We saw in Section 3.1 that it is possible to discretize forward Libor in a way that prices caplets over
[Tn, Ty + 6] without discretization error. By letting the strike vary, we see that this is equivalent
to the statement that the distribution of Ly (T) coincides exactly with that of Ly(Ty) under the
terminal measure (indeed, the distributions match at all grid points). It is possible, however, that
one may want to price a Libor derivative that depends on the entire tenor structure 77, ..., Ty and
vet for which one is most concerned about getting the distribution of some intermediate L,, correct,
rather than Ly. To accomplish this, we introduce a family of numeraires and an associated family
of measures.
For any m=1,...,N 4+ 1, define

Bm,(t)a t < En;

B (t) = , (45)
By T s 52— ¢ > T

This is the value of a trading strategy that holds one unit of the bond maturing at 7, until
maturity and at each subsequent tenor date rolls the proceeds over into the next bond to mature.
With m = N + 1 we get the terminal bond and with m = 1 we get Jamshidian’s numeraire (up to
a factor of 1/B1(0)). Thus, (45) may be viewed as interpolating between the extremes of the spot
Libor and terminal numeraires.
Since B, can evidently be realized by a self-financing trading strategy, B}, /Bn41 is a positive
martingale under the terminal measure PV*!. Define a new measure P by setting
< ary, ) _ B.(#)Bn11(0)
dPNtY ), Bnyi(t)By,(0)

Lemma 3 The dynamics of forward Libor under P}, are as follows: forn =1,...,m —1,

dL, mz‘:l SLiNiM,

———dt + X\, dWy;
Ln S 1+ 0L
and forn=m,...,N
dL, v 2 4t N AWy on [0, Tin)
Ln ?:77 5{/—?—)(;12‘1{/1 dt + >\'n, de on [En; TN—O—l}-
In particular, L,,_1 is a martingale under P}, m =2,..., N + 1.

To construct a discretization, we introduce

LTI (L4 6L;),  n=1,...,m—1,

T = 2 =
Lo iy (1 +6L) ™Y n=m,....N +1,

n
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with the convention that Lyy1 = Ayy1 = 0. Clearly, Z, coincides with X, from Section 3.1 for
n < m and with V;,/6 from Section 3.2 for n > m. (We could alternatively have constructed Z,, for

n > m to parallel D,,; this would lead to an alternative discretization.)

Lemma 4 The Z, are martingales and satisfy dZ, = Z,0z, dW with

m—1 6Z7 ) — —
An 2l TH6Z T 67y N nebeemet (46)
Cy =
n 8Zn+6Zn—14+6Zm—1 n—1 8%; , _
(Sstintetln= ) 5 4 S (7t ) Mo n=m,. . N+ 1.
Also,
Zn — _
Tz ez T 1,...,m—1,
L,= i (47)

Sy . n>nVm.

The discretization scheme suggested by this result sets

1
Zn((i +1)h) = Z,(ih) exp <_§UZ,, (ih)oy, (ih) + oy (ih)\/ﬁfi_,_l)

(with o equal to oz, but with Z and A replaced by Z and ;\) and then applies (47) to recover
discretized Libor rates L, from Z,. We have chosen the representation in (47) to be consistent
with (21) for n < m — 1 and consistent with (40) for n > m, though we could consider other
combinations of the schemes in Sections 3.1 and 3.2. The properties of this discretization are minor
modifications of the ones in Theorems 1 and 2; we therefore record only the most notable feature

in the following result:

Proposition 1 Fiz m € {2,...,N + 1}. Under the discretization above of (Li,...,Ln11) in the

~

P measure, Ly,—1 is a martingale,

8B (0)E[(Lyn—1(Tm—1) — K)T] = C(A1(Tim—1), K, Lin—1(0), B, (0), Tp);
i.e., the (m — 1)th caplet is priced without discretization error.

Thus, the discretization of this section provides the flexibility to pinch the caplet bias to zero at
any maturity, while simultaneously constructing forward Libor rates of all maturities and making

the discretized deflated bond prices martingales.

4 Discretization of Forward Swap Rates

We now turn to the discretization of the term structure of forward swap rates, starting from the

continuous-time constructions of Jamshidian [14, 15]. Jamshidian [14] constructs all forward swap
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rates associated with a tenor structure, in particular allowing each forward swap rate to have a
lognormal volatility so that swaptions are priced by Black’s formula. He carries out the construction
in both the terminal and spot Libor measures. We consider the discretization of each of these cases.
Although the guiding principles in this setting are the same as in the forward Libor setting, the
expressions involved tend to be more complicated. As a consequence, our results in this section are

somewhat less explicit than in the previous sections.

4.1 Swap Rates in the Terminal Measure

Our notation largely follows Jamshidian [14, 15]. Let

N
Bn,N(t> =90 Z B'i,—l—l(t)z te [07 Tn—i—l};

the nth forward swap rate, n =1,..., N, is
Bn(t) — Bn4i(t)
Sp(t) = t €0,1;].
n( ) Bn,N(t) ? € [ ? n}

This is the fixed rate at time ¢ that equates the present values of streams of fixed-rate payments
6Sn(t) and floating-rate payments 6 L;(T;) occurring at Tj+1, i = n, ..., N. We extend the definition
of S, to all of [0, T 1] by setting Sy, (t) = S, (T),) for t > T,,. Forward Libor rates can be recovered

from forward swap rates through the relation

1468, S, Ty (1 +65;)

14+ 6L,(t) = :
( ) 1+ 6Sﬂr+1 Zi]\;n—kl H;’:n—FQ(l + 6S])

(48)

(from Section 7 of [14]), and in fact (48) could be inverted to define forward swap rates in terms
of forward Libor rates. Expressions for deflated bond prices in terms of forward swap rates follow
from (48), using (6) and (9).
A lognormal (or market) model of forward swap rates specifies

%:...dt—i—GndW (49)
for some bounded, deterministic, possibly time-varying row vector 6,, = ,,(¢) having at most finitely
many discontinuities. The drift depends on the choice of numeraire asset — i.e., the measure under
which the process is constructed. The defining property of the terminal measure is the choice of
By 41 as the numeraire asset. In this measure, Jamshidian [14] shows that the missing drift in (49)

is given by o, (#)6],(t) with

i Ykt 88k ()0 () TTj—ngr (L + 855 (1))

nlt) = _
() SV T (14 85,(1))

(50)
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He also shows that S, is a martingale under the forward swap measure P™" defined by

dpPmN _ Bun()Bn41(0)
dPNF1 ) Byia(t)Ba,n(0)

this is the measure associated with the numeraire B,, y.

A payer’s swaption expiring at time T < T,, grants the holder the right to enter into a swap
with start date T;, and end date T, making fixed payments 6 K and receiving floating payments
§L;i(T;)at Ti11,7 =n, ..., N. Its value at expiration can thus be expressed as By, n(T)(S,(T)—K)*.

Jamshidian [14] shows that with a lognormal specification of the volatility

By 41(0) BN [Bon(T)(Sn(T) = K)T/By11(T)] = Bun(0)E™N[(Su(T) — K)¥]

)

= C(0u(T), K, 5,(0), B, n(0),T),

with
t

B2(1) = /0 By (1), (1)l
i.e., swaptions are priced by the Black formula for swaptions. (See Musiela and Rutkowski [20] and
Rebonato [22] for further discussion of this and related formulas for swaptions.)
It is evident from (48) that forward Libor rates cannot have lognormal volatilities if the forward
swap rates do. Hence, one cannot use the discretizations of Section 3 to simulate a model consistent
with (49). To discretize (49) in the terminal measure, we introduce the variables

Bn,N

n=—>—, and Y, 1 =X, 1—-X,—-1, n=1,...,N,
6BN11

with Xg =14 (14 651)X;. Notice that Y,,_y = D,, — 1 = D,, — Dx1; this particular difference of
deflated bond prices turns out to be particularly convenient and effective in discretizing swap rate

models.

Lemma 5 Under the terminal measure, X, and Y, are martingales on [0,T,+1] and satisfy

N =oxo
AXp= Y |6i(Xia=Xi— 1) [ —5—| W
i=n+1 j=n+1 J
and
dy, 1 | & i1 Y. |
— =+ — 0;Yi_1 — —— +1 dw.
Y, (” N-n+Y 5L v L_;Q o j_llg N—j+1+2 Y J
Also,
anl - Xn -1 Ynfl
58, = = 51
" X, N-n+1+2N 1y, (51
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The natural counterpart to the discretization methods developed in Section 3 applies the mod-
ified Euler scheme to logY,, to construct discrete martingales Yn(ih), 1=0,1,..., and then applies
(51) to recover discretized forward swap rates S,. One could use (48) to construct discretized

forward Libor rates as well. We summarize properties of this method in the following result:

Theorem 3 (i) The discretization above makes the deflated bond prices positive martingales and is
thus arbitrage-free. (ii) The S, remain strictly positive, almost surely. (iii) Each S, is a martingale
with respect to the measure dP™N = (§Bn11(0)X, By n(0)dPNFL. (iv) If T is a grid point ih,
then By.1(0)SE[(Sn(T) — K)*] = C(An, K, Sx(0), Byn(0),T); i.e., the last swaption is priced

without discretization error. (v) The Sn converge in law to the S, as h — 0.

4.2 Swap Rates in the Spot Libor Measure

A consequence of Jamshidian’s [14] analysis is that in the spot Libor measure the missing drift in

(49) is (vy — an)fp with o, as in (50) and

B 6S, N (Hn + et 59k5k> [l—nt1 j26(1 +6S5)
- L4 68, S, T (14 65)) '

Tn (52)

As this might suggest, the relevant expressions in this setting become algebraically cumbersome,
though they do not raise any fundamentally new issues. Consequently, we cover only the key steps.

For purposes of discretization we introduce the variables

1488, Tl (14 8S))
1465 N TTa(1 + 6S))

, n=1,...,N+1, (53)

Ry = Mn41, and R,, = M,, — Mn41, n=2,...,N. Under our convention that S;(t) = S;(T;) for

t > Tj, these processes are well-defined throughout the interval [0, Tn41].

Lemma 6 Under the spot Libor measure, the M, and R, are positive martingales. Moreover,

M, — Myy1 Ry,

65, = _ '
" Mpy14-+ My Rapit++Rv+(N+1-n)Ry

(54)

Using (49), (50), (52), and (53) we can find the diffusion coefficients o,y, and op, of log M,
and log R,, as functions of the #; and S; through straightforward but tedious differentiation. Using
(54) we can then express oy, purely as functions of the 6; and M; and we can express op, purely
as a function of the #; and R;. In this way, we arrive at equations of the form dM, /M, = op,, dW
and dR,, /R, = or, dW analogous to those derived in previous sections. The resulting expressions

for opr, and og, are lengthy and unenlightening so we omit them. Nevertheless, we may simulate
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an Euler scheme for log M, or log R,, to produce discretized variables M'n or f%n and then use (54)
to recover discretized swap rates S,,.
Several features of these schemes are easily verified. Both ensure that deflated bond prices are

positive martingales. For it follows from (9) and (48) that the discrete deflated bond prices are

VN .
PN 3 RSB )
14651305 [Tj—2(1 +6Sj)

= Bi(0)M, = Bi(0)(R, + R1),

and the M, or R, are positive martingales by construction. In addition, recovering the discretized
swap rates from the R, through (54) ensures that the swap rates stay positive.

As a final observation, we consider the discrete counterpart of the forward swap measure re-
sulting from the discretization of log M,,. In continuous time, the forward swap measure P™" is

related to the spot Libor measure through

dpmN B, n(t)B* N+l B*
dP . B*(t)B, n(0) Pt B, n(0)
We therefore define
N+1 *
: 2\ B
dpP™N = [ § D; | ———= dP*.
i:%—:o—l B, n(0)
Now
N+1 o R K R R R
Z D;=Bi(0)(My41+---+My+1) =B1(0)(Rps1+---Rv+(N+1—n)Ry)
i=n+1

so we see from (54) that under either discretization S, Zf\i ﬂ,_l D is a martingale under P* and

thus S, is a martingale under P™",

5 Numerical Comparison

Thus far, our discussion of discretization has focused primarily on the extent to which the absence of
arbitrage is preserved after discretization. To a lesser extent, we have considered the impact on the
accuracy of caplet and swaption prices, the prices to which a model is commonly calibrated. The
purpose of this section is to show, through numerical examples, that the discretizations proposed in
previous sections do not entail a loss of accuracy in pricing caplets and swaptions. On the contrary,
we find that these discretizations often introduce lower discretization bias in these prices than more

obvious schemes. In addition, we investigate the effect of making a finite-sample adjustment that
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exploits the martingale property of deflated bond prices. In our experiments, this reduces the mean
square error in caplet and swaption price, in some cases by vast amounts. The applicability of this
method depends crucially on our approach to discretization.

The number of variations of methods, scenarios, and instruments one could investigate numer-
ically is limitless. Our objective here is by no means to be exhaustive. In particular, among the
interesting possibilities not explored here is the use of the many higher-order schemes in Kloeden
and Platen [17] with either the variables introduced in Sections 3 and 4 or the forward Libor and

swap rates themselves.

5.1 Libor Models

The base scenario we use for most of our results sets § = h = 0.25 and N +1 = 40, corresponding to
a ten-year term structure of quarterly rates. The initial values are of the form L, (0) = log(a + bn),
with @ and b chosen so that Ly(0) = .05 and L3g(0) = .07. The base-case volatilities are constant

over the intervals [T;, T;y1), with
An(T3) = 0.1500 + 0.0025(n — i), i=0,....,n—1, n=1,...,39.

These values for the inital forward rates L,(0) and initial implied volatilities A, (0) are broadly
consistent with the U.S. dollar term structure in late 1997. The assumption that volatility depends
only on time to maturity is made for simplicity. In addition to this base case, we will consider a few
other scenarios. We compare the discretizations of Section 3 with Euler schemes for L,, and log L,
(as in (11) and (12)). We mainly compare performance of the methods in pricing at-the-money
caplets — the strike for the nth caplet is K = L,,(0). In the base scenario, the prices for these
caplets increase with n from 3.74 to 23.77.

Figure 1 compares the estimated bias in caplet prices for four methods in the terminal measure:
the X,, discretization of (24), the D,, discretization of (30), and Euler schemes for L,, and log L,,.
The error bars have a halfwidth of one standard error and show that the apparent biases are highly
significant and not attributable to simulation error. As expected, the X,, and log L,, discretizations
produce unbiased estimates of the final caplet. But for shorter maturities the X,, method produces
substantially smaller errors. The method in (30) does not appear competitive. Because it makes
1+ 6Ly lognormal rather than Ly, it does not correctly price the final caplet. But in considering
Figure 1 and subsequent figures it is important to keep an additional consideration in mind: the
martingale discretizations (including X,, and D,, in Figure 1) price bonds without bias precisely
because they make the deflated bond prices martingales. The other methods (including L,, and

log L,, in Figure 1) are subject to discretization bias in pricing bonds as well as caplets.
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To obtain the tight error intervals in Figure 1, we ran 10 million replications and used the

control variates C,, = §B,,+1(0)(¢, — K)T where
n—1 n—1
(n = Ln(0) exp <—%h S ALiR) + VR An(ih)ZZ) ,
i=0 i=0

and the Z; are the standard normals used to drive the simulations. Each C), is an unbiased estimator

of the nth caplet price. For any discretization I:n, our estimate of the bias in the nth caplet is

8 Bn+1(0)(La(T5,) = K)* Dy (Ts1) = o
Because of the high correlation between the (, and the discretized variables, subtracting C,, rather
than the Black price itself substantially reduces the variance of the estimated bias. We used this
method in all our results.

Figure 2 compares five discretizations in the spot Libor measure. The V;, method refers to (38)
with the second line of (37) and (40); the modified V;, method refers to (38) with the first line of
(37) using (42) to determine the discrete deflated bond prices; the D,, method refers to (39); and
the other two are Euler schemes for L,, and log L,,. As in the terminal measure, the results based
on D, and L,, are very similar; and whereas these are biased high, discretization of log L,, produces
results biased low. The V,, method and modified V,, methods give the the best results across all
maturities. Because the V,, method does somewhat better than the modified V,, method, we use it
in subsequent comparisons.

Figure 3 illustrates the effect of using the hybrid numeraire of Section 3.3. The terminal
measure corresponds to m = N + 1 and the spot measure to m = 1. These are compared with
two intermediate values of m. As anticipated, the (m — 1)th caplet is priced without bias in each
case for which m > 1. (Notice the change of scale compared with the previous figures.) In this and
most subsequent figures we omit the error bars for clarity; they are of the same magnitude as in
Figures 1 and 2.

Figures 4 and 5 compare various methods for caplets that are 5% in-the-money (strikes of
0.95L,,(0)) and out-of-the-money (strikes of 1.05L,,(0)), respectively. The results are generally con-
sistent with what we observe at-the-money, except for some additional bias at very short maturities.
Over most of the range, the X,, and V,, methods appear to be the best.

Figure 6 compares select methods in a variant of our base case in which the volatilities are
M (T;) = 0.25 — 0.0025(n — i) and are thus decreasing rather than increasing with maturity.
In Figure 7 we again use increasing volatilities but now take N = 19, 6 = 0.5, h = §/2, and
L, (0) = log(a + bn) with a and b chosen so that Ly(0) = 0.05 and L19(0) = 0.07. Neither of these

modifications affects the relative performance of the methods.

23



5.2 Finite-Sample Adjustment

As previously noted, discretizations that make the deflated bond prices martingales (and are ini-
tialized to the initial term structure) price bonds without discretization bias. We now take this idea
one step further and introduce a finite-sample adjustment that makes the simulated bond prices
match true bond prices over finitely many paths. We then examine the impact of this adjustment
on caplet prices. A similar adjustment is proposed in a setting without discretization error by Duan
and Simonato [6]; see also the discussion in Boyle et al. [4]. Similar adjustments appear to be in
widespread use in practice.

We detail the method in the case of the discretization X, in the terminal measure. Let X (ih),
k=1,...,K, denote the values of X, simulated at the ith step of K independent replications.
Because each X, is a martingale, E[X,,(ih)] = X,,(0) = X,,(0). To match this mean over the K

paths, we set

KX, (0)

X)) — XP(ih) ———=—
’ ' K X9(in)

k=1,...,K, (55)
and then recover the discretized Libor rates I:n(vlh) from these adjusted variables. A similar adjust-
ment is possible with any of our discretizations. It does not appear to be applicable to a standard
discretization of L, or log L,, because neither E[L,(t)] nor E[log L,(t)] is readily available, and
the discretized deflated bond prices will not be martingales.

Although this method causes bonds to be priced without simulation error over finitely many
paths — and may therefore reduce variance in pricing other instruments — it potentially introduces
bias in dividing by the sample mean in (55). To balance bias and variance we examine the impact
on mean square error of caplet prices.

Figure 8 plots mean square errors with and without the finite sample adjustment using the X,
method in the terminal measure and the V,, method in the spot measure. These estimates are
based on 5000 batches each consisting of K = 1000 replications. (The finite-sample adjustment
makes the K paths in a single batch dependent so batching is necessary for proper estimation of
mean square errors.) The results show modest improvement from the adjustment.

We find much greater improvements in a different scenario. Here we take values broadly con-
sistent with the Japanese ten-year term structure in late 1997. Specifically, L,,(0) = .01 4 .00075n,
n=1,...,39, and A, (i) = 0.70 — 0.01(n — i), so the rates are much lower and the volatilities much
higher than in the U.S. market. The corresponding caplet prices increase with n from 3.71 to 46.11.
These are rather extreme parameter values and no method appears to give satisfactory results in
this setting. This is reflected in Figure 9. Figure 10, based on the V,, method in the spot measure,

shows both that the errors in this setting can be quite large but also that the adjustment can
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produce substantial improvements. Figure 11 is even more dramatic. Over 1000 paths, the errors
from simulating under the terminal measure are enormous, but they are brought under control by
the finite-sample adjustment. The adjustment would not be available in a direct discretization of

L, or log L,.

5.3 Swap Rate Models

Our base case for comparing discretizations of lognormal swap rate models uses the same initial

term structure as in Section 5.1 and specifies swap rate volatilities of
On(T;) = 0.2475 — (n —4)0.0025, i=1,...,n—1, n=1,...,N.

As should be clear from the formulas in Section 4, simulating any discretization of a lognormal
swap rate model is considerably more demanding than simulating a lognormal model of forward
Libor. Our investigations in this setting use fewer replications (1 million rather than 10 million)
and have explored fewer alternatives.

Figure 12 summarizes the comparison of various methods. (These use a control variate similar to
the one described in Section 5.1.) The worst methods are the straightforward Euler discretizations
of S, and log S,,. The best method appears to be the Y,, discretization under the terminal measure,

but the spot Libor discretizations perform quite well also.

6 Conclusions

The main conclusion of this work is that simulating linear combinations of deflated bond prices
can have advantages over direct simulation of forward Libor or swap rates. Linear combinations of
deflated bond prices are martingales, and it is often easier to preserve the martingale property in a
discretization scheme than to find the appropriate drift adjustment for a discretization of Libor or
swap rates. By enforcing the martingale property in the discretization, we can keep the discretized
model arbitrage-free. Our numerical results suggest that this advantage does not come at the
expense of accuracy of the discretization; on the contrary, the schemes we have proposed generally
give better results (and sometimes much better results) than more standard discretizations. They
also lend themselves to a simple finite-sample adjustment that can further reduce errors.

We have by no means exhausted the possibilities opened up by this approach. One could
investigate other linear combinations and other numeraire assets, linear combinations with time-
varying coefficients, nonlinear transformations other than logarithms, variable step sizes, and any

of the many higher-order methods developed in the discretization literature. Ruling out arbitrage
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does not, by itself, provide guidance in choosing among these many possibilities; we view these

many variations and potential enhancements as complementing the approach proposed here.

Appendix: Proofs

Proof of Lemma 1. Equation (20) follows from (18) by induction, starting at n = N (at which
Xn = Ly) and proceeding down to n = 1. Ito’s lemma applied to (18) using (5) gives

dX, NoSLiN
— [, dW.
e (e 8 ) 56

Substituting on the right using (20) gives (19). That X,, is indeed a martingale follows from the

boundedness of the expression in parentheses in (56). O

Proof of Theorem 1. (i) That the D, are positive martingales follows from (22) and the fact that
the X; are positive martingales by construction. (ii) Positivity of L,, follows from (21). (iii) Let F;

be the o-algebra generated by &1,...,&;. For 7 < j,

N . . . dpn—H R -| dpn—O—l -1
En+1 Ln ih ’ — EN+1 [ n ih y
jh ih
EN+1[f/n(]h)Dn+1 (jh)|‘7:z}Dn+1 (@h)il

using a standard change-of-measure identity for conditional expectations in the first equation, the
definition of P"*! in the second, and finally the fact that ﬁnﬁn+1 = Xn is a martingale under
PN+

(iv) Observe that dXny = XnyAny dW so

Xn(t) = Xn(0) exp <—%Afv(t)t - /0 ") qu> .

Consequently, for n = N, (24) constructs the solution without discretization error. In particular,
Xy (ih) has the distribution of Xy (ih) at every grid point ih, and using the interpolation in (29)
this property extends to intermediate times as well. But Ly = Xy and, under (21), Ly = Xy, so
Lx(t) has the distribution of Ly (t) for all ¢, and then E[(Ly(Tx) — K)t] = E[(Ly(Ty) — K)7]
for all K.

(v) Define 0, : RN x Ry — R% by

N ST it
O-n(xat):x;l‘— (Aﬂ(t)_’_ Z ’ J(> )7 nzlv"-an

j:n,+11+§'7;;+"'+5””41\—/
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so that dX,(t) = on(X(1),1) dWi. Set Apax = supp, |[An(t)]]. Then each oy, is linearly bounded

because

N
lon (. Ol < lral Y IAEN < NAmaxl2l,
Jj=n

and Lipschitz because

lon (1) = on(y, D)l < 2N Amax |z =y,

for all 2,y € R% Tt now follows from Theorem 11.2.13 of Gihman and Skorohod [9] that X converges
in law to X as h — 0. Because the mapping from X to L is continuous and the same as the mapping

from X to L, it follows from Billingsley [2, Theorem 5.1, p.30] that L converges in law to L. O

Proof of Lemma 2. From Jamshidian [14, 15], we know that that the deflated bond prices D,, are
martingales. Moreover, D,, = B1(0) H?‘l Y;, so

n—1 n—1

dD, = B1(0) > (Y; = 1)A; [ ¥54W,
i=1 j=1
and .
dD, &
=) (Vi — D)\ dW,
D, ;( JAi dW.

which becomes (32) upon substitution of D;;/D; for Y;.
Since V,, = B1(0)[D,, — Dy +1], the V;, inherit the martingale property from the D,,. Ito’s lemma

gives
v,

n—1
— =\ Y Y, — D)\ | dW.
e = (e S 0508

Solving for the Y; in terms of the V; we get

Va-Vaa-— Vi1

Y
Ve Vi1

and making this substitution yields (31). Straightforward induction arguments verify (33) and (34).
To establish (35) observe that

N+1 N /n—1 n N 0

> vi= Y (T~ 1% + T =TT =
n—=1 n=1 \i=1 i=1 i=1 i=1

so (35) follows from (34). O

Proof of Theorem 2. (i) That the D, are martingales is immediate from (39), that the D, are
martingales follows from (38) and (41), and that the D], are martingales follows from (38) and
(44). (ii) Positivity of D,, is also immmediate from (39). In light of (41), positivity of V}, implies
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that the D, decrease with n in a scheme based on (40). Similarly, (44) and positivity of V;, imply
that the D], are both positive and decreasing with n. (iii) Positivity of L] is a direct consequence
of (42). (iv) From (34) we find that INL,?,DHH = [Dn — lN)n_,_ﬂ/é, SO INL,?,DHH is a martingale. Using
the same argument as in Theorem 1(iii), this implies that L,isa martingale under ]5”4_1. Similarly,

LD} ., is a martingale so D/, is a martingale under P, . (v) For z € R" and t € [0, Ty 1], let

. — oy xn—i_x”*l—i_"'""l'l—]_ n—1 .

J— ”I’;i _
i=n(t) !

so that dV,,(t) = 0, (V(t),t) dW;. Just as in the proof of Theorem 1(iv), each oy, is linearly bounded
and Lipschitz, so convergence in law of the V to V follows from Theorem II.2.13 of Gihman and
Skorohod [9]. Convergence in law of L and L’ to L then follows from the continuity of the mappings

in (34) and (35). The same argument applies to D and L. O

Proof of Lemma 3. Let

= (i) = ZalBua)

dPN*L), " Bnya(t) B, (0)
Then
¢ By (0) T, (14 6Li(t)), t < T
t = t
By (O 53 Iy (1 + 8Li(#)), ¢ > T,
Thus,
N O (t)L;(t
& _ { N OB awi, < T,
B N O (t)L;(t
St i=n(t) 1—0—%@()) AWy, t> T,

It now follows from Girsanov’s theorem that

t X SN (s)Li(s)
WP =W — / L s
t £ imzv%(s) 14 6L;(s)

is a standard Brownian motion under Py,. In view of (5), this means that the dynamics of forward

Libor under P}, are given by

dLn (t) { 'i,:'m,\/n(t) (11-4)-5[(:2_& (T) dt + )\n(t) th , m vV T](t) S n;

1 AN Li(t
oty 2ol gt 4 X, (0 dWE, mV () 20+ 1.

This is equivalent to the representation in the statement of the lemma. O

Proof of Lemma 4. The calculations involved in verifying these expressions are very similar to those

used in Lemmas 1 and 2 so we omit the details. O

Proof of Proposition 1. The proofs of the two assertions in the proposition are essentially the same

as the proofs given for parts (iii) and (iv) of Theorem 1. O
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Proof of Lemma 5. A simple induction argument verifies that
Xn = 1+(1+6Sn+1)Xn+1, n = 1,...,]\7—17 (57)

from which follows

N i—1
dXn= > (697;57;X7; II (1+65,—)> dWw.

i=n-+1 Jj=n+1

Making the substitution 1+ 65; = (X;_1 — 1)/X yields the expression in the lemma. For Y;, we

>dw.

Y, ol =X -1
dYy = | OnaVo+ ——| Y 6vi [[ “L5—1 | aw. (58)
Xn+1 X

have

N i—1
dYn = d(Xn - Xn—&-l - 1) = <§9n,+lsn,+1Xn+l + Z |:§91',S1',X716Sn+1 H (1 + (SS])
i=n-+2 Jj=n+2

Noting that 6S,+1 = Y.,/ X,41, this becomes

i=n-+2 j=n+2

Finally making the substitution X,, = N=1y. + N —n+1 yields the expression in the lemma. O

i=n
Proof of Theorem 3. (i) The deflated bond prices are given by D,, =Y,,_1+1, so the D,, are positive
martingales because the Y;, are. (ii) Follows from (51) and positivity of the ¥;,. (iii) and (iv) are
proved similarly to Theorem 1(iii)-(iv). (v) As in Theorems 1 and 2, the key step is verifying that
the diffusion coefficient of Y;, is linearly bounded and Lipschitz. In fact, from (58) we can see that
the norm of the diffusion coefficient is bounded by a constant times the norm of Y. In particular,
each of the factors (X;_1 — 1)/X; is between 0 and 1, because Y;_; > 0; and each Y;_; /X, 11 is
between 0 and 1 because X, 1 = f\iﬁ_l Y+ N—-n+1 0O
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