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Statistical technigues — introduction

Data consist of N bonds, with payments b;; for i = 1,...,N and
Jj=1,...,my, and the respective payment dates are ¢;;.

Pricing equation, allowing for measurement (pricing) error ¢;

my
P+ A=) by-d(t;)+e, i=1,2,...,N (1)
=1

If d(t) in (1) is parameterized using some functional form with K
parameters, and K < N, these parameters can be estimates by
non-linear regression analysis.

Various approaches differ as to whether they parameterize d(t)
directly, or indirectly via spot rates R(t) or forward rates f(¢), and
which parameterization is used (often cubic spline functions).
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Statistical techniques — Basic idea

e Suppose the discount factor is parameterized in terms of zero-
coupon rates, that is d(t) = exp[—t - R(¢)], and R(t) = R(t, 3).

e There are two basic requirements for any parameterization of the
yield curve function R(t, 3):

— The function should be sufficiently flexible, so that (almost) any shape
of the yield curve can be accommodated. Examples include monotonically
increasing or decreasing, humped and inverse humped. Different values of
the parameter vector 8 should translate into different shapes.

— The function should be parsimonious, that is the number of parameters
(in the vector B) should be “small”. This avoids convergence problems in
the estimation, and reduces the risk of overfitting “noise” in the data.

e Note that there is a (mutual) conflict between the two goals.

e Polynomials and especially (cubic) spline functions are often used
to parameterize R(t), and sometimes d(t) directly.

3
Spline functions — 1
e A K'th order polynomial in t is defined as
Ffre@®) =ag+art+aot®> + -+ ag_1t5 7+ aptt (2)

e Weierstrass' theorem: by choosing a sufficiently large K, any con-
tinuous function on a closed interval — like [0, 30] — can be
approximated arbitrarily well (for some constants ag...ag).

e The theory is nice, but there are some practical problems:

— A (very) high order K of the polynomial may be required in order to approx-
imate the yield curve (function). Remember that we prefer parsimonious
functions ...

— The yield curve R(t) is only observed indirectly through a limited number
of bond prices. A high-order polynomial may fit these maturities quite well,
but display erratic behavior between these maturities.

— In summary: best results are obtained with a low-order polynomial on a
small interval (local approximation to the function).



Spline functions — 2

The basic idea of spline functions is to combine low-order poly-
nomials (typically cubic) on different subintervals.

The subintervals are determined by the so-called knots of the
spline function.

Smoothness restriction for a cubic spline: the function itself, and
the first and second derivative must be continuous at the knots.

Example: spline function on [0, z5] with two segments

fi(t) = a10+ a1t +aiot? +ag3t>, te[0,7] (3)
fo(t) = ang+ apit + apot® + anst>,  t € [r1, 7] (4)

Restriction: f1(m1) = fo(71), f1(m1) = f5(r1) and f{(m1) = f3(m1).
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Spline functions — 3

The smoothness restriction reduces the number of free parameters
in (3) and (4) from 8 to 5.

In general, with s segments, there are K = s+ 3 free parameters.

A simple representation of the spline function on [0, 7s] is the
truncated power basis:

s—1
F) = a1 +bit+crt? +dit> + Y diy 1 (t — 7)3D;, (5)
i=1

where D, =1 if t > 7, and D; = 0 otherwise.

The truncated power basis can be numerically unstable because
the terms in (5) are highly correlated. Most people use B-splines,
which represent a stable basis, but the basis functions are much
more complex. See section 2.4.4 in Anderson et al. (1996).



The discount function as a cubic spline

Introduced by McCulloch (1971, 1975) who use a stable spline
representation (denoted by 6(t) here)

K
d(t) =1+ ) apfi(t) (6)
k=1

If we substitute this into (1), we get

m; K m;
P+ A — ) bij= > ag (Z 9(tij)bij> + & (7)
j=1 k=1 j=1
The unknown parameters a1,...,ax can be estimates by ordinary

(linear) least squares.

The method is simple to implement (does not require numerical
optimization techniques), but there are some serious limitations.
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The spot curve R(t) as a cubic spline — 1

Main disadvantages of the McCulloch technique:

— Lack of stability for spot rates R(t), and especially forward rates f(t¢), in
the long end of the curve.
— The discount function d(t) is really exponential, rather than polynomial.

— Impossible to extrapolate beyond the largest maturity of the N bonds used
for estimation.

A better approach: parameterize the spot curve R(t) in terms of
a cubic spline with basis ¢, (t), e.g. a B-spline basis,

K

R(t) = ) apor(t) (8)

k=1

Assuming continuous compounding (convenient here), the dis-
count function is given by d(t) = exp {—t R(t)}.



The spot curve R(t) as a cubic spline — 2

In this case, we get the following regression model for bond prices:
m; K
Pi+ A; = > bjjexp {— > ag- [tiijk:(tij)]} +&; (9)

1

Estimating this model requires non-linear least squares (NLS), and
hence numerical optimization. With state-of-the-art computers,
this is no longer a problem . ..

If the last segment of the cubic spline is constrained to be flat, we
can even use the technique for extrapolation, that is estimate
R(t) for t beyond the largest maturity of the N coupon bonds.

Main limitation: the number of segments and position of the
knots is somewhat arbitrary.

The non-parametric smoothing splines avoid these problems.
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Other parameterizations of R(t)

Polynomial method of Chambers et al. (1984)
K
R(t) = ayth (10)
k=0

This is simpler than splines, but (10) tends to lack stability for
large K, and the method cannot be used for extrapolation.

Nelson and Siegel (1987) propose the following four-parameter
(Bo, B1,B2,7) model for the spot curve

71 1

RO = o+ (r+5) |1 -0 (- 1) | = e (1) )

The Nelson-Siegel model is very parsimonious, but may lack the
necessary flexibility in some cases.
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Estimation (fitting) techniques — 1

General setup: non-linear regression model for P* = P + A,

P = i bijexp (—t- R(t,B)) +¢;
71=1

The most common estimation technique is the (weighted) non-

linear least squares (NLS) method, where 3 is estimated by

N
B =arg mﬁin > wi [P - Zi(B)]° (13)
i=1
If w; =1 for all ¢, we get unweighted NLS.

This assumes that the error term ¢; in (12) is homoskedastic
(constant variance for all bonds).
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Estimation (fitting) techniques — 2

The homoskedasticity assumption is often violated by the data,
and pricing errors are more dispersed for long-term bonds.

This may be accomodated by specifications like
w; =1/T) or w;=1/D?,
where T; and D, are the bond maturity and duration, and é§ > O.

Least-squares estimates can be sensitive to large residuals (out-
liers). A way to avoid this potential is using least absolute devia-
tions (LAD) instead

N

B = arg mﬁin 2 1P = Z:i(B)] (14)

=1

LAD estimates are more robust, but much harder to compute
than NLS.
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