Fixed Income Analysis

Estimation of the Term Structure Part II

Jesper Lund February 17, 1998

1

Statistical techniques — introduction

- Data consist of N bonds, with payments b_{ij} for $i=1,\ldots,N$ and $j=1,\ldots,m_i$, and the respective payment dates are t_{ij} .
- ullet Pricing equation, allowing for measurement (pricing) error $arepsilon_i$

$$P_i + A_i = \sum_{j=1}^{m_i} b_{ij} \cdot d(t_{ij}) + \varepsilon_i, \quad i = 1, 2, \dots, N$$
 (1)

- ullet If d(t) in (1) is parameterized using some functional form with K parameters, and K < N, these parameters can be estimates by non-linear regression analysis.
- Various approaches differ as to whether they parameterize d(t) directly, or indirectly via spot rates R(t) or forward rates f(t), and which parameterization is used (often cubic spline functions).

Statistical techniques — Basic idea

- Suppose the discount factor is parameterized in terms of zero-coupon rates, that is $d(t) = \exp[-t \cdot R(t)]$, and $R(t) = R(t, \beta)$.
- There are two basic requirements for any parameterization of the yield curve function $R(t,\beta)$:
 - The function should be **sufficiently flexible**, so that (almost) any shape of the yield curve can be accommodated. Examples include monotonically increasing or decreasing, humped and inverse humped. Different values of the parameter vector β should translate into different shapes.
 - The function should be **parsimonious**, that is the number of parameters (in the vector β) should be "small". This avoids convergence problems in the estimation, and reduces the risk of overfitting "noise" in the data.
- Note that there is a (mutual) conflict between the two goals.
- Polynomials and especially (cubic) **spline functions** are often used to parameterize R(t), and sometimes d(t) directly.

3

Spline functions -1

ullet A K'th order polynomial in t is defined as

$$f_K(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_{K-1} t^{K-1} + a_K t^K$$
 (2)

- Weierstrass' theorem: by choosing a sufficiently large K, any continuous function on a closed interval like [0, 30] can be approximated arbitrarily well (for some constants $a_0 \ldots a_K$).
- The theory is nice, but there are some practical problems:
 - A (very) high order K of the polynomial may be required in order to approximate the yield curve (function). Remember that we prefer parsimonious functions . . .
 - The yield curve R(t) is only observed indirectly through a limited number of bond prices. A high-order polynomial may fit these maturities quite well, but display erratic behavior between these maturities.
 - In summary: best results are obtained with a low-order polynomial on a small interval (local approximation to the function).

Spline functions - 2

- The basic idea of **spline functions** is to combine low-order polynomials (typically cubic) on different subintervals.
- The subintervals are determined by the so-called **knots** of the spline function.
- Smoothness restriction for a cubic spline: the function itself, and the first and second derivative must be continuous at the knots.
- Example: spline function on $[0, x_2]$ with two segments

$$f_1(t) = a_{10} + a_{11}t + a_{12}t^2 + a_{13}t^3, \quad t \in [0, \tau_1]$$
 (3)

$$f_2(t) = a_{20} + a_{21}t + a_{22}t^2 + a_{23}t^3, \quad t \in [\tau_1, \tau_2]$$
 (4)

• Restriction: $f_1(\tau_1) = f_2(\tau_1)$, $f_1'(\tau_1) = f_2'(\tau_1)$ and $f_1''(\tau_1) = f_2''(\tau_1)$.

5

Spline functions – 3

- The smoothness restriction reduces the number of free parameters in (3) and (4) from 8 to 5.
- In general, with s segments, there are K = s + 3 free parameters.
- ullet A simple representation of the spline function on $[0, \tau_s]$ is the truncated power basis:

$$f(t) = a_1 + b_1 t + c_1 t^2 + d_1 t^3 + \sum_{i=1}^{s-1} d_{i+1} (t - \tau_i)^3 D_i,$$
 (5)

where $D_i = 1$ if $t \ge \tau_i$ and $D_i = 0$ otherwise.

• The truncated power basis can be numerically unstable because the terms in (5) are highly correlated. Most people use **B-splines**, which represent a stable basis, but the basis functions are much more complex. See section 2.4.4 in Anderson et al. (1996).

The discount function as a cubic spline

• Introduced by McCulloch (1971, 1975) who use a stable spline representation (denoted by $\theta(t)$ here)

$$d(t) = 1 + \sum_{k=1}^{K} a_k \theta_k(t)$$
 (6)

• If we substitute this into (1), we get

$$P_{i} + A_{i} - \sum_{j=1}^{m_{i}} b_{ij} = \sum_{k=1}^{K} a_{k} \left(\sum_{j=1}^{m_{i}} \theta(t_{ij}) b_{ij} \right) + \varepsilon_{i}$$
 (7)

- The unknown parameters a_1, \ldots, a_K can be estimates by ordinary (linear) least squares.
- The method is simple to implement (does not require numerical optimization techniques), but there are some serious limitations.

7

The spot curve R(t) as a cubic spline -1

- Main disadvantages of the McCulloch technique:
 - Lack of stability for spot rates R(t), and especially forward rates f(t), in the long end of the curve.
 - The discount function d(t) is really exponential, rather than polynomial.
 - Impossible to extrapolate beyond the largest maturity of the ${\cal N}$ bonds used for estimation.
- ullet A better approach: parameterize the spot curve R(t) in terms of a cubic spline with basis $\phi_k(t)$, e.g. a B-spline basis,

$$R(t) = \sum_{k=1}^{K} a_k \phi_k(t)$$
 (8)

• Assuming continuous compounding (convenient here), the discount function is given by $d(t) = \exp\{-t R(t)\}$.

The spot curve R(t) as a cubic spline – 2

• In this case, we get the following regression model for bond prices:

$$P_i + A_i = \sum_{j=1}^{m_i} b_{ij} \exp\left\{-\sum_{k=1}^K a_k \cdot [t_{ij}\phi_k(t_{ij})]\right\} + \varepsilon_i$$
 (9)

- Estimating this model requires non-linear least squares (NLS), and hence numerical optimization. With state-of-the-art computers, this is no longer a problem . . .
- If the last segment of the cubic spline is constrained to be flat, we can even use the technique for **extrapolation**, that is estimate R(t) for t beyond the largest maturity of the N coupon bonds.
- Main limitation: the number of segments and position of the knots is somewhat arbitrary.
- The non-parametric **smoothing splines** avoid these problems.

9

Other parameterizations of R(t)

• Polynomial method of Chambers et al. (1984)

$$R(t) = \sum_{k=0}^{K} a_k t^k \tag{10}$$

- This is simpler than splines, but (10) tends to lack stability for large K, and the method cannot be used for extrapolation.
- Nelson and Siegel (1987) propose the following four-parameter $(\beta_0, \beta_1, \beta_2, \tau_1)$ model for the spot curve

$$R(t) = \beta_0 + (\beta_1 + \beta_2) \left[1 - \exp\left(-\frac{t}{\tau_1}\right) \right] \frac{\tau_1}{t} - \beta_2 \exp\left(-\frac{t}{\tau_1}\right)$$
 (11)

• The Nelson-Siegel model is very parsimonious, but may lack the necessary flexibility in some cases.

Estimation (fitting) techniques - 1

• General setup: non-linear regression model for $P^* = P + A$,

$$P_i^* = \sum_{j=1}^{m_i} b_{ij} \exp(-t \cdot R(t, \beta)) + \varepsilon_i$$

$$\equiv Z_i(\beta) + \varepsilon_i, \quad i = 1, 2, ..., N$$
(12)

• The most common estimation technique is the (weighted) non-linear least squares (NLS) method, where β is estimated by

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{N} w_i \left[P_i^* - Z_i(\beta) \right]^2$$
 (13)

- If $w_i = 1$ for all i, we get unweighted NLS.
- This assumes that the error term ε_i in (12) is homoskedastic (constant variance for all bonds).

11

Estimation (fitting) techniques - 2

- The homoskedasticity assumption is often violated by the data, and pricing errors are more dispersed for long-term bonds.
- This may be accomodated by specifications like

$$w_i = 1/T_i^{\delta}$$
 or $w_i = 1/D_i^{\delta}$,

where T_i and D_i are the bond maturity and duration, and $\delta > 0$.

Least-squares estimates can be sensitive to large residuals (outliers). A way to avoid this potential is using least absolute deviations (LAD) instead

$$\widehat{\beta} = \arg\min_{\beta} \sum_{i=1}^{N} |P_i^* - Z_i(\beta)| \tag{14}$$

 LAD estimates are more robust, but much harder to compute than NLS.