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Statistical techniques | introduction

� Data consist of N bonds, with payments bij for i = 1; : : : ; N and

j = 1; : : : ;mi, and the respective payment dates are tij.

� Pricing equation, allowing for measurement (pricing) error "i

Pi+Ai =

miX
j=1

bij � d(tij) + "i; i= 1;2; : : : ; N (1)

� If d(t) in (1) is parameterized using some functional form with K

parameters, and K < N , these parameters can be estimates by

non-linear regression analysis.

� Various approaches di�er as to whether they parameterize d(t)

directly, or indirectly via spot rates R(t) or forward rates f(t), and

which parameterization is used (often cubic spline functions).
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Statistical techniques | Basic idea

� Suppose the discount factor is parameterized in terms of zero-

coupon rates, that is d(t) = exp[�t �R(t)], and R(t) = R(t; �).

� There are two basic requirements for any parameterization of the
yield curve function R(t; �):

{ The function should be su�ciently 
exible, so that (almost) any shape
of the yield curve can be accommodated. Examples include monotonically
increasing or decreasing, humped and inverse humped. Di�erent values of
the parameter vector � should translate into di�erent shapes.

{ The function should be parsimonious, that is the number of parameters
(in the vector �) should be \small". This avoids convergence problems in
the estimation, and reduces the risk of over�tting \noise" in the data.

� Note that there is a (mutual) con
ict between the two goals.

� Polynomials and especially (cubic) spline functions are often used

to parameterize R(t), and sometimes d(t) directly.
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Spline functions { 1

� A K'th order polynomial in t is de�ned as

fK(t) = a0+ a1t+ a2t
2+ � � �+ aK�1t

K�1+ aKt
K (2)

� Weierstrass' theorem: by choosing a su�ciently large K, any con-

tinuous function on a closed interval | like [0, 30] | can be

approximated arbitrarily well (for some constants a0 : : : aK).

� The theory is nice, but there are some practical problems:

{ A (very) high order K of the polynomial may be required in order to approx-
imate the yield curve (function). Remember that we prefer parsimonious
functions . . .

{ The yield curve R(t) is only observed indirectly through a limited number
of bond prices. A high-order polynomial may �t these maturities quite well,
but display erratic behavior between these maturities.

{ In summary: best results are obtained with a low-order polynomial on a
small interval (local approximation to the function).
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Spline functions { 2

� The basic idea of spline functions is to combine low-order poly-

nomials (typically cubic) on di�erent subintervals.

� The subintervals are determined by the so-called knots of the

spline function.

� Smoothness restriction for a cubic spline: the function itself, and

the �rst and second derivative must be continuous at the knots.

� Example: spline function on [0; x2] with two segments

f1(t) = a10+ a11t+ a12t
2+ a13t

3; t 2 [0; �1] (3)

f2(t) = a20+ a21t+ a22t
2+ a23t

3; t 2 [�1; �2] (4)

� Restriction: f1(�1) = f2(�1), f
0

1(�1) = f 02(�1) and f 001(�1) = f 002(�1).
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Spline functions { 3

� The smoothness restriction reduces the number of free parameters

in (3) and (4) from 8 to 5.

� In general, with s segments, there are K = s+3 free parameters.

� A simple representation of the spline function on [0; �s] is the

truncated power basis:

f(t) = a1+ b1t+ c1t
2+ d1t

3+

s�1X
i=1

di+1(t� �i)
3Di; (5)

where Di = 1 if t � �i and Di = 0 otherwise.

� The truncated power basis can be numerically unstable because

the terms in (5) are highly correlated. Most people use B-splines,

which represent a stable basis, but the basis functions are much

more complex. See section 2.4.4 in Anderson et al. (1996).
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The discount function as a cubic spline

� Introduced by McCulloch (1971, 1975) who use a stable spline

representation (denoted by �(t) here)

d(t) = 1+

KX
k=1

ak�k(t) (6)

� If we substitute this into (1), we get

Pi+Ai �

miX
j=1

bij =
KX

k=1

ak

0
@ miX
j=1

�(tij)bij

1
A+ "i (7)

� The unknown parameters a1; : : : ; aK can be estimates by ordinary

(linear) least squares.

� The method is simple to implement (does not require numerical

optimization techniques), but there are some serious limitations.
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The spot curve R(t) as a cubic spline { 1

� Main disadvantages of the McCulloch technique:

{ Lack of stability for spot rates R(t), and especially forward rates f(t), in
the long end of the curve.

{ The discount function d(t) is really exponential, rather than polynomial.

{ Impossible to extrapolate beyond the largest maturity of the N bonds used
for estimation.

� A better approach: parameterize the spot curve R(t) in terms of

a cubic spline with basis �k(t), e.g. a B-spline basis,

R(t) =
KX

k=1

ak�k(t) (8)

� Assuming continuous compounding (convenient here), the dis-

count function is given by d(t) = exp f�t R(t)g.
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The spot curve R(t) as a cubic spline { 2

� In this case, we get the following regression model for bond prices:

Pi+Ai =

miX
j=1

bij exp

8<
:�

KX
k=1

ak � [tij�k(tij)]

9=
;+ "i (9)

� Estimating this model requires non-linear least squares (NLS), and

hence numerical optimization. With state-of-the-art computers,

this is no longer a problem . . .

� If the last segment of the cubic spline is constrained to be 
at, we

can even use the technique for extrapolation, that is estimate

R(t) for t beyond the largest maturity of the N coupon bonds.

� Main limitation: the number of segments and position of the

knots is somewhat arbitrary.

� The non-parametric smoothing splines avoid these problems.

9

Other parameterizations of R(t)

� Polynomial method of Chambers et al. (1984)

R(t) =
KX

k=0

akt
k (10)

� This is simpler than splines, but (10) tends to lack stability for

large K, and the method cannot be used for extrapolation.

� Nelson and Siegel (1987) propose the following four-parameter

(�0; �1; �2; �1) model for the spot curve

R(t) = �0+ (�1+ �2)

"
1� exp

 
�

t

�1

!#
�1
t
� �2 exp

 
�

t

�1

!
(11)

� The Nelson-Siegel model is very parsimonious, but may lack the

necessary 
exibility in some cases.
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Estimation (�tting) techniques { 1

� General setup: non-linear regression model for P � = P +A,

P �

i =

miX
j=1

bij exp (�t �R(t; �)) + "i

� Zi(�) + "i; i = 1;2; : : : ; N (12)

� The most common estimation technique is the (weighted) non-

linear least squares (NLS) method, where � is estimated by

�̂ = argmin
�

NX
i=1

wi
�
P �

i � Zi(�)
�2

(13)

� If wi = 1 for all i, we get unweighted NLS.

� This assumes that the error term "i in (12) is homoskedastic

(constant variance for all bonds).
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Estimation (�tting) techniques { 2

� The homoskedasticity assumption is often violated by the data,

and pricing errors are more dispersed for long-term bonds.

� This may be accomodated by speci�cations like

wi = 1=T �i or wi = 1=D�
i ;

where Ti and Di are the bond maturity and duration, and � > 0.

� Least-squares estimates can be sensitive to large residuals (out-

liers). A way to avoid this potential is using least absolute devia-

tions (LAD) instead

�̂ = argmin
�

NX
i=1

jP �

i � Zi(�)j (14)

� LAD estimates are more robust, but much harder to compute

than NLS.
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