Fixed Income Analysis

Estimation of the Term Structure Part I

Jesper Lund February 10, 1998

1

Basic problem

- Our basic building blocks are prices of zero-coupon bonds (also called discount factors), that is d(t) or $R(t) = -\log d(t)/t$
 - We need d(t) for all payment dates, t_1, t_2, \ldots, t_m , to price coupon bonds consistently. Yield-to-maturity cannot be used to spot pricing errors.
 - Stochastic term-structure models rely on zero-coupon rates never yield-to-maturity (YTM) on specific bonds.
- In principle, we need d(t) or R(t) for all t, i.e. as a continuous function, or at least for all (relevant) payment dates.
- However, the available data typically consists of prices of coupon bonds (not zeros), and the number of different payment dates exceeds the number of bond prices.
- Prices of some bonds may be noisy due to stale prices (nonsynchronous trading), bid-ask spread, rounding, tax effects, etc.

Estimating zero-coupon rates Overview of different techniques

- 1. Bootstrapping (with linear interpolation)
 - The number of bonds (prices) must equal the number of payment dates.
 - Typical setup: par yield curve (YTM on bonds trading at par), perhaps extended with linear interpolation, or another interpolation scheme.
 - We get an exact fit to the data. Noise in the bond prices translates into noisy estimates of the spot and (especially) forward rates.
- 2. Statistical techniques based on non-linear regression (next week)
 - No restriction on the number of bonds vs. payment dates. We can use prices of coupon bonds directly without prior interpolation.
 - Spot curve, R(t), discount factor, d(t), or perhaps instantaneous forward curve, f(t), is specified as some sufficiently flexible functional form of maturity t, and the parameters are estimated by non-linear regression.
 - Does not produce an exact fit some smoothing involved.

3

Bootstrapping technique

- Not related to the statistical technique with the same name....
- Mainly used in the **swap market**. The swap rate of a fixed-for-floating swap (plain vanilla) with maturity t corresponds to the par yield for a bullet bond with the same maturity.
- Recursice computations of the discount factor d(n) using the basic pricing equation for a n-maturity par bond with YTM and coupon rate c(n)

$$100 = c(n) \sum_{i=1}^{n-1} d(i) + \{100 + c(n)\} d(n)$$
 (1)

• Solving for d(n) in (1) gives

$$d(n) = \frac{100 - c(n) \sum_{i=1}^{n-1} d(i)}{100 + c(n)}$$
 (2)

First numerical example

Assumptions:

- Discrete, annual compounding. Exactly one year until next payment.
- All maturities up to 10 years observed (no interpolation required).

n	c(n)	d(n)	$\sum_{i=1}^n d(i)$	R(n)	100 imes R(n)
1	6.0000	0.9434	0.9434	0.0600	6.0000
2	7.0000	0.8729	1.8163	0.0704	7.0353
3	8.0000	0.7914	2.6076	0.0811	8.1111
4	9.5000	0.6870	3.2947	0.0984	9.8398
5	9.0000	0.6454	3.9400	0.0915	9.1528
6	10.5000	0.5306	4.4706	0.1114	11.1410
7	11.0000	0.4579	4.9285	0.1181	11.8062
8	11.2500	0.4005	5.3290	0.1212	12.1182
9	11.5000	0.3472	5.6762	0.1247	12.4713
10	11.7500	0.2980	5.9742	0.1287	12.8690

5

Second numerical example - 1

- If some maturities are missing, the requisite coupon rate, c(n), is replaced by interpolation between $c(n_1)$ and $c(n_2)$, where the adjacent maturities n_1 and n_2 satisfy $n_1 < n < n_2$.
- In general, linear interpolation is used

$$\hat{c}(n) = \frac{n_2 - n}{n_2 - n_1} c(n_1) + \frac{n - n_1}{n_2 - n_1} c(n_2)$$
(3)

- The missing values are replaced by $\hat{c}(n)$, and the recursive bootstrap computations are performed as before.
- Other interpolation schemes are possible, for example cubic spline functions.
- However, effect usually minor except at those maturities n, where interpolation is needed (where c(n) is replaced by $\widehat{c}(n)$).

Second numerical example - 2

• Below, the par yields are missing for 6, 8 and 9 years to maturity. This is the common situation in most swap markets, e.g. US.

•	Example:	$\hat{c}(8)$	= (2/3)	$\times c(7)$	+	(1)	/3)c(10).	
---	----------	--------------	-----	------	---------------	---	-----	-----------	--

n	c(n)	$c(n) / \hat{c}(n)$	d(n)	$\sum_{i=1}^{n} d(i)$	100 imes R(n)
1	3.0000	3.0000	0.9709	0.9709	3.0000
2	4.0000	4.0000	0.9242	1.8951	4.0202
3	4.5000	4.5000	0.8753	2.7704	4.5384
4	5.0000	5.0000	0.8205	3.5909	5.0718
5	6.0000	6.0000	0.7401	4.3310	6.2031
6		6.5000	0.6746	5.0056	6.7797
7	7.0000	7.0000	0.6071	5.6127	7.3895
8		7.3333	0.5482	6.1609	7.8035
9		7.6667	0.4901	6.6510	8.2465
10	8.0000	8.0000	0.4333	7.0843	8.7240

7

Statistical techniques — introduction

- Data consist of N bonds, with payments b_{ij} for $i=1,\ldots,N$ and $j=1,\ldots,m_i$, and the respective payment dates are t_{ij} .
- ullet Pricing equation, allowing for measurement error $arepsilon_i$

$$P_i + A_i = \sum_{j=1}^{m_i} b_{ij} \cdot d(t_{ij}) + \varepsilon_i, \quad i = 1, 2, \dots, N$$
 (4)

- If d(t) in (4) is parameterized using some functional form with K parameters, and K < N, these parameters can be estimates by non-linear regression analysis.
- Various approaches differ as to whether they parameterize d(t) directly, or indirectly via spot rates R(t) or forward rates f(t), and which parameterization is used (often cubic spline functions).