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Modeling burnout { 1

� Consider two scenarios:

1. Interest rates decrease by 2% after the �rst period, and increase by 1%
between �rst and second period.

2. Interest rates increase by 1% after the �rst period, and decrease by 2%
between �rst and second period.

� In both cases, interest rates have dropped by 1% at time n = 2,

compared to time n= 0.

� Should we expect the same level of prepayments then?

� Probably not| in the �rst scenario there has been some prepay-

ment at time n = 1, and the borrowers with the lowest transaction

costs are the �rst to prepay their loans.

� Thus, in scenario 1, the remaining borrowers face higher transac-

tion costs (on average) at n = 2.

� This problem is known as burnout.
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Modeling burnout { 2

� If the prepayment function, �(n; s), depends on past interest rates,

the pricing problem is no longer Markovian (but path-dependent).

� We want to use binomial models (and not Monte Carlo simula-

tion), so we cannot model burnout in this way.

� Alternative approach [Jakobsen (1994)]

{ Assume we have N mortgage (sub)pools with di�erent prepayment func-

tions, �i(n; s), i = 1; : : : ; N .

{ Within each (sub)pool, there are no path-dependencies.

{ The di�erent pools could be determined by loan size (this information is

now available in Denmark).

{ In Jakobsen (1994), N = 2 and the two pools consists of households and

�rms (corporations). At that time (1994), the loan size information was

not available.
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Modeling burnout { 3

� Within each pool, we use the binomial model and the MBS

backward equation to calculate the price of the MBS, Vi(0;0).

� With relative weights of each (sub)pool, wi(0;0), the price of the

MBS today is given by

V (0;0) =
NX
i=1

wi(0;0)Vi(0;0) (1)

� For pools with above-average prepayment rates (typically corpo-

rate borrowers), the relative weight will be reduced over time.

� This means that aggregate prepayment will be reduced (since

the low-prepayment pools get a greater weight) if there has been

prepayment in the past.

� Thus, even though there are no path-dependencies within each

pool, we incorporate the burnout feature in the model.
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Introduction to risk management

� The importance of this topic cannot be understated . . .

� Before we can talk about risk management, we must talk about

risk measurement. Today, we concentrate on the latter.

� Risk measurement is also important for hedging (reducing risk) or

selective risk exposure (hedge funds). For example, buying a MBS

and hedging the general interest-rate risk by shorting T-bonds.

� For securities with �xed payments (non-callable bonds), duration

is the most widely used measure of risk.

� However, for many �xed-income securities the cash ows are

stochastic (depend on the evolution of interest rates).

� In general, we need a term-structure model to compute \some-

thing like duration" for these securities.
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The price-rate function P (y) { 1

� Basic assumption: the term-structure is governed by a one-factor

model with state variable y.

� The price of a given �xed-income security is a function of y,

denoted P(y).

� We call P(y) the price-rate function | since y is an interest

rate in most cases.

� What happens to the price if y changes to, say, y+�?

� First order Taylor-series approximation:

P(y+�) � P(y) + P 0(y)� (2)

� Computation of P(y) and its derivative:

{ Valuation techniques discussed earlier (forward-risk adjusted measure, bi-
nomial and trinomial trees, Monte Carlo simulation, etc).

{ Empirical approaches (curve-�tting using historical data).
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The price-rate function P (y) { 2

� We can also express (2) in relative terms

P(y+�)� P (y)

P(y)
�

P 0(y)

P(y)
� = �D(y)� (3)

where D(y) = �P 0(y)=P(y) is the new duration measure.

� Simple example: coupon-bearing bond with �xed payments, fcig,

and y is the yield-to-maturity on the bond

P(y) =
nX

i=1

ci exp[�yti] (4)

� Here, duration is given by the well-know formula

D(y) =
nX

i=1

citi exp[�yti]=P(y) (5)
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Hedging with duration

� Duration is a relative measure, but P 0(y) (sometimes called dollar

duration when the sign is changed) is more useful for calculating

hedge ratios.

� Suppose that we have a portfolio of two assets (the number of

each asset is w1 and w2) and that both prices depend on y,

V (y) = w1P1(y) + w2P(y) (6)

� First-order approximation to the change in value

V (y+�)� V (y) = V 0(y)� =
n
w1P

0

1(y) + w2P
0

2(y)
o
� (7)

� The portfolio is riskless (approximately) if

w2=w1 = �P 0

1(y)=P
0

2(y) � H12(y): (8)

� H12(y) is called the hedge ratio between securities 1 and 2.
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Convexity

� In general, a second-order approximation is more accurate

P(y+�)� P (y)

P(y)
� �D(y)�+

1

2
C(y)�2 (9)

� In equation (9), C(y) is convexity,

C(y) =
d2P(y)=dy2

P(y)
(10)

� If C(y) > 0, the second term on the RHS of (9) is always positive

| no matter the sign of �.

� This means that positive convexity is desirable | other things

equal.

� You don't get anything for free | we need to look at the cost

of convexity.
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Cost of convexity { 1

� Assumptions:

{ The current term structure is at, and r = 0:10.

{ The term-structure is governed by the Ho-Lee model with � = 0:02.

� Prices of zero-coupon bonds today,

P(0; T) = exp[�rT ] = exp[�0:1 � T ] (11)

� Duration and convexity of a zero:

D(0; T) =
�dP(0; T)

dr
=P(0; T) = T (12)

C(0; T) =
�d2P(0; T)

dr2
=P(0; T) = T 2 (13)

� Consider two portfolios: Portfolio A has 100% in the 15Y zero,

and Portfolio B has 50% each in the 5Y and 25Y zeros.
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Cost of convexity { 2

� Duration and convexity for the two portfolios:

Portfolio 5Y 15Y 25Y Duration Convexity

A 0 100 0 15 225

B 50 0 50 15 325

� The duration and convexity on portfolio B are calculated as fol-

lows: D = 0:5 � (5 + 25) = 15 and C = 0:5 � (52+252) = 325.

� Portfolio B has the same duration as A, but higher convexity.

� According to (9) | and Figure 1 | this means that the return

on portfolio B is greater than on A | no matter whether interest

rates go up or down (positive or negative �).
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V_A

V_B

Figure 1: value of A and B at t=0 as a 
function of yields (static analysis)
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Cost of convexity { 3

� Question: why don't we all buy portfolio B and short A? Accord-

ing to Figure 1, the worst than can happen is that we don't gain

anything (if interest rates don't move).

� Answer: we are misinterpreting a static analysis.

� We really need a dynamic analysis | which will show that the

yield curve cannot continue to be at (as we assume in Figure 1).

� Absence of arbitrage requires that for all bonds (all T )

P(t; T) =
P(0; T)

P(0; t)
exp

�
�

�2

2
(T � t)2t� (T � t) (rt � f(0; t))

�
: (14)

� In Figure 2 we use this formula to compute the value (at t = 1)

of portfolios B and A for di�erent future short rates, rt.

� The risk of B is clear now | if rates don't change enough, we

lose money compared to A.
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Figure 2: difference btw. V_B and V_A
at time t=1 as a function of r(1)
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