Motivation

- Consider a fixed-income derivative with payoff V_T a time T.
- The price today ($t = 0$) is given by
 \[V_0 = E_Q^0 \left[e^{-\int_0^T r_s ds} V_T \right]. \]
 (1)

- Problem: we are calculating the expectation of the product of two dependent random variables.
- In general, it is easier to calculate V_0 using the so-called \textbf{forward-risk adjusted measure} technique.
- This means that V_0 is given by
 \[V_0 = P(0, T) \cdot E_Q^{Q_T} (V_T), \]
 \[\text{where } Q_T \text{ is a new probability measure.} \]
- Basic idea: change probabilities of different events (again).
Model setup

- The general results are derived for a one-factor HJM model.
- Risk-neutral forward-rate dynamics:
 \[df(t, T) = -\sigma(t, T)\sigma_P(t, T)dt + \sigma(t, T)dW^Q_t, \]
 where
 \[\sigma_P(t, T) = -\int_t^T \sigma(t, u)du. \]
- Bond prices evolve according to the SDE
 \[dP(t, T) = r_t P(t, T)dt + \sigma_P(t, T)P(t, T)dW^Q_t. \]
- Thus, \(\sigma_P(t, T) \) is the time \(t \) volatility of the zero-coupon bond maturing at time \(T \).

Forward-risk adjusted measure \(-1\)

- The price of the derivative at time \(t \) is denoted \(V_t \).
- Under the risk-neutral distribution we have
 \[dV_t = r_t V_t dt + \sigma_V(t)V_t dW^Q_t. \]
- Note: we do not know \(V_t \) or \(\sigma_V(t) \), but the only important thing right now is the form of the SDE (6).
- Define the relative (deflated) price of the derivative
 \[F_t \equiv V_t / P(t, T), \quad \text{for } t \in [0, T]. \]
- SDE for \(F_t \) can be obtained from Ito’s lemma
 \[dF_t = \sigma_P(\sigma_P - \sigma_V)F_t dt + (\sigma_V - \sigma_P)F_t dW^Q_t \]
- Shorthand notation: \(\sigma_P \equiv \sigma_P(t, T) \) and \(\sigma_V \equiv \sigma_V(t) \).
Forward-risk adjusted measure – 2

- Define a new probability measure, denoted Q^T_t, such that
 \[W^Q_{t} = W^Q_{0} - \int_{0}^{t} \sigma_p(u,T)du, \quad t \in [0,T], \]
 is a Brownian motion under Q^T_t.
- The differential form of (9) is
 \[dW^Q_{t} = dW^Q_{t} - \sigma_p(t,T)dt. \]
- If we substitute (9) into the SDE for F_t, we obtain the process for F_t under the forward-risk adjusted measure,
 \[dF_t = -\sigma_p(\sigma_V - \sigma_p)F_t dt + (\sigma_V - \sigma_p)F_t \left(dW^Q_{t} + \sigma_p dt \right) \]
 \[= (\sigma_V - \sigma_p)F_t dW^Q_{t}. \]

Forward-risk adjusted measure – 3

- **Key result:** under the new measure (distribution) Q^T, the relative price F_t is a martingale — since the drift is zero.
- Step 1: because of the martingale property, we have
 \[F_t = E^{Q^T}_{t} (F_T), \quad \text{for } t \leq T. \]
- Step 2: since $P(T,T) = 1$, we get $F_T = V_T$.
- Step 3: the time $t = 0$ price can be calculated as
 \[V_0 = P(0,T)F_0 = P(0,T)E^{Q^T}_{0} (F_T) \]
 \[= P(0,T)E^{Q^T}_{0} (V_T). \]
- Only remaining problem: determine distribution of payoff under the forward-risk adjusted measure, Q^T.

5
Forward-risk adjusted measure – 4

- Forward-rate dynamics under the new measure Q_T,
 \[df(t,T) = -\sigma(t,T) \sigma_p(t,T) dt + \sigma(t,T) \left(dW^Q_t + \sigma_p(t,T) dt \right) \]
 \[= \sigma(t,T) dW^Q_t. \] (14)
- Thus, the T-maturity forward rate is a martingale under Q_T.
- Integrating (14) from $t = 0$ to $t = T$,
 \[f(T,T) = f(0,T) + \int_0^T \sigma(t,T) dW^Q_t \] (15)
- Since the expectation of the second term in (15) is zero, and since $f(T,T) = r_T$, we get
 \[f(0,T) = E_0^{Q_T} (r_T). \] (16)

Options on zero-coupon bonds – 1

- Notation:
 \begin{align*}
 K & \quad \text{exercise price of the call option.} \\
 T & \quad \text{maturity of the call option.} \\
 T_1 & \quad \text{maturity of the underlying zero-coupon bond.} \\
 C(T,T_1,K) & \quad \text{price of the call option at time } t = 0.
 \end{align*}
- For concreteness, we use the extended Vasicek model which corresponds to the HJM model with
 \[\sigma(t,T) = \sigma e^{-\kappa(T-t)} \] (17)
 \[\sigma_p(t,T) = \frac{\sigma e^{-\kappa(T-t)} - 1}{\kappa}. \] (18)
- The following results apply to any Gaussian HJM model, however.
Options on zero-coupon bonds – 2

- The price of the option is given by:
 \[C(T, T_1, K) = P(0, T) E_0^{QT} \left[\max \{ P(T, T_1) - K, 0 \} \right]. \] (19)

- In order to calculate this expectation, we must determine the distribution of \(P(T, T_1) \) under \(Q^T \).

- Since \(P(T, T) = 1 \), the distribution of \(P(T, T_1) \) can be obtained from the relative price
 \[F(t, T, T_1) = P(t, T_1)/P(t, T). \] (20)

- Note that (20) is the forward price of the \(T_1 \)-maturity bond.

- SDE under \(Q^T \) for \(F(t, T, T_1) \):
 \[
 dF(t, T, T_1) = \{ \sigma_P(t, T_1) - \sigma_P(t, T) \} F(t, T, T_1) dW_t^{QT} \\
 = \sigma_F(t, T, T_1) F(t, T, T_1) dW_t^{QT}. \] (21)

Options on zero-coupon bonds – 3

- An application of Ito’s lemma gives:
 \[
 d \log F(t, T, T_1) = -\frac{1}{2} \sigma_F^2(t, T, T_1) dt + \sigma_F(t, T, T_1) dW_t^{Q}. \] (22)

- For the extended Vasicek model:
 \[
 \sigma_F(t, T, T_1) = \frac{\sigma}{\kappa} \left(e^{-\kappa(T_1 - t)} - e^{-\kappa(T - t)} \right) \\
 = \frac{\sigma}{\kappa} e^{-\kappa(T - t)} \left(e^{-\kappa(T_1 - T)} - 1 \right). \] (23)

- It follows from (22) and (23) that \(\log P(T, T_1) = \log F(T, T, T_1) \) is normally distributed.

- The mean of \(\log P(T, T_1) \) is given by:
 \[
 \mu_F(T, T_1) = \log F(0, T, T_1) - \frac{1}{2} \int_0^T \sigma_F^2(t, T, T_1) dt \\
 = \log F(0, T, T_1) - \frac{1}{2} \omega_F^2(T, T_1). \] (24)
Options on zero-coupon bonds – 4

- The variance of $\log P(T, T_1)$ is given by:

$$\omega_F^2(T, T_1) = \int_0^T \sigma_F^2(t, T, T_1) dt$$

$$= \left(\frac{e^{-\kappa(T_1 - T)} - 1}{\kappa} \right)^2 \times \left(\frac{\sigma^2 - e^{-2\kappa T}}{2\kappa} \right)$$ (25)

- After some lengthy algebra, the price of the call follows:

$$C(T, T_1, K) = P(0, T_1)N(d_1) - P(0, T)KN(d_2)$$ (26)

$$d_1 = \left(\log \frac{P(0, T_1)}{P(0, T)} - \log K + \frac{1}{2} \omega^2_F \right) / \omega_F$$ (27)

$$d_2 = d_1 - \omega_F.$$ (28)

- This is the Black-Scholes formula with a different variance . . .

Options on coupon bonds – 1

- Coupon bond with payments $\{a_j\}$ at times T_j, $1 \leq j \leq M$.

- The price is at time t is

$$P_a(t; r_t) = \sum_{j=1}^M a_j \cdot P(t, T_j; r_t)$$ (29)

- In the extended Vasicek model, all bond prices depend on r_t.

- The price of a call option expiring at time $T < T_1$ (date of the first payment) can be written as:

$$C_a(T, K) = P(0, T) \cdot E_0^T \left(\sum_{j=1}^M a_j \cdot P(T, T_j; r_T) - K \right)^+$$ (30)

- However, we are no longer taking the (truncated) expectation over a log-normal random variate.
Options on coupon bonds – 2

- We use the Jamshidian decomposition.
- Define r^* such that
 \[\sum_{j=1}^{M} a_j \cdot P(T, T_j; r^*) - K = 0 \]
 (31)
- If $P(T, T_j; r)$ is monotonic in r (for all maturities), we can show that:
 \[\left(\sum_{j=1}^{M} a_j \cdot P(T, T_j; r_T) - K \right)^+ = \sum_{j=1}^{M} a_j \left(P(T, T_j; r_T) - K_j \right)^+ \]
 (32)
 where $K_j = P(T, T_j; r^*)$.
- This follows from monotonicity since $\sum_{j=1}^{M} a_j P(t, T_j; r) > K$, corresponding to $r < r^*$, implies $P(t, T_j; r) > K_j$ for each j.

Options on coupon bonds – 3

- Interpretation: an option on a portfolio of payments, $\{a_j\}$, is equivalent to a portfolio of options.
- This means that the price of an option on a coupon bond is given by the expression:
 \[C_a(T, K) = \sum_{j=1}^{M} a_j \cdot C(T, T_j; K_j) \]
 (33)
- This holds for the following models:
 - Vasicek model — derived by Jamshidian (1989)
 - CIR model — derived by Longstaff (1993)
- The result does not generalize to multi-factor models, such as the Gaussian double-decay model.
At-the-money interest-rate caps

- Consider a derivative (ATM cap) with payoff
 \[V_T = \max(r_T - f(0,T), 0). \] (34)

- Under the forward-risk adjusted measure:
 \[r_T - f(0,T) = \int_0^T \sigma(t,T) dW_t^Q. \] (35)

- Under the extended Vasicek model, the RHS of (35) is normally distributed with mean zero and variance
 \[v^2(0,T) = \int_0^T \sigma^2(t,T) dt = \sigma^2 \frac{1 - e^{-2\kappa T}}{2\kappa}. \] (36)

- The time \(t = 0 \) price of the ATM cap is:
 \[C(T, f(0,T)) = P(0,T) E_0^Q(V_T) = P(0,T) \frac{v(0,T)}{\sqrt{2\pi}}. \] (37)

Forward and futures contracts

- Agreement to deliver a financial asset on a future date \(t \) for a price which is fixed today (but paid upon delivery).

- There are no payments when entering into the contract — the initial value of the forward or futures contract is always zero.

- Difference between forward and futures contract: the latter is continuously marked to market to ensure zero value.

- Pricing: consider a forward and future on a \(T \)-maturity zero.
 \[
 F_{\text{for}}(t,T) = \frac{P(0,T)}{P(0,t)} \\
 F_{\text{fut}}(t,T) = E_0^Q[P(t,T)].
 \] (38) (39)

- See chapter 14 in Tuckman for proofs and further discussion.

- When the underlying asset is a bond, futures prices are (generally) below forward prices.
Pricing a two-year callable bond – 1

- Binomial tree for the short rate with annual time steps, \(\theta(n,s) = 0.5 \), discrete compounding. The tree is calibrated to match a flat initial term-structure of 10 percent.

\[
\begin{array}{c}
10.00 \\
11.11 \\
8.91 \\
\end{array}
\]

- A two-year non-callable bullet with a 10 percent coupon is trading at par. To see this, calculate the bond price using the tree

\[
\begin{array}{c}
100.00 \\
109.00 = 10 + 110/1.1111 \ (101.00) \\
111.00 = 10 + 110/1.0891 \ (99.00) \\
\end{array}
\]

Pricing a two-year callable bond – 2

- Does the price change if the borrower is allowed (but not obligated) to pay back the entire principal after one year?
- In other words: what is the price of a two-year callable bond?
- After one year, the borrower can choose between continuing the fixed-rate loan (bullet) with a 10% interest rate, or calling the bullet and borrowing at the new short rate, \(r(1,s) \).
- If \(r(1,s) \) is below 10%, the rational borrower will call the bond.
- Price of the callable bond follows from the tree:

\[
\begin{array}{c}
99.55 \\
109.00 = 10 + 110/1.1111 \\
110.00 = 10 + 100.00 \\
\end{array}
\]

- The price (premium) of the call feature is 0.45 cents.
Callable bonds in a multi-period setting

- The callable bond contains an **embedded** option to purchase the “otherwise identical” non-callable bond at par.
- Option payoff: $C(1,0) = 1$ and $C(1,1) = 0$, which means that the price is $C(0,0) = 0.5 \cdot \left[C(1,0) + C(1,1) \right] / 1.10 = 0.45$.
- We always have: $P_C(n,s) = P_{NC}(n,s) - C(n,s)$.
- In a multi-period setting, the call feature is an **American option**.
- Description of the **optimal** call strategy:
 - Let $K(n,s)$ denote the call price (could be greater than par).
 - Let $P_C^H(n,s)$ denote the price of the callable bond if it is **not** called at the node (n,s).
 - Note: $P_C^H(n,s)$ is calculated using the short-rate tree and the backward equation.
 - The optimal strategy is to call the bond if $P_C^H(n,s) > K(n,s)$.

Mortgage-backed bonds

- Most mortgage-backed bonds (MBBs) in Denmark are callable.
- The “otherwise identical” non-callable bond is annuity bond (sum of interest and principal payments are constant over time).
- Can we use the previous techniques to price the MBB?
 - **No** – MBB’s are different in several respects:
 - Empirical evidence shows that not all borrowers prepay at the same time.
 - Possible explanation: transaction costs which differ across different borrowers (borrower heterogeneity).
- Instead, we will price the MBB using the so-called **prepayment function** (with an more or less ad hoc specification).
- This function is defined as the fraction of remaining borrowers who prepay on a given node in the tree.