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One-Factor Models { 1

� Key features of one-factor (equilibrium) models:

{ All bond prices are a function of a single state variable, the short rate.

{ The short rate evolves according to the univariate SDE:

drt = �(rt)dt+ �(rt)dWt : (1)

{ Using the \absence of arbitrage" assumption and Ito's lemma, we derive a
PDE for bond prices:
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@t
� rP = 0; (2)

with boundary condition P(T; T) = 1.

� Advantages of one-factor models:

{ Simple model | with a limited number of parameters

{ The state variable (short rate) is observable, at least in principle.

{ Numerical solutions (e.g. binomial trees) can be implemented, if necessary.
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One-Factor Models { 2

� Problems with one-factor models:

{ Changes in the yield curve are perfectly correlated across di�erent matu-

rities.

{ Shape of the yield curve highly restricted (monotonic increasing and de-

creasing, and hump-shaped, but not inversely hump-shaped).

{ Model unable to �t the actual yield curve (when the model parameters are

time-invariant, as they are supposed to be). Cause of concern for pricing

derivatives (e.g., mortgage-backed securities).

� Solutions:

{ Calibrated one-factor models with time-dependent parameters (advocated

by Hull and White (1990) as modi�cations of the Vasicek and CIR models).

{ Alternatively: HJM models which �t the initial yield curve per construction.

{ Models with multiple factors (but still with time-invariant parameters).
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Solution 1: Calibrated one-factor models

� For example, Vasicek with time-dependent drift

drt = � f�(t)� rtg dt+ �dW
Q
t ; (3)

where �(t) is chosen to �t the current yield curve exactly.

� Problems solved:

1. Perfect �t to the current yield curve (including any bond mispricing).

2. Any shape of the current yield curve can be accommodated.

� Problems remaining and new problems:

1. Still a one-factor model with perfect-correlation assumption. Inadequate
for certain derivatives, e.g. options on yield spreads [Canabarro (1995)].

2. The approach is (inherently) useless for detecting mispricing of bonds.

3. Model will not �t future yield curves, unless parameters are re-calibrated.

4. Hedging and risk-management applications are problematic | because of
the \perfect correlation" assumption.
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Solution 2: Multi-Factor Models

� Main assumptions:

{ All bond prices are a function of a m-dimensional state vector Xt.

{ The short rate is a known function of Xt, that is rt = r(Xt).

{ The state variables in Xt evolve according to the multivariate SDE

dXt = �(Xt)dt+ �(Xt)dWt; (4)

where Wt is an m-dimensional Brownian motion, and �(Xt) diagonal.

� Problems with multi-factor models:

1. Changes in yield curve are no longer perfectly correlated, but they still lie
in an m-dimensional subspace (a great improvement, of course).

2. We may need \many" factors to �t the entire yield curve.

3. Factors are, in principle, unobservable. What is Xt anyway?

4. Finding an analytical solution for bond prices may be di�cult.

5. Numerical solutions (for derivatives) can be computationally involved.
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Multi-Factor Models | How?

� Without loss of generality, the short rate can be taken as one of

the m state variables, since rt = r(Xt).

� Under no-arbitrage assumption all bond prices (still) satisfy:

P(t; T) = E
Q
t

�
e�

R T
t rsds

�
; (5)

where Q denotes the risk-neutral distribution. Note: the risk-

neutral process for rt has yet to be determined.

� Using \traded assets" as additional state variables?

{ Examples: 30Y yield or the consol yield (Brennan-Schwartz model).

{ We must specify how the state variables a�ect rt under the Q-measure.

{ Parameter restrictions, since (5) must hold for these assets also.
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Multivariate SDEs

� Multivariate SDE:

dXt = �(Xt)dt+ �(Xt)dWt; (6)

where Xt = (X1t; : : : ; Xmt).

� The i'th row of (6) is a univariate SDE, whose drift and volatility

functions depend on all m state variables:

dXit = �i(Xt)dt+ �i(Xt)dWit: (7)

In this setup, the m univariate Brownian motions can be corre-

lated, with Corr(dWit; dWij) = �ijdt.

� Consider a scalar function, F(X,t), representing a mapping from

Rm�R to the real line, R. The dynamics of F(X; t) are obtained

by applying a multivariate version of Ito's lemma.
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Ito's lemma (multivariate)

� If Xt evolves according to the vector SDE (6), the function F ,

given by F = F(X; t) follows the univariate SDE:

dFt = �(Xt)dt+
mX
i=1

�i(Xt)dWit; (8)

� The drift in (8) is given by:

�(X) =
mX
i=1

@F

@Xi
�i(X)+

@F

@t
+
1

2

mX
i=1

mX
j=1

@2F

@Xi@Xj
�i(X)�j(X)�ij; (9)

where �ii = 1.

� The i'th volatility coe�cient in (8) is given by:

�i(X) =
@F

@Xi
�i(X): (10)
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A General Multi-Factor Model { 1

� As in the one-factor case, we determine (endogenously) the rela-

tionship between Xt and bond prices, P(t; T ).

� Since P(t; T) is a function of Xt and t,

dP(t; T) = �P(t; T)P(t; T)dt +
mX
i=1

�Pi(t; T )P(t; T )dWit; (11)

and the drift and volatility coe�cients are obtained from Ito's

lemma.

� Absence of arbitrage implies the APT restriction:

�P(t; T) = rt+
mX
i=1

�i(Xt)�Pi(t; T ): (12)

� In equation (12), �i(Xt) is the market price of risk for the i'th

factor, and it is independent of T .
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A General Multi-Factor Model { 2

� By Ito's lemma, �P(t; T) and �Pi(t; T ) can also be written as:

�P(t; T)P(t; T) =

mX
i=1

@P

@Xi

�i(X) +
@P

@t
+
1

2

mX
i=1

mX
j=1

@2P

@Xi@Xj

�i(X)�j(X)�ij

�Pi(t; T)P(t; T) =
@P

@Xi

�i(X); i = 1;2; : : : ;m

� After substituting these equations into the APT restriction (12),

we get the following PDE:
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i=1
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j=1
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@Xi@Xj
�i(X)�j(X)�ij +

mX
i=1

@P

@Xi
[�i(X)� �i(X)�i(X)] +

@P

@t
� r(X)P = 0 (13)

with boundary condition P(T; T) = 1.
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A General Multi-Factor Model { 3

� Feynman-Kac solution:

P(t; T) = E
Q
t

�
e�

R T
t r(Xs)ds

�
; (14)

� The expectation in (14) is taken under the probability measure

corresponding to the risk-neutral (drift-adjusted) process:

dXt = f�(Xt)� �(Xt)�(Xt)g dt+ �(Xt)dW
Q
t : (15)

� The i'th element of the SDE (15) is

dXit = f�i(Xt)� �i(Xt)�i(Xt)g dt+ �i(Xt)dW
Q
it : (16)
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Four examples of multi-factor models

1. Double-Decay (Central-Tendency) model:

drt = �1(�t � rt)dt+ �1dW1t (17)

d�t = �2(� � �t)dt+ �2dW2t (18)

2. Fong-Vasicek stochastic volatility model:

drt = �1(�� rt)dt+
p
VtdW1t (19)

dVt = �2(�� Vt)dt+ �
p
VtdW2t (20)

3. Brennan-Schwartz model:

d log rt = [�(lt � rt)� � log p] dt+ �1dW1t (21)

d lt = �2(r; l)dt+ �2ltdW2t; (22)

where lt is the consol rate (annuity that never matures).

4. Multi-factor CIR model:

rt =
Pm

i=1yit (23)

dyit = �i(�i � yit)dt+ �i
p
yitdWit; i = 1;2; : : : ;m (24)

where the m Brownian motions are independent.
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The Brennan and Schwartz (1979) model

� State variables in the model:

rt the short rate (instantaneous interest rate).

lt the yield-to-maturity on a consol bond with a \continuous coupon".

� General stochastic process:

drt = �1(rt; lt)dt+ �1(rt; lt)dW1t (25)

d lt = �2(rt; lt)dt+ �2(rt; lt)dW2t: (26)

� The particular process used in the paper:

d log rt = [�(lt � rt)� � log p] dt+ �1dW1t (27)

d lt = �2(r; l)dt+ �2ltdW2t: (28)

� For pricing purposes, we do not need to specify �2(l; r) as the

second state variable is a traded asset.
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BS consol price dynamics

� A consol is an annuity that never matures. If Vt denotes the price

of the consol, we have the following relation:

Vt =

Z 1

0
e�ltsds =

"
�
1

lt
e�lts

#1
0

=
1

lt
(29)

� Note: the relationship between Xt = (rt; lt) and Vt is known.

� Consol price dynamics:

dVt

Vt
= �V (rt; lt)dt + 0 � dW1t + �V (rt; lt)dW2t (30)

where

V � �V (r; l) = �l�2�2(l; r) + l�3�22(l; r) = l�1
�
�l�1�2(l; r) + l�2�22(l; r)

�
(31)

V � �V (r; l) = �l�2�2(l; r) = l�1
�
�l�1�2(l; r)

�
(32)

since Vt = l�1t does not depend on rt.
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BS fundamental PDE { 1

� The bond price, P(t; T), satis�es the PDE:

1

2

@2P

@r2
�21(r; l) +

1

2

@2P

@l2
�22(r; l) +

@2P

@r@l
��1(r; l)�2(r; l) +

@P

@r
f�1(r; l)� �1(r; l)�1(r; l)g +

@P

@l
f�2(r; l)� �2(r; l)�2(r; l)g +

@P

@t
� rP = 0: (33)

� Because the lt is a known function of a traded asset, we can

eliminate �2(r; l) and �2(r; l) from the above PDE.

� First, we substitute the SDE for the consol price dynamics (30)

into the APT relationship used to derive the PDE:

�V (r; l) + l = r+ �2(r; l)�V (r; l) (34)

Why do we add l on the LHS?
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BS fundamental PDE { 2

� Second, we substitute (31) and (32) into (34):

�l�1�2(r; l) + l�2�22(r; l) + l = r � �2(r; l)l
�1�2(r; l): (35)

� Third, after multiplying by l on both sides of (35), we get

�2(r; l)� �2(r; l)�2(r; l) = l�1�22(r; l) + l2 � rl (36)

� Finally, we substitute (36) into (33):

1

2

@2P

@r2
�21(r; l) +

1

2

@2P

@l2
�22(r; l) +

@2P

@r@l
��1(r; l)�2(r; l) +

@P

@r
f�1(r; l)� �1(r; l)�1(r; l)g +

@P

@l

n
l�1�22(r; l) + l2 � rl

o
+

@P

@t
� rP = 0; (37)

which is the BS PDE.
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Assessment of the BS model

� Advantages of the Brennan-Schwartz model:

{ State variables are observable (in principle), and they can be interpreted as
short and long-run factors.

{ Only one market price of risk (preference) parameter in the model.

� Problems with the Brennan-Schwartz model:

{ No analytical solution for bond prices. The PDE can only be solved with
numerical methods | either by �nite-di�erence PDE solutions or Monte
Carlo evaluation of the Feynman-Kac formula.

{ In most bond markets, there are no actively traded consol bonds.

{ Technical problems with the BS model: by the de�nition of lt,

Vt = l�1t =

Z
1

t

P(t; s)ds = F(rt; lt); (38)

but the requisite parameter constraint(s) are not imposed in the BS model.

{ This problem is, in fact, an argument against using traded assets (yields)
as state variables (not just in the BS model).
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Exponential-a�ne models { 1

� Fundamental PDE for a general multi-factor model:

1

2

mX
i=1

mX
j=1

@2P

@Xi@Xj

�i(X)�j(X)�ij +

mX
i=1

@P

@Xi

[�i(X)� �i(X)�i(X)] +
@P

@t
� r(X)P = 0 (39)

� The Brennan and Schwartz model with Xt = (rt; lt) does not lead

to an analytical solution of (39) for bond prices.

� There are several term-structure models with an analytical solu-

tion for P(t; T), and for most of these models we get

P(t; t+ �) = exp
h
A(�) +B(�)0Xt

i
: (40)

� Models with bond prices of the form (40) are called exponential-

a�ne models [Du�e and Kan (1996)].
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Exponential-a�ne models { 2

� What are the su�cient conditions for obtaining (40) as the solu-

tion to (39)?

� All bond prices, solutions to (39), depend on:

1. The mapping from Xt to rt, given by rt = r(Xt).

2. m risk-neutral drifts:

��i (X) = �i(X)� �i(X)�i(X) (41)

3. m(m+1)=2 variance-covariance terms: �i(X)�j(X)�ij.

� Su�cient conditions for exponential-a�ne models:

r(X) = w0+ w0

1X (42)

��i (X) = ai + b0iX; i= 1; : : : ;m (43)

�i(X)�j(X)�ij = cij + d0ijX; i; j = 1; : : : ;m (44)

� That is, all \coe�cients" in the PDE are linear in X.
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Exponential-a�ne models { 3

� The function A(�) and the m�1 vector (of functions) B(�) depend

on the speci�c model.

� A(�) and B(�) are obtained as the solution to an ODE system

with dimension (m+1).

� Same procedure as with one-factor models:

{ First, we guess that the solution is of the form (40).

{ Second, we substitute the requisite partial derivatives in to the PDE.

{ Finally, we collect terms with the factor Xi (i= 1;2; : : : ;m) and a constant

(remaining terms).

{ This provides the m+ 1 ODEs which must be solved somehow (perhaps

numerically, using Runge-Kutta integration)

{ Boundary conditions for the ODE: A(0) = 0 and B(0) = 0m�1.
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Gaussian central-tendency model { 1

� Stochastic process for the short rate:

drt = �1(�t � rt)dt+ �1dW1t (45)

d�t = �2(� � �t)dt+ �2dW2t; (46)

� The Brownian motions are dependent, Corr(dW1t; dW2t) = �dt,

and the market prices of risk are constants, �1 and �2.

� PDE:

1

2

@2P

@r2
�21 +

1

2

@2P

@�2
�22 +

@2P

@r@�
��1�2+

@P

@r
[�1(�� r)� �1�1]

+
@P

@�
[�2(� � �)� �2�2]�

@P

@�
� rP = 0; (47)

� We guess that

P(t; t+ �) = exp

�
A(�) +B1(�)rt+B2(�)�t

�
: (48)
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Gaussian central-tendency model { 2

� Substitution of the partial derivatives of the function (48) into

the PDE (47) gives

�
1

2
B2

1(�)�
2

1 +
1

2
B2

2(�)�
2

2 +B1(�)B2(�)��1�2+B1(�) [�1(�� r)� �1�1]

+B2(�) [�2(� � �)� �2�2]�A0(�)�B0

1(�)r �B0

2(�)�� r
o
P = 0 :(49)

� After dividing by P and collecting terms we get�
1

2
�21B

2

1(�) +
1

2
�22B

2

2(�) + ��1�2B1(�)B2(�)

��1�1B1(�) + (�2�2 � �2�2)B2(�)�A0�)
o

�
n
�1B1(�) +B0

1(�) + 1

o
r

+

n
�1B1(�)� �2B2(�)�B0

2(�)
o
� = 0 (50)
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Gaussian central-tendency model { 3

� Since (50) must hold for all values of r and �, we have

B0

1(�) = ��1B1(�)� 1 (51)

B0

2(�) = �1B1(�)� �2B2(�) (52)

A0

1(�) =
1

2
�21B

2

1(�) +
1

2
�22B

2

2(�) + ��1�2B1(�)B2(�)

��1�1B1(�) + (�2� � �2�2)B2(�): (53)

� ODE solutions:

B1(�) =
e��1� � 1

�1
(54)

B2(�) =
e��2� � 1

�2
� e��1� � e��2�

�1 � �2
(55)

A(�) =

Z �

0

A0(s)ds; where A0(s) is the RHS of (53): (56)

24


