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Stochastic processes | de�nitions

� A stochastic process can be de�ned as an ordered sequence of

random variables fXtg, indexed by time t. In general, Xt1 and Xt2
are dependent random variables.

� The AR(1) model (process) is an example of a stochastic process:

Xt = �Xt�1+ ut ; ut � N(0; �2) (1)

� The words `process' and 'model' are often used interchangeably.

� The AR(1) model is a discrete-time model. We observe Xt at

t = 0;1;2;3;4; : : : | but not at t = 1:5. Formally, the time index

is the set of natural numbers (integers).

� For continuous-time processes, the time index is the set of real

numbers. In principle, we can observe the stochastic process Xt

at all time points (that is, continuously).
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The Brownian motion

� The Brownian motion fWtg is a continuous-time stochastic pro-
cess with the following properties:

1. W0 = 0.

2. For any times s > t, Ws �Wt � N [0; (s� t)].

3. For any times t1 < t2 < t3, the non-overlapping increments W(t3) �W(t2)
and W(t2)�W(t1) are independent.

4. Sample path of Wt are continuous (the sample path can be drawn without
lifting the pen).

� The third property of the Brownian motion implies that

Cov(Wt;Ws) = E(WtWs) = min(t; s) (2)

� By the third property, the Brownian motion is a martingale,

E [Ws jWt] =Wt; for all s � t: (3)
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Stochastic di�erential equations

� Stochastic di�erential equations (SDEs) are constructed from the

Brownian motion process.

� Sample paths of SDEs are continuous (like the Brownian motion).

� General form of a univariate (one-factor) stochastic di�erential

equation (SDE):

dXt = �(Xt)dt+ �(Xt)dWt: (4)

� This means that for a su�ciently small �

Xt+� �Xt � N

h
�(Xt)�; �

2(Xt)�
i
; (5)

� Strictly speaking, equation (5) is only an approximation of the

SDE (known as the Euler discretization).
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Ito's lemma

� Consider a function of Xt and time t, denoted Ft = F(Xt; t).

� Ito's lemma gives us the stochastic process for Ft,

dFt = �F(Xt; t)dt+ �F (Xt; t)dWt (6)

where

�F(X; t) =
@F(X; t)

@X
�(X) +

@F(X; t)

@t
+
1

2

@2F(X; t)

@X2
�2(X) (7)

�F(X; t) =
@F(X; t)

@X
�(X): (8)

� Example: the logarithm of the GBM, dSt = �Stdt+ �StdWt, satis-

�es the SDE

d logSt =

�
��

1

2
�
2
�
dt+ �dWt: (9)
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Why study continuous-time models?

� Arguments against continuous-time models

{ In the real world, price changes occur at discrete time intervals.

{ Binomial models are simpler to understand (or to learn, at least).

{ In some cases, we will use some discrete-time approximation (as a numerical
solution procedure), even if we start with a continuous-time model.

� Arguments in favor of continuous-time models

{ In any discrete-time model (not just binomial), there is a great deal of am-
biguity about the \right" time interval. The continuous-time speci�cation
may very well be the least arbitrary assumption!

{ In many important cases, we can �nd an analytical (closed-form) solution
for bond prices and �xed-income derivatives.

{ Therefore, understanding the structure and properties of the model is
easier in the continuous-time case.

{ The continuous-time speci�cation generally makes it easier to �nd the best
discrete-time approximation and numerical solution procedure.
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Equilibrium vs. arbitrage-free models { 1

� We use the classi�cation in Tuckman (1995, ch. 9) | but note

that other (older) papers may use di�erent de�nitions.

� Arbitrage-free models:

{ Per construction, arbitrage-free term-structure models �t the initial yield
curve (i.e., today's yield curve) exactly.

{ Used for pricing �xed-income derivatives (not bonds).

{ The prices of these securities are often independent of investor preferences.

{ Model examples: HJM and Ho & Lee models, as well as equilibrium-
style models with time-dependent parameters (calibrated models), e.g.
the BDT model and the Hull-White extended Vasicek model.

{ In most cases, a single-factor model is used (with numerical solution).

{ Implementation issues: calibration to initial yield curve, and assumptions
about the volatility structure.

{ The models are not stable | the time-dependent parameters must be
re-calibrated over time (inconsistency).
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Equilibrium vs. arbitrage-free models { 2

� Equilibrium (classical) models:

{ The original term-structure models belong to this group, hence the phrase
\classical models".

{ Main building blocks: stochastic process for the short rate, and assumptions
about investor preferences (risk premia, or market prices of risk).

{ The yield curve is determined endogenously in the model | it is not
constrained to match the actual (market) yield curve.

{ Model parameters are constant over time (internal consistency), and typi-
cally there are at least two factors (multi-factor models).

{ Model examples: Vasicek, CIR and the Brennan-Schwartz model.

{ Used mainly for trading bonds (yield-curve strategies), less useful for �xed-
income derivatives (where we have two bets).

{ Other applications: risk management, where single-factor models (with
calibration) tend to be inappropriate.

{ Implementation issues: statistical estimation using historical data on the
term structure (note: these methods are not covered in this course).
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De�nition of yield and forward curves

� Price at time t of a zero-coupon bond maturing at time T (ma-

turity date) is denoted by P(t; T ).

� We always use continuous compounding when de�ning the yield

curve and forward rates, since this simpli�es many formulas.

� Yield-to-maturity, R(t; T), and forward rate, f(t; T ):

R(t; T) =
� logP(t; T )

T � t
(10)

f(t; T) =
�@ logP(t; T )

@T
(11)

� Inverse relationships:

P(t; T) = e
�R(t; T )(T � t) (12)

P(t; T ) = e
�
R T
t f(t; s)ds (13)
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Basic idea of equilibrium models

� The purpose is deriving an expression for P(t; T ).

� We start by making assumptions about the number of factors

(state variables) determining the yield curve, and the stochastic

processes governing these factors.

� With these assumptions | and Ito's lemma | we �nd an expres-

sion for the expected bond return and risk exposure (volatility)

for di�erent maturity dates Tj.

� Suppose that we know the expected return at each time (instant)

between t (today) and T (maturity) . . .

� Then, using this knowledge and the terminal value of P(T; T) = 1,

we can work backwards and calculate the price today, P(t; T ).

� We use the APT (arbitrage price theory) to determine the ex-

pected return as a function of some preference parameters.
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A general one-factor model { 1

� Modeling assumptions:

1. Frictionless bond market (no taxes, transactions costs, bid-ask spreads,
divisibility problems, short-sale constraints, etc.).

2. Investors prefers more wealth to less (implies absence of arbitrage oppor-
tunities in the bond market).

3. All bond prices are a function of a single state variable, which we take as
the short rate rt (de�nition: continuously compounded interest rate on a
money market account over a small horizon).

4. The dynamics of the short rate are governed by the SDE:

drt = �(rt)dt+ �(rt)dWt: (14)

� Our problem: determine the relationship between rt and the price

of the bond maturing at time T , P(t; T ).

� Limitation implicit in the third assumption: bond returns for dif-

ferent maturities are perfectly correlated.
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A general one-factor model { 2

� The zero-coupon bond price, P(t; T ), is a function of r and t.

� By Ito's lemma, P(t; T) evolves according to the SDE:

dP(t; T) = �P(t; T)P (t; T )dt + �P(t; T )P(t; T )dWt; (15)

where

�P(t; T)P(t; T) =
@P

@r
�(r) +

@P

@t
+
1

2

@2P

@r2
�
2(r) (16)

�P (t; T)P(t; T) =
@P

@r
�(r): (17)

� Consider a portfolio, consisting of w1 bonds with maturity T1 and

w2 bonds with maturity T2 (where T1 6= T2).

� Value of the portfolio: �t = w1P(t; T1) + w2P(t; T2).
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A general one-factor model { 3

� The instantaneous movement of �t, at time t, is given by:

d�t = w1 � dP (t; T1) + w2 � dP(t; T2) (18)

� Using (15), this can also be written as:

d�t = fw1�P(t; T1)P (t; T1) + w2�P(t; T2)P(t; T2)g dt +

fw1�P(t; T1)P(t; T1) + w2�P (t; T2)P(t; T2)g dWt : (19)

� Since there are two bonds and only one source of risk, it must be

possible to choose w1 and w2 such that the portfolio is riskless,

w1�P (t; T1)P(t; T1) + w2�P (t; T2)P(t; T2) = 0 : (20)

� Note: this requires continuous adjustment of w1 and w2.
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A general one-factor model { 4

� By the \absence of arbitrage" assumption, the expected return

of the portfolio must equal the riskless rate rt:

d�t = fw1�P(t; T1)P(t; T1) + w2�P(t; T2)P(t; T2)g dt

= rt�tdt; (21)

� Alternatively, the excess return must be zero:

w1 f�P(t; T1)� rtgP(t; T1) + w2 f�P(t; T2)� rtgP(t; T2) = 0: (22)

� We will show (next slide) that this implies the APT restriction

�P(t; T) = rt+ �(rt)�P (t; T ); for all T ; (23)

where �(r) is the market price of risk (risk premium).
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A general one-factor model { 5
Proof of equation (23)

� We have shown that, if the vector w = (w1; w2) solves the system
of equations

�
�P(t; T1)P(t; T1) �P(t; T2)P(t; T2)

� � w1

w2

�
� A1w = 0 ; (24)

the same vector w also solves the larger system

�
�P(t; T1)P(t; T1) �P(t; T2)P(t; T2)

f�P(t; T1)� rtgP(t; T1) f�P(t; T2)� rtgP(t; T2)
� �

w1

w2

�
� A2w = 0 : (25)

� Since w 6= 0, the 2� 2 matrix A2 must be singular (why?).

� Speci�cally, the rank of A2 is 1, so the last row can be written as

a linear combination of the �rst. This gives us (23).

� Note that �(r) cannot depend on the maturities T1 and T2.
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A general one-factor model { 6

� The next step is combining the two di�erent expressions for the

expected bond return.

� First, from Ito's lemma and (16) we have

�P(t; T)P(t; T) =
@P

@r
�(r) +

@P

@t
+
1

2

@2P

@r2
�
2(r) (26)

� Second, the APT restriction (23) can be written as

�P(t; T)P(t; T) = rP(t; T ) + �(r)�P (t; T )P(t; T )

= rP(t; T ) +
@P

@r
�(r)�(r) (27)

� Finally, we equate the right hand sides of (26) and (27) in order

to obtain the fundamental PDE for P(t; T ).
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Fundamental PDE for bond prices

� Fundamental PDE (partial di�erential equation)

1

2

@2P

@r2
�
2(r) +

@P

@r
[�(r)� �(r)�(r)] +

@P

@t
� rP = 0; (28)

with boundary condition P(T; T) = 1.

� Feynman-Kac representation:

P(t; T) = E
Q
t

�
e
�
R T
t rsds

�
; (29)

where the expectation is taken under the probability measure cor-

responding to the risk-neutral short-rate process:

drt = f�(rt)� �(rt)�(rt)g dt+ �(rt)dWt: (30)

� Note how the drift and volatility of the SDE (30) are constructed

from the coe�cients of the PDE (28).
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A simple one-factor model { 1

� The short-rate is governed by the random-walk process

drt = �dWt (31)

� The market price of risk is zero (investors are risk-neutral).

� Fundamental PDE

1

2

@2P

@r2
�
2+

@P

@t
� rP = 0: (32)

� We guess that the solution is of the following form

P(t; Y ) = exp [A(�) +B(�)rt] ; � = T � t: (33)

� In order to check whether equation (33) | our \educated" guess

| is the solution of the PDE, we calculate the requisite partial

derivatives of (33) and substitute them into (32).

19

A simple one-factor model { 2

� Partial derivatives:

@P

@t
= �

@P

@�
=

h
A
0(�) +B

0(�)r
i
P(t; t+ �) (34)

@2P

@r2
= B

2(�)P(t; t+ �): (35)

� We substitute (34) and (35) into (32),

1

2
B
2(�)�2P �

h
A
0(�) +B

0(�)r
i
P � rP = 0 (36)

� After dividing by P > 0 on both sides of (36), and collecting terms

we get �
1

2
B
2(�)�2 �A

0(�)
�
�

n
B
0(�) + 1

o
r = 0 (37)
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A simple one-factor model { 3

� Since (36) must hold for all values of r, both expression in braces

must be zero.

� Hence, we obtain two ordinary di�erential equations (ODEs)

A
0(�) =

1

2
�
2
B
2(�) (38)

B
0(�) = �1 (39)

� Boundary conditions: B(0) = 0 and A(0) = 0.

� The �nal solution is obtained by integration,

B(�) = B(0) +

Z
�

0

B0(s)ds = �
Z

�

0

ds = �� (40)

A(�) = A(0) +

Z
�

0

A0(s)ds =

Z
�

0

1

2
�2s2ds =

1

6
�2�3: (41)
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Three one-factor models

1. Merton (1973) model:

� Short-rate process: drt = �dt+ �dWt.

� Market price of risk: �(r) = �.

� Comments: negative interest rates possible, no mean reversion.

2. Vasicek (1977) model:

� Short-rate process: drt = �(�� rt)dt+ �dWt.

� Market price of risk: �(r) = �.

� Comments: mean reversion towards the unconditional mean �, but still
possibility of negative rates.

3. Cox, Ingersoll and Ross (CIR) (1985) model:

� Short-rate process: drt = �(�� rt)dt+ �
p
rtdWt.

� Market price of risk: �(r) = (�=�)
p
r.

� Comments: mean reversion as in the Vasicek model, and rt is always positive
(i.e., rt � 0) | because of the continuity of SDE sample paths.
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