Fixed Income Analysis
Calibration in lattice models — Part II

Calibration to the initial volatility structure
Pitfalls in volatility calibrations
Mean-reverting log-normal models (Black-Karasinski)
Brownian-path independent (BPI) models
Trinomial lattice models (Hull-White)

Jesper Lund
April 28, 1998

The volatility structure

- **Definition**: volatility of zero-coupon yields as a function of time to maturity.
- In a one-factor model, the zero-coupon rate is governed by
 \[dR(t,T) = \mu_R(t,T)dt + \sigma_R(t,T)R(t,T)dW_t. \]
 \[(1) \]
- Here, \(\sigma_R(t,T) \) is the **proportional** volatility, and \(\sigma_R(t,T)R(t,T) \) is the **basis-point** volatility.
- From Ito's lemma, the volatility structure is given by
 \[\sigma_R(t,T)R(t,T) = \sigma(r_t) \frac{\partial R(t,T)}{\partial r} = -\frac{\sigma(r_t)}{(T-t)P(t,T)} \frac{\partial P(t,T)}{\partial r} \]
 \[(2) \]
- Thus, the volatility structure depends on the effect of the short rate, \(r_t \), on bond prices, \(P(t,T) \).
- Mainly determined by the speed of **mean reversion**.
Calibration in the BDT model

- The BDT model is an approximation to the SDE

\[d \log r_t = \left\{ b(t) + \frac{\sigma'(t)}{\sigma(t)} \log r_t \right\} dt + \sigma(t)dW_t^Q. \]

(3)

- Note that the mean reversion coefficient is tied to \(\sigma(t) \), the short-rate volatility at time \(t \).

- Calibrating the BDT model to the initial yield and volatility curve:
 - The basic geometry of the the BDT binomial tree is unchanged.
 - The pair \(\{b(n\Delta), \sigma(n\Delta)\} \) is chosen to match the yield and volatility of the \((n + 1)\)-period bond.
 - Alternative parameterization: \(\{r(n,0), \delta_n\} \), where \(r(n,0) \) is the bottom node and \(\log \delta_n \) is the spacing for \(\log r(n,s) \).
 - We have two equations in two unknowns, but they are easy to solve numerically (Newton-Raphson) when the forward-induction technique is used.

Pitfalls in volatility calibration – 1

- The basic problem can be illustrated for the extended Vasicek model (in continuous time)

\[dr_t = \kappa(t) \{\theta(t) - r_t\} dt + \sigma(t)dW_t^Q. \]

(4)

- The pair \(\{\theta(t), \kappa(t)\} \) is chosen to fit the initial (time \(t = 0 \)) yield and volatility curves.

- The initial forward-rate volatility structure is given by:

\[\sigma(0,T) = \sigma(0)e^{-\int_0^T \kappa(u)du}. \]

(5)

- Basis-point volatility structure for zero-coupon rates:

\[\sigma_R(0,T) = \frac{1}{T} \int_0^T \sigma(0,s)ds = \sigma(0) \int_0^T e^{-\int_0^s \kappa(u)du} ds. \]

(6)

- Note that the shape only depends on \(\kappa(t) \), for \(0 \leq t \leq T \).
Pitfalls in volatility calibration – 2

- At time t, we have a new volatility structure, and the payoffs from derivatives (e.g., call options) depend on the time t volatilities.

- **Caveat**: in a Markovian model, the new volatility structure is completely determined from the initial volatility structure.

- New forward-rate volatilities:

 $$
 \sigma(t, T) = \sigma(t) e^{-\int_t^T \kappa(u) du} = \sigma(t) \frac{\sigma(0, T)}{\sigma(0, t)}.
 $$

 (7)

- New volatility structure for zero-coupon rates:

 $$
 \sigma_R(t, T) = \frac{\sigma(t)}{T - t} \cdot \frac{T \sigma_R(0, T) - t \sigma_R(0, t)}{\sigma(0, t)}
 $$

 (8)

- Apart from $\sigma(t)$, which is common for all maturities, (7) and (8) only depend on the initial volatility structure.

Pitfalls in volatility calibration – 3

- Constraining the evolution of the volatility structure in this way could have undesirable effects on derivatives prices.

- If the current volatility curve is humped, the future curve will be steeply downward sloping, although flat eventually.

- Hull and White’s recommendation: do not calibrate the model to the volatility structure (if anything, use cap prices instead).

- Additional problems for the BDT model:
 - Minor problem: no analytical solution for bond prices, so the dependencies are more difficult to analyze (and understand).
 - Major problem: mean reversion is tied to the future short-rate volatilities since $\kappa(t) = -\sigma'(t)/\sigma(t)$ in the BDT model.

- If the volatility structure is downward sloping (normal situation), we need BDT’s $\sigma(t)$ to be decreasing in t — and this is an unrealistic property (in general).
Pitfalls in volatility calibration – 4

- Illustration of the BDT volatility problem, taken from a paper by Simon Schultz and Per Søgaard-Andersen, “Pricing Caps and Floors,” Finans/Invest, 4/93 [in Danish].
- Market prices (bid-ask) and three model prices for interest-rate caps (all prices are relative to bid-ask midpoint).
- The BDT and Hull-White (extended) Vasicek models are calibrated to a downward-sloping volatility structure.
- Since \(\sigma(t) \) in the BDT model is decreasing over time, the BDT cap prices generally are too low in the table below.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Bid</th>
<th>Ask</th>
<th>BDT</th>
<th>Vasicek</th>
<th>Black-76</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.95</td>
<td>1.05</td>
<td>0.94</td>
<td>1.00</td>
<td>0.97</td>
</tr>
<tr>
<td>3</td>
<td>0.97</td>
<td>1.03</td>
<td>0.90</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>0.97</td>
<td>1.03</td>
<td>0.92</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>0.97</td>
<td>1.03</td>
<td>0.94</td>
<td>0.99</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Mean reversion in log-normal models

- Black and Karasinski (1991) relax the BDT restriction on the mean reversion coefficient,
 \[
 d \log r_t = \{ b(t) - \phi(t) \log r_t \} dt + \sigma(t) dW_t^Q. \tag{9}
 \]

- The model (9) cannot be implemented in a recombining binomial tree with constant time steps and probabilities \(\theta(n,s) = 0.5 \).
- There are three possible modifications of the tree which allow for (arbitrary) mean reversion:
 1. Non-constant time steps, \(\Delta_n \), with \(\theta(n,s) = 0.5 \). This is suggested by Black and Karasinski (1991). The main disadvantage is that the spacing declines over time, and we generally want the opposite (if anything).
 2. Non-constant probabilities of an up-move, but with constant time steps. We match the expected change in \(r \) (mean reversion) at node \((n,s) \) by adjusting \(\theta(n,s) \). The disadvantage is slower convergence.
 3. Trinomial trees (Hull-White) which have three branches at each node.
Brownian-path independence (BPI)

- Why is it possible to construct a simple binomial tree — with constant time steps and $\theta(n,s) = 0.5$ — in the BDT case?
- The solution to the BDT SDE (3) can be written as
 \[
 \log r_t = \frac{\sigma(t)}{\sigma(0)} \log r_0 + \sigma(t) \int_0^t \frac{b(s)}{\sigma(s)} ds + \sigma(t) W_t^Q
 \equiv B(t) + \sigma(t) W_t^Q
 \]

 \[(10) \]
- The BDT model modifies the Brownian motion tree only by scaling [through $\log(\delta_n) = c \cdot \sigma(t)$] and the bottom node, $r(n,0)$.
- In most BPI models, the short rate has the general form:
 \[r_t = F \left(B(t) + \sigma(t) W_t^Q \right) , \]
 \[(11) \]
 for some function $F(x)$. Note that BDT has $F(x) = \exp(x)$.
- Simple binomial trees requires a BPI model [Jamshidian (1991)].

Trinomial lattices – 1

- Introduced by Hull and White (1993, 1994).
- Extended Vasicek model with $\kappa(t) = \kappa$ and $\sigma(t) = \sigma$,
 \[
 dr_t = \kappa \{ \theta(t) - r_t \} dt + \sigma dW_t^Q.
 \]
 \[(12) \]
- We rewrite (12) as
 \[
 r_t = \alpha(t) + x_t
 \]
 \[
 \alpha(t) = e^{-\kappa t} r_0 + \int_0^t e^{-\kappa(t-s)} \kappa \theta(s) ds
 \]
 \[
 dx_t = -\kappa x_t dt + \sigma dW_t^Q, \quad \text{with } x_0 = 0.
 \]
 \[(13) \]
- First step: build a trinomial tree for x_t. This tree is symmetric around $x = 0$, and the geometry depends only on κ and σ.
- Second step: calibrate the time-dependent parameters, $\alpha_i = \alpha(t_i)$, to match the initial term structure.
Trinomial lattices – 2

• Three-period trinomial tree:

```
x(0,0) ← x(1,0) ← x(1,1) ← x(2,0) ← x(2,1) ← x(2,2) ← x(3,0) ← x(3,1) ← x(3,2)
```

• **Comment 1:** the numbering scheme, \(x(i,j)\), is different from binomial case. The center node has \(j = 0\) for all times \(i\).

• **Comment 2:** there is a different branching scheme for low and high values of \(j\) (node number). The purpose is accommodating mean reversion, while retaining positive probabilities.

Trinomial lattices – 3

• First and second moments of the SDE for \(x_t\):

\[
E_t \left[x_{t+\Delta} - x_t \right] = Mx_t = \left(e^{-\kappa \Delta} - 1 \right) x_t \approx -\kappa \Delta x_t \tag{16}
\]

\[
\text{Var}_t \left[x_{t+\Delta} - x_t \right] \equiv V = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa \Delta} \right) \approx \sigma^2 \Delta \tag{17}
\]

• The two approximations follow from \(\exp(z) \approx 1 + z\).

• The trinomial model has a constant time step, denoted \(\Delta\).

• The spacing on the \(x\)-axis is specified as \(\Delta x = \sqrt{3V}\).

• This means that \(x(i,j) = j \Delta x\), for \(-n_i \leq j \leq n_i\).

• From each node, \((i,j)\), there are branches to three nodes with probabilities: \(p_u\) (top node), \(p_m\) (mid mode), and \(p_d\) (low node).
Trinomial lattices - 4

- We look at a “normal” node \((i, j)\) — not special branching.
- The probabilities \(p_u, p_m\) and \(p_d\) are chosen in order to satisfy
 \[
 p_u \Delta x - p_d \Delta = Mj \Delta x \\
 p_u(\Delta x)^2 + p_d(\Delta x)^2 = V + M^2 j^2(\Delta x)^2 \\
 p_u + p_m + p_d = 1
 \]
 (18) (19) (20)
- That is, we match the moments of \((x_{t+\Delta} - x_t)\), see (16) and (17).
- Since \(V = (\Delta x)^2/3\), the solution is easily found as
 \[
 p_u = \frac{1}{6} + \frac{j^2 M^2 + j M}{2} \\
 p_m = \frac{2}{3} - \frac{j^2 M^2}{2} \\
 p_d = \frac{1}{6} + \frac{j^2 M^2 - j M}{2}
 \]
 (21) (22) (23)

Trinomial lattices - 5

- Note that the probabilities are independent of the initial term structure. Apart from \(j\), they only depend on \(\kappa\) and \(\Delta\).
- When branching out from the special top and bottom nodes, similar formulas apply — see Hull (1997) or Hull & White (1994).
- This completes the first step, setting up the nodes of the trinomial lattice.
- Second step: let \(r(i, j) = \alpha_i + x(i, j)\), and calibrate \(\alpha_i\) recursively so that the \((i + 1)\)-period bond price is matched exactly.
- As in the BDT model, the calibration is done with forward induction and Arrow-Debreu prices.
- We start with \(\alpha_0 = r(0, 0) = -\log P(1)/\Delta\).
- Define \(p(i, j) = \exp[-r(i, j)\Delta] = \exp[-\alpha_i \Delta] \cdot \exp[-j(\Delta x)\Delta]\).
Trinomial lattices – 6

- Assume that we have computed α_{m-1}, where $m \geq 1$.
- First, we use the forward equation to compute $G(m, j)$,

$$G(m, j) = \sum_{k=-(n_m-1)}^{n_m-1} q(k, j)p(m-1, k)G(m-1, k), \quad (24)$$

where $q(k, j)$ is the probability of moving from the node $(m-1, k)$ to (m, j). **Note:** $q(k, j)$ is only non-zero for at most three k.

- Second, with $G(m, j)$ at hand, the $(m + 1)$-period bond price is given by

$$P(m + 1) = \sum_{j=-n_m}^{n_m} G(m, j)p(m, j)$$

$$= e^{-\alpha_m \Delta} \sum_{j=-n_m}^{n_m} G(m, j)e^{-j(\Delta x)\Delta} \quad (25)$$

Trinomial lattices – 7

- The solution to (25) is readily available in closed form:

$$\alpha_m = \frac{\log \left(\sum_{j=-n_m}^{n_m} G(m, j)e^{-j(\Delta x)\Delta} \right) - \log P(m + 1)}{\Delta} \quad (26)$$

- Having found α_m, we proceed to $m + 1$ (next period) using the same recursions — forward equation (24) followed by (26).

- This completes the construction of the Hull-White trinomial tree for the extended Vasicek model.

- The parameters κ and σ can be calibrated to, e.g., cap prices by minimizing the squared pricing errors

$$S(\kappa, \sigma) = \sum_i \left(V^\text{actual}_i - V^\text{model}_i\right)^2. \quad (27)$$