Fixed Income Analysis

Calibration in lattice models - Part II

Calibration to the initial volatility structure Pitfalls in volatility calibrations Mean-reverting log-normal models (Black-Karasinski) Brownian-path independent (BPI) models Trinomial lattice models (Hull-White)

> Jesper Lund April 28, 1998

The volatility structure

- Definition: volatility of zero-coupon yields as a function of time to maturity.
- In a one-factor model, the zero-coupon rate is governed by

$$
dR(t,T) = \mu_R(t,T)dt + \sigma_R(t,T)R(t,T)dW_t.
$$
 (1)

- Here, $\sigma_R(t,T)$ is the **proportional** volatility, and $\sigma_R(t,T)R(t,T)$ is the basis-point volatility.
- From Ito's lemma, the volatility structure is given by

$$
\sigma_R(t,T)R(t,T) = \sigma(r_t)\frac{\partial R(t,T)}{\partial r} = \frac{-\sigma(r_t)}{(T-t)P(t,T)}\frac{\partial P(t,T)}{\partial r}
$$
(2)

- . Thus, the volatility structure depends on the effect of the short rate, r_t , on bond prices, $P(t, T)$.
- Mainly determined by the speed of mean reversion.

Calibration in the BDT model

• The BDT model is an approximation to the SDE

$$
d \log r_t = \left\{ b(t) + \frac{\sigma'(t)}{\sigma(t)} \log r_t \right\} dt + \sigma(t) dW_t^Q. \tag{3}
$$

- Note that the mean reversion coefficient is tied to $\sigma(t)$, the shortrate volatility at time t .
- Calibrating the BDT model to the initial yield and volatility curve:
	- ${\bf -}$ The basic geometry of the the BDT binomial tree is unchanged.
	- $=$ 1 He pair {0($n\Delta$), σ ($n\Delta$) } is chosen to match the yield and volatility of the $(n + 1)$ -period bond.
	- ${\bf -}$ Alternative parameterization: $\{r(n,0), o_n\}$, where $r(n,0)$ is the bottom node and log δ_n is the spacing for log $r(n, s)$.
	- $-$ vve have two equations in two unknowns, but they are easy to solve nu- $\,$ merically (Newton-Raphson) when the forward-induction technique is used.

Pitfalls in volatility calibration -1

• The basic problem can be illustrated for the extended Vasicek model (in continuous time)

$$
dr_t = \kappa(t) \left\{ \theta(t) - r_t \right\} dt + \sigma(t) dW_t^Q. \tag{4}
$$

- The pair $\{\theta(t), \kappa(t)\}$ is chosen to fit the initial (time $t = 0$) yield and volatility curves.
- The initial forward-rate volatility structure is given by:

$$
\sigma(0,T) = \sigma(0)e^{-\int_0^T \kappa(u)du}.\tag{5}
$$

Basis-point volatility structure for zero-coupon rates:

$$
\sigma_R(0,T) = \frac{1}{T} \int_0^T \sigma(0,s)ds = \sigma(0) \int_0^T e^{-\int_0^s \kappa(u)du} ds.
$$
 (6)

• Note that the shape only depends on $\kappa(t)$, for $0 \le t \le T$.

Pitfalls in volatility calibration -2

- \bullet At time t, we have a new volatility structure, and the payoffs from derivatives (e.g., call options) depend on the time t volatilities.
- Caveat: in ^a Markovian model, the new volatility structure is completely determined from the initial volatility structure.
- New forward-rate volatilities:

$$
\sigma(t,T) = \sigma(t)e^{-\int_t^T \kappa(u)du} = \sigma(t)\frac{\sigma(0,T)}{\sigma(0,t)}.
$$
 (7)

New volatility structure for zero-coupon rates:

$$
\sigma_R(t,T) = \frac{\sigma(t)}{T-t} \cdot \frac{T\sigma_R(0,T) - t\sigma_R(0,t)}{\sigma(0,t)}
$$
(8)

• Apart from $\sigma(t)$, which is common for all maturities, (7) and (8) only depend on the initial volatility structure.

Pitfalls in volatility calibration -3

- Constraining the evolution of the volatility structure in this way could have undesirable effects on derivatives prices.
- If the current volatility curve is humped, the future curve will be steeply downward sloping, although flat eventually.
- Hull and White's recommendation: do not calibrate the model to the volatility structure (if anything, use cap prices instead).
- Additional problems for the BDT model:
	- ${\bf -}$ ivilition problem. Tho analytical solution for bond prices, so the dependencies are more difficult to analyze (and understand).
	- ${\bf -}$ ividior problem. Mean reversion is tied to the future short-rate volatilities since $\kappa(t) = -\sigma'(t)/\sigma(t)$ in the BDT model.
- If the volatility structure is downward sloping (normal situation), we need BDT's $\sigma(t)$ to be decreasing in t — and this is an **unrea**listic property (in general).

Pitfalls in volatility calibration -4

- Illustration of the BDT volatility problem, taken from ^a paper by Simon Schultz and Per Søgaard-Andersen, "Pricing Caps and Floors," Finans/Invest, 4/93 [in Danish].
- Market prices (bid-ask) and three model prices for interest-rate caps (all prices are relative to bid-ask midpoint).
- The BDT and Hull-White (extended) Vasicek models are calibrated to a downward-sloping volatility structure.
- Since $\sigma(t)$ in the BDT model is decreasing over time, the BDT cap prices generally are too low in the table below.

Mean reversion in log-normal models

 Black and Karasinski (1991) relax the BDT restriction on the mean reversion coefficient,

$$
d \log r_t = \{b(t) - \phi(t) \log r_t\} dt + \sigma(t) dW_t^Q. \tag{9}
$$

- The model (9) cannot be implemented in a recombining binomial tree with constant time steps and probabilities $\theta(n, s) = 0.5$.
- There are three possible modications of the tree which allow for (arbitrary) mean reversion:
	- 1. Non-constant time steps, Δ_n , with $\theta(n, s) = 0.5$. This is suggested by Black and Karasinski (1991). The main disadvantage is that the spacing declines over time, and we generally want the opposite (if anything).
	- 2. Non-constant probabilities of an up-move, but with constant time steps. We match the expected change in r (mean reversion) at node (n, s) by adjusting $\theta(n, s)$. The disadvantage is **slower convergence**.
	- 3. Trinomial trees (Hull-White) which have three branches at each node.

Brownian-path independence (BPI)

- Why is it possible to construct a simple binomial tree $-$ with constant time steps and $\theta(n, s) = 0.5$ - in the BDT case?
- The solution to the BDT SDE (3) can be written as

$$
\log r_t = \frac{\sigma(t)}{\sigma(0)} \log r_0 + \sigma(t) \int_0^t \frac{b(s)}{\sigma(s)} ds + \sigma(t) W_t^Q
$$

$$
\equiv B(t) + \sigma(t) W_t^Q
$$
 (10)

- The BDT model modifies the Brownian motion tree only by scaling [through $log(\delta_n) = c \cdot \sigma(t)$] and the bottom node, $r(n, 0)$.
- In most BPI models, the short rate has the general form:

$$
r_t = F\left(B(t) + \sigma(t)W_t^Q\right),\tag{11}
$$

for some function $F(x)$. Note that BDT has $F(x) = \exp(x)$.

Simple binomial trees requires ^a BPI model [Jamshidian (1991)].

Trinomial lattices -1

- Introduced by Hull and White (1993, 1994).
- Extended Vasicek model with $\kappa(t) = \kappa$ and $\sigma(t) = \sigma$,

$$
dr_t = \kappa \left\{ \theta(t) - r_t \right\} dt + \sigma dW_t^Q. \tag{12}
$$

We rewrite (12) as

$$
r_t = \alpha(t) + x_t \tag{13}
$$

$$
\alpha(t) = e^{-\kappa t} r_0 + \int_0^t e^{-\kappa (t-s)} \kappa \theta(s) ds \qquad (14)
$$

$$
dx_t = -\kappa x_t dt + \sigma dW_t^Q, \quad \text{with } x_0 = 0. \tag{15}
$$

- First step: build a trinomial tree for x_t . This tree is symmetric around $x = 0$, and the geometry depends only on κ and σ .
- Second step: calibrate the time-dependent parameters, \mathbf{r}_i , \mathbf{r}_i to match the initial term structure.

Trinomial lattices -2

Three-period trinomial tree:

- Comment 1: the numbering scheme, $x(i, j)$, is different from binomial case. The center node has $j = 0$ for all times i.
- Comment 2: there is a different branching scheme for low and high values of j (node number). The purpose is accommodating mean reversion, while retaining positive probabilities.

¹¹

Trinomial lattices - 3 T . Trinomial lattices T and T

• First and second moments of the SDE for x_t :

$$
E_t \left[x_{t + \Delta} - x_t \right] \equiv M x_t \ = \ \left(e^{-\kappa \Delta} - 1 \right) x_t \quad \approx \ -\kappa \Delta x_t \tag{16}
$$

$$
\text{Var}_{t}\left[x_{t+\Delta}-x_{t}\right] \equiv V \qquad \equiv \frac{\sigma^{2}}{2\kappa}\left(1 - e^{-2\kappa\Delta}\right) \approx \sigma^{2}\Delta \tag{17}
$$

- The two approximations follow from $\exp(z) \approx 1 + z$.
- The trinomial model has a constant time step, denoted Δ .
- The spacing on the species is species in the species in the species is species in the \mathbf{r} produced a series of the contract of the contr \sim 3V \sim
- This means that $x(i, j) = j\Delta x$, for $-n_i \leq j \leq n_i$.
- From each node, (i, j) , there are branches to three nodes with probabilities: p_u (top node), p_m (mid mode), and p_d (low node).

Trinomial lattices -4

- We look at a "normal" node (i, j) not special branching.
- The probabilities p_u , p_m and p_d are chosen in order to satisfy

$$
p_u \Delta x - p_d \Delta = Mj \Delta x \tag{18}
$$

$$
p_u(\Delta x)^2 + p_d(\Delta x)^2 = V + M^2 j^2 (\Delta x)^2 \tag{19}
$$

$$
p_u + p_m + p_d = 1 \tag{20}
$$

- That is, we match the moments of $(x_{t+\Delta}-x_t)$, see (16) and (17).
- Since $V = (\Delta x)^2/3$, the solution is easily found as

$$
p_u = \frac{1}{6} + \frac{j^2 M^2 + jM}{2} \tag{21}
$$

$$
p_m = \frac{2}{3} - j^2 M^2 \tag{22}
$$

$$
p_d = \frac{1}{6} + \frac{j^2 M^2 - jM}{2} \tag{23}
$$

Trinomial lattices - 5 T . Trial lattices T is the state T - T -

- Note that the probabilities are independent of the initial term structure. Apart from j, they only depend on κ and Δ .
- When branching out from the special top and bottom nodes, similar formulas apply $-$ see Hull (1997) or Hull & White (1994).
- \bullet This completes the first step, setting up the nodes of the trinomial lattice.
- Second step: let $r(i, j) = \alpha_i + x(i, j)$, and calibrate α_i recursively so that the $(i + 1)$ -period bond price is matched exactly.
- As in the BDT model, the calibration is done with forward induction and Arrow-Debreu prices.
- We start with $\alpha_0 = r(0, 0) = -\log P(1)/\Delta$.
- Define $p(i, j) = \exp[-r(i, j)\Delta] = \exp[-\alpha_i\Delta] \cdot \exp[-j(\Delta x)\Delta]$.

Trinomial lattices -6

- Assume that we have computed α_{m-1} , where $m \geq 1$.
- First, we use the forward equation to compute $G(m, j)$,

$$
G(m,j) = \sum_{k=-\binom{n_{m-1}}{k}}^{n_{m-1}} q(k,j)p(m-1,k)G(m-1,k), \qquad (24)
$$

where $q(k, j)$ is the probability of moving from the node $(m - 1, k)$ to (m, j) . Note: $q(k, j)$ is only non-zero for at most three k.

• Second, with $G(m, j)$ at hand, the $(m + 1)$ -period bond price is given by

$$
P(m+1) = \sum_{j=-n_m}^{n_m} G(m,j)p(m,j)
$$

= $e^{-\alpha_m \Delta} \sum_{j=-n_m}^{n_m} G(m,j)e^{-j(\Delta x)\Delta}$ (25)

Trinomial lattices -7

The solution to (25) is readily available in closed form:

$$
\alpha_m = \frac{\log\left(\sum_{j=-n_m}^{n_m} G(m,j)e^{-j(\Delta x)\Delta}\right) - \log P(m+1)}{\Delta} \tag{26}
$$

- Having found α_m , we proceed to $m + 1$ (next period) using the same recursions $-$ forward equation (24) followed by (26).
- This completes the construction of the Hull-White trinomial tree for the extended Vasicek model.
- The parameters κ and σ can be calibrated to, e.g., cap prices by minimizing the squared pricing errors

$$
S(\kappa, \sigma) = \sum_{i} \left(V_i^{\text{actual}} - V_i^{\text{model}} \right)^2.
$$
 (27)