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The volatility structure

� De�nition: volatility of zero-coupon yields as a function of time

to maturity.

� In a one-factor model, the zero-coupon rate is governed by

dR(t; T) = �R(t; T )dt+ �R(t; T )R(t; T )dWt: (1)

� Here, �R(t; T) is the proportional volatility, and �R(t; T )R(t; T) is

the basis-point volatility.

� From Ito's lemma, the volatility structure is given by

�R(t; T)R(t; T) = �(rt)
@R(t; T )

@r
=

��(rt)
(T � t)P(t; T )

@P(t; T )

@r
(2)

� Thus, the volatility structure depends on the e�ect of the short

rate, rt, on bond prices, P (t; T ).

� Mainly determined by the speed of mean reversion.
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Calibration in the BDT model

� The BDT model is an approximation to the SDE

d log rt =

(
b(t) +

�0(t)

�(t)
log rt

)
dt+ �(t)dW

Q
t : (3)

� Note that the mean reversion coe�cient is tied to �(t), the short-

rate volatility at time t.

� Calibrating the BDT model to the initial yield and volatility curve:

{ The basic geometry of the the BDT binomial tree is unchanged.

{ The pair fb(n�); �(n�)g is chosen to match the yield and volatility of the
(n+1)-period bond.

{ Alternative parameterization: fr(n;0); �ng, where r(n;0) is the bottom node
and log �n is the spacing for log r(n; s).

{ We have two equations in two unknowns, but they are easy to solve nu-
merically (Newton-Raphson) when the forward-induction technique is used.
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Pitfalls in volatility calibration { 1

� The basic problem can be illustrated for the extended Vasicek

model (in continuous time)

drt = �(t) f�(t)� rtg dt+ �(t)dW
Q
t : (4)

� The pair f�(t); �(t)g is chosen to �t the initial (time t = 0) yield

and volatility curves.

� The initial forward-rate volatility structure is given by:

�(0; T) = �(0)e�
R T
0 �(u)du: (5)

� Basis-point volatility structure for zero-coupon rates:

�R(0; T) =
1

T

Z T

0
�(0; s)ds = �(0)

Z T

0
e�

R s
0 �(u)duds: (6)

� Note that the shape only depends on �(t), for 0 � t � T .
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Pitfalls in volatility calibration { 2

� At time t, we have a new volatility structure, and the payo�s from

derivatives (e.g., call options) depend on the time t volatilities.

� Caveat: in a Markovian model, the new volatility structure is

completely determined from the initial volatility structure.

� New forward-rate volatilities:

�(t; T) = �(t)e�
R T
t �(u)du = �(t)

�(0; T )

�(0; t)
: (7)

� New volatility structure for zero-coupon rates:

�R(t; T) =
�(t)

T � t
� T�R(0; T )� t�R(0; t)

�(0; t)
(8)

� Apart from �(t), which is common for all maturities, (7) and (8)

only depend on the initial volatility structure.

5

Pitfalls in volatility calibration { 3

� Constraining the evolution of the volatility structure in this way

could have undesirable e�ects on derivatives prices.

� If the current volatility curve is humped, the future curve will be

steeply downward sloping, although at eventually.

� Hull and White's recommendation: do not calibrate the model to

the volatility structure (if anything, use cap prices instead).

� Additional problems for the BDT model:

{ Minor problem: no analytical solution for bond prices, so the dependencies
are more di�cult to analyze (and understand).

{ Major problem: mean reversion is tied to the future short-rate volatilities
since �(t) = ��0(t)=�(t) in the BDT model.

� If the volatility structure is downward sloping (normal situation),

we need BDT's �(t) to be decreasing in t | and this is an unrea-

listic property (in general).
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Pitfalls in volatility calibration { 4

� Illustration of the BDT volatility problem, taken from a paper

by Simon Schultz and Per S�gaard-Andersen, \Pricing Caps and

Floors," Finans/Invest, 4/93 [in Danish].

� Market prices (bid-ask) and three model prices for interest-rate

caps (all prices are relative to bid-ask midpoint).

� The BDT and Hull-White (extended) Vasicek models are cali-

brated to a downward-sloping volatility structure.

� Since �(t) in the BDT model is decreasing over time, the BDT

cap prices generally are too low in the table below.

Maturity Bid Ask BDT Vasicek Black-76

2 0.95 1.05 0.94 1.00 0.97

3 0.97 1.03 0.90 1.00 0.98

4 0.97 1.03 0.92 1.00 0.98

5 0.97 1.03 0.94 0.99 0.97
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Mean reversion in log-normal models

� Black and Karasinski (1991) relax the BDT restriction on the

mean reversion coe�cient,

d log rt = fb(t)� �(t) log rtg dt+ �(t)dW
Q
t : (9)

� The model (9) cannot be implemented in a recombining binomial

tree with constant time steps and probabilities �(n; s) = 0:5.

� There are three possible modi�cations of the tree which allow for

(arbitrary) mean reversion:

1. Non-constant time steps, �n, with �(n; s) = 0:5. This is suggested by
Black and Karasinski (1991). The main disadvantage is that the spacing

declines over time, and we generally want the opposite (if anything).

2. Non-constant probabilities of an up-move, but with constant time steps.
We match the expected change in r (mean reversion) at node (n; s) by
adjusting �(n; s). The disadvantage is slower convergence.

3. Trinomial trees (Hull-White) which have three branches at each node.
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Brownian-path independence (BPI)

� Why is it possible to construct a simple binomial tree | with

constant time steps and �(n; s) = 0:5 | in the BDT case?

� The solution to the BDT SDE (3) can be written as

log rt =
�(t)

�(0)
log r0+ �(t)

Z t

0

b(s)

�(s)
ds+ �(t)W

Q
t

� B(t) + �(t)W
Q
t (10)

� The BDT model modi�es the Brownian motion tree only by sca-

ling [through log(�n) = c � �(t)] and the bottom node, r(n;0).

� In most BPI models, the short rate has the general form:

rt = F
�
B(t) + �(t)W

Q
t

�
; (11)

for some function F(x). Note that BDT has F(x) = exp(x).

� Simple binomial trees requires a BPI model [Jamshidian (1991)].
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Trinomial lattices { 1

� Introduced by Hull and White (1993, 1994).

� Extended Vasicek model with �(t) = � and �(t) = �,

drt = � f�(t)� rtg dt+ �dW
Q
t : (12)

� We rewrite (12) as

rt = �(t) + xt (13)

�(t) = e��tr0+
Z t

0
e��(t� s)��(s)ds (14)

dxt = ��xtdt+ �dW
Q
t ; with x0 = 0: (15)

� First step: build a trinomial tree for xt. This tree is symmetric

around x = 0, and the geometry depends only on � and �.

� Second step: calibrate the time-dependent parameters, �i = �(ti),

to match the initial term structure.
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Trinomial lattices { 2

� Three-period trinomial tree:
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�
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�
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�
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A
A
A
A
A
A
A
A
A

x(3;�2)

x(3;�1)

x(3;0)

x(3;1)

x(3;2)

� Comment 1: the numbering scheme, x(i; j), is di�erent from

binomial case. The center node has j = 0 for all times i.

� Comment 2: there is a di�erent branching scheme for low and

high values of j (node number). The purpose is accommodating

mean reversion, while retaining positive probabilities.
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Trinomial lattices { 3

� First and second moments of the SDE for xt:

Et

h
xt+� � xt

i
� Mxt =

�
e��� � 1

�
xt � ���xt (16)

Vart

h
xt+� � xt

i
� V =

�2

2�

�
1� e�2��

�
� �2� (17)

� The two approximations follow from exp(z) � 1+ z.

� The trinomial model has a constant time step, denoted �.

� The spacing on the x-axis is speci�ed as �x=
p
3V .

� This means that x(i; j) = j�x, for �ni � j � ni.

� From each node, (i; j), there are branches to three nodes with

probabilities: pu (top node), pm (mid mode), and pd (low node).

12



Trinomial lattices { 4

� We look at a \normal" node (i; j) | not special branching.

� The probabilities pu, pm and pd are chosen in order to satisfy

pu�x� pd� = Mj�x (18)

pu(�x)2+ pd(�x)2 = V +M2j2(�x)2 (19)

pu+ pm+ pd = 1 (20)

� That is, we match the moments of (xt+��xt), see (16) and (17).
� Since V = (�x)2=3, the solution is easily found as

pu =
1

6
+

j2M2+ jM

2
(21)

pm =
2

3
� j2M2 (22)

pd =
1

6
+

j2M2 � jM

2
(23)
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Trinomial lattices { 5

� Note that the probabilities are independent of the initial term

structure. Apart from j, they only depend on � and �.

� When branching out from the special top and bottom nodes,

similar formulas apply | see Hull (1997) or Hull & White (1994).

� This completes the �rst step, setting up the nodes of the trinomial

lattice.

� Second step: let r(i; j) = �i+ x(i; j), and calibrate �i recursively

so that the (i+1)-period bond price is matched exactly.

� As in the BDT model, the calibration is done with forward induc-

tion and Arrow-Debreu prices.

� We start with �0 = r(0;0) = � logP(1)=�.

� De�ne p(i; j) = exp[�r(i; j)�] = exp[��i�] � exp[�j(�x)�].
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Trinomial lattices { 6

� Assume that we have computed �m�1, where m � 1.

� First, we use the forward equation to compute G(m; j),

G(m; j) =

n
m�1X

k=�(n
m�1)

q(k; j)p(m� 1; k)G(m� 1; k); (24)

where q(k; j) is the probability of moving from the node (m�1; k)
to (m; j). Note: q(k; j) is only non-zero for at most three k.

� Second, with G(m; j) at hand, the (m+ 1)-period bond price is

given by

P(m+1) =
nmX

j=�nm

G(m; j)p(m; j)

= e��m�
nmX

j=�nm

G(m; j)e�j(�x)� (25)
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Trinomial lattices { 7

� The solution to (25) is readily available in closed form:

�m =
log

�Pnm
j=�nm

G(m; j)e�j(�x)�
�
� logP(m+1)

�
(26)

� Having found �m, we proceed to m+ 1 (next period) using the

same recursions | forward equation (24) followed by (26).

� This completes the construction of the Hull-White trinomial tree

for the extended Vasicek model.

� The parameters � and � can be calibrated to, e.g., cap prices by

minimizing the squared pricing errors

S(�; �) =
X
i

�
V actuali � Vmodel

i

�2
: (27)
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