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Binomial model — summary

e Four-period binomial model: r(4,4)
r(3,3)

r(2,2) r(4,3)
r(1,1) r(3,2)

T(0,0)<<: r(2,1) r(4,2)
r(1,0) r(3,1)

r(2,0) r(4,1)
r(3,0)

r(4,0)

e T he risk-neutral probability of an up-move at time n in state s is
denoted 6(n,s).

e For a given tree (node values and probabilities), valuation is done
using the backward equation
V(n,s) = D(n,s) 4+ p(n,s)x
[0(n,s)V(n+ 1,5+ 1)+ (1 -0(n,s)V(n+1,5)] (1)



Binomial distribution — summary

A random variable, X, follows the binomial distribution if there
are only two possible events (outcomes), denoted x1 and z».

We use the binomial distribution for modeling the dynamics of
interest rates in a tree, typically a recombining tree.

Let 8 = Pr(X = x1), which means that Pr(X =x5) =1-16
Mean and variance of the random variable X:
E(X) = fz1+ (1 -0)z> (2)
Var(X) = [z1—6z1— (1 —0)zs]° - 6 +
[z2 — 021 — (1 — O] - (1 —0)

= 6(1-0) <3:1 — :1:2>2 (3)

These formulae will be used later on when calibrating trees.

Arrow-Debreu securities

Definition of Arrow-Debreu (AD) security: pays one dollar in
state s at time n, and zero elsewhere.

e The price today is denoted G(n,s). By construction, G(0,0) = 1.
e AD securities as building block of the binomial model:

— A n-period zero-coupon bond pays one dollar in all states at time n, so it
is a portfolio of AD securities

P(n) =Y G(n,s) (4)
s=0

— General fixed-income derivative with cash flows D(n,s) can be priced in the
following way:

N n
V(0,0) =) ) G(n,s)D(n,s) (5)

n=0 s=0
— Equation (5) is an alternative to using the backward equation (1).
— Of course, we must first determine G(n,s) for all (n,s).



Arrow-Debreu prices — 1

e Insights from the geometry of the tree:

— At time n there are only two nodes leading to (n+ 1,s), an up-move from

(n,s — 1) and down-move from (n,s).

— Note: at the boundaries s € {O,n 4+ 1} there is only one node (down-move

if s=0, up-move if s=n-+1).

e Basic idea for finding G(n+ 1, s):

— Determine the value of the AD security at time n in state u, denoted F(n,u).

— Note: F(n,u) = 0 if we cannot go to state s in the next period (n+ 1).

— Now, we can think of our (n + 1,s)-AD security as a n-period security

(derivative) with payoffs F(n,u), for 0 <u <mn.

— Hence, the value of the AD security today is given by:

Gn+1,5) = Z G(n,u)F(n,u)
u=0

Arrow-Debreu prices — 2

(6)

e The time n prices, F'(n,u), for the (n 4 1,s)-AD security satisfy:

— If s <mn,

F(n,s) = p(n,s)(1 —6(n,s))
since a down-move takes us to (n+ 1,s).
—Ifs>1,
F(n,s—1) =p(n,s —1)0(n,s — 1)
since an up-move takes us to (n+ 1, s).

— F(n,u) = 0 in all other cases.

e Equation (6) becomes the forward equation,

Gn+1,s) = G(n,s)p(n,s)(1 —0(n,s)) +
G(n,s — )p(n,s —1)0(n,s — 1)

e If G(n,s) = 0 for non-existing nodes, this holds for all (n,s).
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Binomial approximation to the BM — 1

e T here are five properties of the Brownian motion:

— Conditional mean: E;(Wi;ya) = W;, the martingale property.

— Conditional variance: Vari(Wira) = A.
— Wixa — W, independent of W, — Wi_a.

— Increments in W; are normally distributed.

— Sample path of W; is continuous (W; does not jump).

e A Binomial model (approximation) with constant time steps, A,
can match the first three properties.

e In the binomial approximation, we let

— 6(n,s) = 1/2 for all (n,s).

— Up move: W(n+1,s+1) =W(n,s) +vVA
— Down move: W(n—+1,s) = W(n,s) — VA

Binomial approximation to the BM — 2

e Four-period model for W(n, s)

4/ A
3V A
2V A 2V A
VA VA
0 < 0 0
—/A A
—2v/ A —2v/ A
—3vVA
—4\/ A

e Local mean, u(n,s), and variance, o2(n,s), are given by

p(n, s)

a?(n, s)

O.5{<W(n, s) + \/Z) + (W(n,s) — \/Z)} = W(n,s)
0.5(1 — 0.5) {(W(n,s) 4 \/Z> . <W(n, s) — \/Z> }2
0.25 {Qx/Z}Q SN

(10)
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BDT and Ho-Lee models — 1

e In their binomial version, both models are approximations to

day = {b(t) + U/(t)xt} dt + o (t)dW?. (12)
o(t)
e Ho-Lee: zy = r; (normal) — BDT: z; = logr; (log-normal).

e Setup of the binomial model:

— In the binomial model, we define r(n,s) as the one-period interest rate
(matter of scaling).

— Risk-neutral probabilities: 8(n,s) = 6 = 0.5 for all (n,s).
— The time step is constant for all n — we denote it by A.
— Additive relationship between states in the z-space:
z(n,s + 1) = z(n,s) + h(n) (13)

— Because of (13), we have z(n,s) = z(n,0) + sh(n), so the only free param-
eter (for calibration) at time n is z(n,0).

BDT and Ho-Lee models — 2

e The conditional variance of z(n) in state (n — 1,s) is given by

2
Var(n—1,s) = 6(1—-20) {m(n,s +1) - w(n,s)}
= 0(1 —0)h%(n) (14)

e Note that the variance (14) is independent of the state s.

e From the SDE (12), we have Var(n —1,s) = c2(nA)A (exactly),
where A is the time step of the tree (measured in years).

e Hence, we determine the spacing parameter h(n) as
__o(nA)VA

Jo(1 — 0

e Today, we pre-specify the volatility function o(¢t) and calibrate
r(n,0) (bottom node) to the current yield curve.

h(n) (15)
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Calibration in the BDT model

We focus on the BDT model where
r(n,s) = 6;r(n,0), with logd, = h(n). (16)

We assume discrete compounding, so p(n,s) = 1/{1 4+ r(n,s)}.

Assume that we have prices of zero-coupon bonds forall N =T/A
time periods between t = 0 (today) and ¢t = T (last maturity).

Normally, this requires some interpolation (curve fitting).

We have N equations, P(n-+1), in N unknowns, but the equations
can be solve recursively.

We determine r(0,0) from the first bond price,
1

P =100

(17)

For n > 0 we use the forward induction method.
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Forward induction in the BD T model — 1

Assume that we have computed r(n — 1,0) in the calibration.

At time n, the price of the zero maturing at timen+1 is
1 _ 1

14+r(n,s)  14+65r(n,0)

The current bond price, P(n+ 1), follows from the AD prices

p(n,s) = (18)

P(n+1) = Y G(n,s)p(n,s)

s=0
" 1
= Sgo G(n,s)l ¥ 65 (n.0) (19)

Using the forward equation (9), we obtain G(n,s) from G(n—1,u)
and p(n — 1,u) — both of which are known at this stage.

Equation (19) is solved for r(n,0), and we proceed to n + 1.
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Forward induction in the BDT model — 2

Equation (19) can only be solved numerically.
Let z =r(n,0) and
1

14452 (20)

H(z) =P(n+1)—- ) G(n,s)
s=0

We start by some guess for the solution, say zgp, and use the
Newton-Raphson iteration scheme

H(zp)

= — 21
1= 2R e (21)
until H(zp41) ~ 0 (convergence).
The first-order derivative of H(z) is given by
H(:)= 3 Gln,s)—0 (22)
z) = n,s)———=. 22
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Calibration in the Ho-Lee model (briefly)

Here, it is more convenient to assume continuous compounding,

p(n,s) = exp[—r(n,s)] = exp[-r(n,0) — sh(n)] (23)
Assume that we have computed r(n — 1,0) in the previous cali-
bration steps, starting from r(0,0) = —log P(1).

The bond price P(n+ 1) can be written as [see eq. (19)].

n

P(n+1) = ) G(n,s)p(n,s)
s=0
= exp[-r(n,0)] Y G(n,s)exp[-sh(n)] (24)

s=0
For the HL model, we can solve for r(n,0) in closed form

> _gG(n,s) exp[—sh(n)])

P(n+1) (25)

r(n,0) = log <
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