Fixed Income Analysis
Calibration in binomial models

Summary of binomial models
Arrow-Debreu securities
Binomial approximations to the Brownian motion
The Ho-Lee and BDT models
Calibration using forward induction

Jesper Lund
April 23, 1998

Binomial model — summary

• Four-period binomial model:

 $r(0,0) \leftarrow r(1,1) \leftarrow r(1,0) \leftarrow r(2,0) \leftarrow r(2,1) \leftarrow r(2,2) \leftarrow r(3,1) \leftarrow r(3,2) \leftarrow r(3,3) \leftarrow r(4,1) \leftarrow r(4,2) \leftarrow r(4,3) \leftarrow r(4,4)$

• The risk-neutral probability of an up-move at time n in state s is denoted $\theta(n,s)$.

• For a given tree (node values and probabilities), valuation is done using the backward equation

$$V(n,s) = D(n,s) + p(n,s) \times \left[\theta(n,s)V(n+1,s+1) + (1 - \theta(n,s))V(n+1,s) \right]$$ \hspace{1cm} (1)
Binomial distribution – summary

- A random variable, \(X \), follows the binomial distribution if there are only two possible events (outcomes), denoted \(x_1 \) and \(x_2 \).
- We use the binomial distribution for modeling the dynamics of interest rates in a tree, typically a recombining tree.
- Let \(\theta = \Pr(X = x_1) \), which means that \(\Pr(X = x_2) = 1 - \theta \)
- Mean and variance of the random variable \(X \):
 \[
 E(X) = \theta x_1 + (1 - \theta) x_2 \\
 \text{Var}(X) = \left[x_1 - \theta x_1 - (1 - \theta) x_2 \right]^2 \cdot \theta + \left[x_2 - \theta x_1 - (1 - \theta) x_2 \right]^2 \cdot (1 - \theta)
 \]
 \[
 = \theta(1 - \theta) \left(x_1 - x_2 \right)^2
 \]
- These formulae will be used later on when calibrating trees.

Arrow-Debreu securities

- Definition of Arrow-Debreu (AD) security: pays one dollar in state \(s \) at time \(n \), and zero elsewhere.
- The price today is denoted \(G(n, s) \). By construction, \(G(0, 0) = 1 \).
- AD securities as building block of the binomial model:
 - A \(n \)-period zero-coupon bond pays one dollar in all states at time \(n \), so it is a portfolio of AD securities
 \[
 P(n) = \sum_{s=0}^{n} G(n, s)
 \]
 - General fixed-income derivative with cash flows \(D(n, s) \) can be priced in the following way:
 \[
 V(0, 0) = \sum_{n=0}^{N} \sum_{s=0}^{n} G(n, s) D(n, s)
 \]
 - Equation (5) is an alternative to using the backward equation (1).
 - Of course, we must first determine \(G(n, s) \) for all \((n, s) \).
Arrow-Debreu prices – 1

• Insights from the geometry of the tree:
 – At time n there are only two nodes leading to $(n + 1, s)$, an up-move from $(n, s - 1)$ and down-move from (n, s).
 – Note: at the boundaries $s \in \{0, n + 1\}$ there is only one node (down-move if $s = 0$, up-move if $s = n + 1$).

• Basic idea for finding $G(n + 1, s)$:
 – Determine the value of the AD security at time n in state u, denoted $F(n, u)$.
 – Note: $F(n, u) = 0$ if we cannot go to state s in the next period $(n + 1)$.
 – Now, we can think of our $(n + 1, s)$-AD security as a n-period security (derivative) with payoffs $F(n, u)$, for $0 \leq u \leq n$.
 – Hence, the value of the AD security today is given by:

\[
G(n + 1, s) = \sum_{u=0}^{n} G(n, u) F(n, u)
\]

(6)

Arrow-Debreu prices – 2

• The time n prices, $F(n, u)$, for the $(n + 1, s)$-AD security satisfy:
 – If $s \leq n$,
 \[
 F(n, s) = p(n, s)(1 - \theta(n, s))
 \]
 since a down-move takes us to $(n + 1, s)$.
 – If $s \geq 1$,
 \[
 F(n, s - 1) = p(n, s - 1)\theta(n, s - 1)
 \]
 since an up-move takes us to $(n + 1, s)$.
 – $F(n, u) = 0$ in all other cases.

• Equation (6) becomes the *forward equation*,

\[
G(n + 1, s) = G(n, s)p(n, s)(1 - \theta(n, s)) + \\
G(n, s - 1)p(n, s - 1)\theta(n, s - 1)
\]

(9)

• If $G(n, s) \equiv 0$ for non-existing nodes, this holds for all (n, s).
Binomial approximation to the BM – 1

- There are five properties of the Brownian motion:
 - Conditional mean: \(E_t(W_{t+\Delta}) = W_t \), the martingale property.
 - Conditional variance: \(\text{Var}_t(W_{t+\Delta}) = \Delta \).
 - \(W_{t+\Delta} - W_t \) independent of \(W_t - W_{t-\Delta} \).
 - Increments in \(W_t \) are normally distributed.
 - Sample path of \(W_t \) is continuous (\(W_t \) does not jump).

- A Binomial model (approximation) with constant time steps, \(\Delta \), can match the first three properties.

- In the binomial approximation, we let
 - \(\theta(n,s) = 1/2 \) for all \((n,s) \).
 - Up move: \(W(n+1,s+1) = W(n,s) + \sqrt{\Delta} \)
 - Down move: \(W(n+1,s) = W(n,s) - \sqrt{\Delta} \)

Binomial approximation to the BM – 2

- Four-period model for \(W(n,s) \)

\[
\begin{array}{cccccc}
0 & \sqrt{\Delta} & 2\sqrt{\Delta} & 3\sqrt{\Delta} & 4\sqrt{\Delta} \\
-\sqrt{\Delta} & 0 & \sqrt{\Delta} & 2\sqrt{\Delta} \\
-2\sqrt{\Delta} & -\sqrt{\Delta} & 0 & \sqrt{\Delta} \\
-3\sqrt{\Delta} & -2\sqrt{\Delta} & -\sqrt{\Delta} & 0 \\
-4\sqrt{\Delta} & -3\sqrt{\Delta} & -2\sqrt{\Delta} & -\sqrt{\Delta}
\end{array}
\]

- Local mean, \(\mu(n,s) \), and variance, \(\sigma^2(n,s) \), are given by
 \[\mu(n,s) = 0.5 \left\{ \left(W(n,s) + \sqrt{\Delta} \right) + \left(W(n,s) - \sqrt{\Delta} \right) \right\} = W(n,s) \]
 \[\sigma^2(n,s) = 0.5(1-0.5) \left\{ \left(W(n,s) + \sqrt{\Delta} \right) - \left(W(n,s) - \sqrt{\Delta} \right) \right\}^2
 = 0.25 \left\{ 2\sqrt{\Delta} \right\}^2 = \Delta \]
BDT and Ho-Lee models – 1

• In their binomial version, both models are approximations to
 \[dx_t = \left\{ b(t) + \frac{\sigma'(t)}{\sigma(t)} x_t \right\} dt + \sigma(t) dW_t^Q. \]
 (12)

• Ho-Lee: \(x_t = r_t \) (normal) — BDT: \(x_t = \log r_t \) (log-normal).

• Setup of the binomial model:
 – In the binomial model, we define \(r(n,s) \) as the one-period interest rate (matter of scaling).
 – Risk-neutral probabilities: \(\theta(n,s) = \theta = 0.5 \) for all \((n,s) \).
 – The time step is constant for all \(n \) — we denote it by \(\Delta \).
 – Additive relationship between states in the \(x \)-space:
 \[x(n,s + 1) = x(n,s) + h(n) \]
 (13)
 – Because of (13), we have \(x(n,s) = x(n,0) + sh(n) \), so the only free parameter (for calibration) at time \(n \) is \(x(n,0) \).

BDT and Ho-Lee models – 2

• The conditional variance of \(x(n) \) in state \((n-1,s) \) is given by
 \[\text{Var}(n-1,s) = \theta(1-\theta) \left\{ x(n,s + 1) - x(n,s) \right\}^2 \]
 \[= \theta(1-\theta)h^2(n) \]
 (14)

• Note that the variance (14) is independent of the state \(s \).

• From the SDE (12), we have \(\text{Var}(n-1,s) = \sigma^2(n\Delta)\Delta \) (exactly), where \(\Delta \) is the time step of the tree (measured in years).

• Hence, we determine the spacing parameter \(h(n) \) as
 \[h(n) = \frac{\sigma(n\Delta)\sqrt{\Delta}}{\sqrt{\theta(1-\theta)}} \]
 (15)

• Today, we pre-specify the volatility function \(\sigma(t) \) and calibrate \(r(n,0) \) (bottom node) to the current yield curve.
Calibration in the BDT model

- We focus on the BDT model where
 \[r(n,s) = \delta_n^s r(n,0), \] with \(\log \delta_n = h(n) \). \hfill (16)

- We assume discrete compounding, so \(p(n,s) = 1/(1 + r(n,s)) \).
- Assume that we have prices of zero-coupon bonds for all \(N = T/\Delta \) time periods between \(t = 0 \) (today) and \(t = T \) (last maturity).
- Normally, this requires some interpolation (curve fitting).
- We have \(N \) equations, \(P(n+1) \), in \(N \) unknowns, but the equations can be solve recursively.
- We determine \(r(0,0) \) from the first bond price,
 \[P(1) = \frac{1}{1 + r(0,0)}. \] \hfill (17)
- For \(n > 0 \) we use the forward induction method.

Forward induction in the BDT model \(-1\)

- Assume that we have computed \(r(n-1,0) \) in the calibration.
- At time \(n \), the price of the zero maturing at time \(n+1 \) is
 \[p(n,s) = \frac{1}{1 + r(n,s)} = \frac{1}{1 + \delta_n^s r(n,0)} \] \hfill (18)
- The current bond price, \(P(n+1) \), follows from the AD prices
 \[P(n+1) = \sum_{s=0}^{n} G(n,s) p(n,s) \]
 \[\quad = \sum_{s=0}^{n} G(n,s) \frac{1}{1 + \delta_n^s r(n,0)} \] \hfill (19)
- Using the forward equation (9), we obtain \(G(n,s) \) from \(G(n-1,u) \) and \(p(n-1,u) \) — both of which are known at this stage.
- Equation (19) is solved for \(r(n,0) \), and we proceed to \(n+1 \).
Forward induction in the BDT model

- Equation (19) can only be solved numerically.
- Let \(z = r(n, 0) \) and
 \[
 H(z) = P(n + 1) - \sum_{s=0}^{n} G(n, s) \frac{1}{1 + \delta^{s}_{n}z}
 \]
 \hspace{1cm} (20)
- We start by some guess for the solution, say \(z_0 \), and use the Newton-Raphson iteration scheme
 \[
 z_{k+1} = z_k - \frac{H(z_k)}{H'(z_k)}
 \]
 \hspace{1cm} (21)
 until \(H(z_{k+1}) \approx 0 \) (convergence).
- The first-order derivative of \(H(z) \) is given by
 \[
 H'(z) = \sum_{s=0}^{n} G(n, s) \frac{\delta^{s}_{n}}{(1 + \delta^{s}_{n}z)^2}.
 \]
 \hspace{1cm} (22)

Calibration in the Ho-Lee model (briefly)

- Here, it is more convenient to assume continuous compounding,
 \[
 p(n, s) = \exp[-r(n, s)] = \exp[-r(n, 0) - sh(n)]
 \]
 \hspace{1cm} (23)
- Assume that we have computed \(r(n - 1, 0) \) in the previous calibration steps, starting from \(r(0, 0) = -\log P(1) \).
- The bond price \(P(n + 1) \) can be written as [see eq. (19)].
 \[
 P(n + 1) = \sum_{s=0}^{n} G(n, s)p(n, s)
 = \exp[-r(n, 0)] \sum_{s=0}^{n} G(n, s) \exp[-sh(n)]
 \]
 \hspace{1cm} (24)
- For the HL model, we can solve for \(r(n, 0) \) in \textbf{closed form}
 \[
 r(n, 0) = \log \left(\frac{\sum_{s=0}^{n} G(n, s) \exp[-sh(n)]}{P(n + 1)} \right)
 \]
 \hspace{1cm} (25)