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Binomial model | summary

� Four-period binomial model:
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� The risk-neutral probability of an up-move at time n in state s is

denoted �(n; s).

� For a given tree (node values and probabilities), valuation is done

using the backward equation

V (n; s) = D(n; s) + p(n; s)�
[�(n; s)V (n+1; s+1)+ (1� �(n; s))V (n+1; s)] (1)

2



Binomial distribution { summary

� A random variable, X, follows the binomial distribution if there

are only two possible events (outcomes), denoted x1 and x2.

� We use the binomial distribution for modeling the dynamics of

interest rates in a tree, typically a recombining tree.

� Let � = Pr(X = x1), which means that Pr(X = x2) = 1� �

� Mean and variance of the random variable X:

E(X) = �x1+ (1� �)x2 (2)

Var(X) = [x1 � �x1 � (1� �)x2]
2 � � +

[x2 � �x1 � (1� �)x2]
2 � (1� �)

= �(1� �)

�
x1 � x2

�2
(3)

� These formulae will be used later on when calibrating trees.
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Arrow-Debreu securities

� De�nition of Arrow-Debreu (AD) security: pays one dollar in

state s at time n, and zero elsewhere.

� The price today is denoted G(n; s). By construction, G(0;0) = 1.

� AD securities as building block of the binomial model:

{ A n-period zero-coupon bond pays one dollar in all states at time n, so it
is a portfolio of AD securities

P(n) =

nX
s=0

G(n; s) (4)

{ General �xed-income derivative with cash 
ows D(n; s) can be priced in the
following way:

V (0;0) =

NX
n=0

nX
s=0

G(n; s)D(n; s) (5)

{ Equation (5) is an alternative to using the backward equation (1).

{ Of course, we must �rst determine G(n; s) for all (n; s).
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Arrow-Debreu prices { 1

� Insights from the geometry of the tree:

{ At time n there are only two nodes leading to (n+1; s), an up-move from

(n; s� 1) and down-move from (n; s).

{ Note: at the boundaries s 2 f0; n+1g there is only one node (down-move

if s= 0, up-move if s= n+1).

� Basic idea for �nding G(n+1; s):

{ Determine the value of the AD security at time n in state u, denoted F(n; u).

{ Note: F(n; u) = 0 if we cannot go to state s in the next period (n+1).

{ Now, we can think of our (n + 1; s)-AD security as a n-period security

(derivative) with payo�s F(n; u), for 0 � u � n.

{ Hence, the value of the AD security today is given by:

G(n+1; s) =

nX
u=0

G(n; u)F(n; u) (6)
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Arrow-Debreu prices { 2

� The time n prices, F(n; u), for the (n+1; s)-AD security satisfy:

{ If s � n,

F(n; s) = p(n; s)(1� �(n; s)) (7)

since a down-move takes us to (n+1; s).

{ If s � 1,

F(n; s� 1) = p(n; s� 1)�(n; s� 1) (8)

since an up-move takes us to (n+1; s).

{ F(n; u) = 0 in all other cases.

� Equation (6) becomes the forward equation,

G(n+1; s) = G(n; s)p(n; s)(1� �(n; s)) +

G(n; s� 1)p(n; s� 1)�(n; s� 1) (9)

� If G(n; s) � 0 for non-existing nodes, this holds for all (n; s).
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Binomial approximation to the BM { 1

� There are �ve properties of the Brownian motion:

{ Conditional mean: Et(Wt+�) =Wt, the martingale property.

{ Conditional variance: Vart(Wt+�) = �.

{ Wt+� �Wt independent of Wt �Wt��.

{ Increments in Wt are normally distributed.

{ Sample path of Wt is continuous (Wt does not jump).

� A Binomial model (approximation) with constant time steps, �,

can match the �rst three properties.

� In the binomial approximation, we let

{ �(n; s) = 1=2 for all (n; s).

{ Up move: W(n+1; s+1) =W(n; s) +
p
�

{ Down move: W(n+1; s) =W(n; s)�
p
�
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Binomial approximation to the BM { 2

� Four-period model for W(n; s)
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� Local mean, �(n; s), and variance, �2(n; s), are given by

�(n; s) = 0:5
n�

W(n; s) +
p
�

�
+

�
W(n; s)�

p
�

�o
= W(n; s) (10)

�2(n; s) = 0:5(1� 0:5)
n�

W(n; s) +
p
�

�
�
�
W(n; s)�

p
�

�o2
= 0:25

n
2
p
�

o2
= � (11)
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BDT and Ho-Lee models { 1

� In their binomial version, both models are approximations to

dxt =

�
b(t) +

�0(t)

�(t)
xt

�
dt+ �(t)dW

Q
t : (12)

� Ho-Lee: xt = rt (normal) | BDT: xt = log rt (log-normal).

� Setup of the binomial model:

{ In the binomial model, we de�ne r(n; s) as the one-period interest rate

(matter of scaling).

{ Risk-neutral probabilities: �(n; s) = � = 0:5 for all (n; s).

{ The time step is constant for all n | we denote it by �.

{ Additive relationship between states in the x-space:

x(n; s+1) = x(n; s) + h(n) (13)

{ Because of (13), we have x(n; s) = x(n;0)+ sh(n), so the only free param-

eter (for calibration) at time n is x(n;0).
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BDT and Ho-Lee models { 2

� The conditional variance of x(n) in state (n� 1; s) is given by

Var(n� 1; s) = �(1� �)
n
x(n; s+1)� x(n; s)

o2
= �(1� �)h2(n) (14)

� Note that the variance (14) is independent of the state s.

� From the SDE (12), we have Var(n� 1; s) = �2(n�)� (exactly),

where � is the time step of the tree (measured in years).

� Hence, we determine the spacing parameter h(n) as

h(n) =
�(n�)

p
�q

�(1� �)
(15)

� Today, we pre-specify the volatility function �(t) and calibrate

r(n;0) (bottom node) to the current yield curve.
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Calibration in the BDT model

� We focus on the BDT model where

r(n; s) = �snr(n;0); with log �n = h(n): (16)

� We assume discrete compounding, so p(n; s) = 1=f1 + r(n; s)g.
� Assume that we have prices of zero-coupon bonds for all N = T=�

time periods between t = 0 (today) and t = T (last maturity).

� Normally, this requires some interpolation (curve �tting).

� We have N equations, P(n+1), in N unknowns, but the equations

can be solve recursively.

� We determine r(0;0) from the �rst bond price,

P(1) =
1

1+ r(0;0)
: (17)

� For n > 0 we use the forward induction method.
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Forward induction in the BDT model { 1

� Assume that we have computed r(n� 1;0) in the calibration.

� At time n, the price of the zero maturing at time n+1 is

p(n; s) =
1

1+ r(n; s)
=

1

1+ �snr(n;0)
(18)

� The current bond price, P(n+1), follows from the AD prices

P(n+1) =

nX
s=0

G(n; s)p(n; s)

=

nX
s=0

G(n; s)
1

1 + �snr(n;0)
(19)

� Using the forward equation (9), we obtain G(n; s) from G(n�1; u)
and p(n� 1; u) | both of which are known at this stage.

� Equation (19) is solved for r(n;0), and we proceed to n+1.
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Forward induction in the BDT model { 2

� Equation (19) can only be solved numerically.

� Let z = r(n;0) and

H(z) = P(n+1)�
nX

s=0

G(n; s)
1

1 + �snz
(20)

� We start by some guess for the solution, say z0, and use the

Newton-Raphson iteration scheme

zk+1 = zk �
H(zk)

H 0(zk)
(21)

until H(zk+1) � 0 (convergence).

� The �rst-order derivative of H(z) is given by

H 0(z) =
nX

s=0

G(n; s)
�sn

(1 + �snz)
2
: (22)
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Calibration in the Ho-Lee model (brie
y)

� Here, it is more convenient to assume continuous compounding,

p(n; s) = exp[�r(n; s)] = exp[�r(n;0)� sh(n)] (23)

� Assume that we have computed r(n � 1;0) in the previous cali-

bration steps, starting from r(0;0) = � logP(1).

� The bond price P(n+1) can be written as [see eq. (19)].

P(n+1) =

nX
s=0

G(n; s)p(n; s)

= exp[�r(n;0)]
nX

s=0

G(n; s) exp[�sh(n)] (24)

� For the HL model, we can solve for r(n;0) in closed form

r(n;0) = log

 Pn
s=0G(n; s) exp[�sh(n)]

P(n+1)

!
(25)

14


