Fixed Income Analysis Calibration in binomial models

Summary of binomial models Arrow-Debreu securities Binomial approximations to the Brownian motion The Ho-Lee and BDT models Calibration using forward induction

> Jesper Lund April 23, 1998

- The risk-neutral probability of an up-move at time n in state s is denoted $\theta(n, s)$.
- For ^a given tree (node values and probabilities), valuation is done using the backward equation

$$
V(n,s) = D(n,s) + p(n,s) \times \left[\theta(n,s) V(n+1,s+1) + (1 - \theta(n,s)) V(n+1,s) \right] \tag{1}
$$

- \bullet A random variable, X , follows the binomial distribution if there are only two possible events (outcomes), denoted x_1 and x_2 .
- We use the binomial distribution for modeling the dynamics of interest rates in a tree, typically a recombining tree.
- Let $\theta = \Pr(X = x_1)$, which means that $\Pr(X = x_2) = 1 \theta$
- Mean and variance of the random variable X :

$$
E(X) = \theta x_1 + (1 - \theta)x_2
$$

\n
$$
Var(X) = [x_1 - \theta x_1 - (1 - \theta)x_2]^2 \cdot \theta + [x_2 - \theta x_1 - (1 - \theta)x_2]^2 \cdot (1 - \theta)
$$

\n
$$
= \theta(1 - \theta) (x_1 - x_2)^2
$$
(3)

• These formulae will be used later on when calibrating trees. These formulae will be used later on when calibrating trees.

Arrow-Debreu securities

- Definition of **Arrow-Debreu** (AD) security: pays one dollar in state s at time n , and zero elsewhere.
- The price today is denoted $G(n, s)$. By construction, $G(0, 0) = 1$.
- AD securities as building block of the binomial model:
	- $-$ A n-period zero-coupon bond pays one dollar in all states at time n, so it is a portfolio of AD securities

$$
P(n) = \sum_{s=0}^{n} G(n, s) \tag{4}
$$

- General fixed-income derivative with cash flows $D(n,s)$ can be priced in the following way:

$$
V(0,0) = \sum_{n=0}^{N} \sum_{s=0}^{n} G(n,s)D(n,s)
$$
 (5)

- $-$ Equation (5) is an alternative to using the backward equation (1).
- Of course, we must first determine $G(n, s)$ for all (n, s) .

Arrow-Debreu prices -1

- Insights from the geometry of the tree:
	- $-$ At time n there are only two nodes leading to $(n + 1, s)$, an up-move from $(n, s - 1)$ and down-move from (n, s) .
	- ${\bf x}$ is the boundaries s 2 fo; n ${\bf y}$ + 1g there is only one node (down-move). if $s = 0$, up-move if $s = n + 1$.
- Basic idea for finding $G(n + 1, s)$:
	- Determine the value of the AD security at time n in state u, denoted $F(n, u)$.
	- Note: $F(n, u) = 0$ if we cannot go to state s in the next period $(n + 1)$.
	- Now, we can think of our $(n + 1, s)$ -AD security as a *n*-period security (derivative) with payoffs $F(n, u)$, for $0 \le u \le n$.
	- $-$ Hence, the value of the AD security today is given by:

$$
G(n+1,s) = \sum_{u=0}^{n} G(n,u)F(n,u)
$$
 (6)

Arrow-Debreu prices -2

• The time *n* prices, $F(n, u)$, for the $(n + 1, s)$ -AD security satisfy:

$$
F(n,s) = p(n,s)(1 - \theta(n,s))
$$
\n(7)

since a down-move takes us to $(n+1, s)$.

 ${\bf 1}$ s ${\bf 1}$ s

$$
F(n, s-1) = p(n, s-1)\theta(n, s-1)
$$
 (8)

since an up-move takes us to $(n + 1, s)$.

 $= F(n, u) = 0$ in all other cases.

 ${\bf I}$ s and the set of the set of

• Equation (6) becomes the forward equation,

$$
G(n + 1, s) = G(n, s)p(n, s)(1 - \theta(n, s)) +
$$

$$
G(n, s - 1)p(n, s - 1)\theta(n, s - 1)
$$
 (9)

• If $G(n, s) \equiv 0$ for non-existing nodes, this holds for all (n, s) .

Binomial approximation to the BM -1

- \bullet There are five properties of the Brownian motion:
	- Conditional mean: $E_t(W_{t+\Delta}) = W_t$, the martingale property.
	- Conditional variance: $Var_t(W_{t+\Delta}) = \Delta$.
	- $W_{t+\Delta} W_t$ independent of $W_t W_{t-\Delta}$.
	- $-$ Increments in W_t are normally distributed.
	- ${\sf -}$ Sample path of W_t is continuous (W_t does not jump).
- A Binomial model (approximation) with constant time steps, Δ , can match the first three properties.
- In the binomial approximation, we let
	- ${}^-\theta(n,s) = 1/2$ for all (n,s) .
	- Up move: $W(n + 1, s + 1) = W(n, s) + \sqrt{\Delta}$
	- Down move: $W(n + 1, s) = W(n, s) \sqrt{\Delta}$

Binomial approximation to the BM -2

• Four-period model for $W(n, s)$

 \bullet Local mean, $\mu(n,s)$, and vanance, σ (n,s), are given by $\mu(n, s) = 0.5 \left\{ \left(W(n, s) + \sqrt{\Delta} \right) + \left(W(n, s) - \sqrt{\Delta} \right) \right\}$ $+\left(W(n,s)-\sqrt{\Delta}\right)\} = W(n,s)$ (1) = W(n; s) (10) $\sigma^2(n,s) = 0.5(1-0.5) \left\{ \left(W(n,s) + \sqrt{\Delta} \right) - \left(W(n,s) - \sqrt{\Delta} \right) \right\}^2$ $-\left(W(n,s)-\sqrt{\Delta}\right)^2$ $= 0.25 \{2\sqrt{\Delta}\}^2 = \Delta$ \sim (11) \sim (11)

BDT and Ho-Lee models -1

• In their binomial version, both models are approximations to

$$
dx_t = \left\{ b(t) + \frac{\sigma'(t)}{\sigma(t)} x_t \right\} dt + \sigma(t) dW_t^Q.
$$
 (12)

- Ho-Lee: $x_t = r_t$ (normal) BDT: $x_t = \log r_t$ (log-normal).
- Setup of the binomial model:
	- In the binomial model, we define $r(n, s)$ as the **one-period** interest rate (matter of scaling).
	- Risk-neutral probabilities: $\theta(n, s) = \theta = 0.5$ for all (n, s) .
	- The time step is constant for all $n -$ we denote it by Δ .
	- $-$ Additive relationship between states in the x-space:

$$
x(n, s + 1) = x(n, s) + h(n)
$$
 (13)

- Because of (13), we have $x(n, s) = x(n, 0) + sh(n)$, so the only free parameter (for calibration) at time *n* is $x(n,0)$.

BDT and Ho-Lee models -2

• The conditional variance of $x(n)$ in state $(n-1, s)$ is given by

$$
\begin{array}{rcl}\n\text{Var}(n-1,s) & = & \theta(1-\theta) \left\{ x(n,s+1) - x(n,s) \right\}^2 \\
& = & \theta(1-\theta)h^2(n)\n\end{array} \tag{14}
$$

- Note that the variance (14) is independent of the state s.
- \bullet From the SDE (12), we have Var($n = 1$, s) \rightarrow 0 ($n\Delta$) Δ (exactly), where Δ is the time step of the tree (measured in years).
- Hence, we determine the spacing parameter $h(n)$ as

$$
h(n) = \frac{\sigma(n\Delta)\sqrt{\Delta}}{\sqrt{\theta(1-\theta)}}\tag{15}
$$

• Today, we pre-specify the volatility function $\sigma(t)$ and calibrate $r(n, 0)$ (bottom node) to the current yield curve.

Calibration in the BDT model

We focus on the BDT model where

$$
r(n,s) = \delta_n^s r(n,0), \quad \text{with } \log \delta_n = h(n). \tag{16}
$$

- We assume discrete compounding, so $p(n, s) = 1/\{1 + r(n, s)\}.$
- Assume that we have prices of zero-coupon bonds for all $N = T/\Delta$ time periods between $t = 0$ (today) and $t = T$ (last maturity).
- Normally, this requires some interpolation (curve fitting).
- We have N equations, $P(n+1)$, in N unknowns, but the equations can be solve recursively.
- We determine $r(0,0)$ from the first bond price,

$$
P(1) = \frac{1}{1 + r(0, 0)}.\t(17)
$$

• For $n > 0$ we use the forward induction method.

¹¹

Forward induction in the BDT model -1

- Assume that we have computed $r(n-1, 0)$ in the calibration.
- At time n, the price of the zero maturing at time $n + 1$ is

$$
p(n,s) = \frac{1}{1+r(n,s)} = \frac{1}{1+\delta_n^s r(n,0)} \tag{18}
$$

• The current bond price, $P(n + 1)$, follows from the AD prices

$$
P(n + 1) = \sum_{s=0}^{n} G(n, s) p(n, s)
$$

=
$$
\sum_{s=0}^{n} G(n, s) \frac{1}{1 + \delta_n^s r(n, 0)}
$$
 (19)

- Using the forward equation (9), we obtain $G(n, s)$ from $G(n-1, u)$ and p(n ¹; u) [|] both of which are known at this stage.
- Equation (19) is solved for $r(n, 0)$, and we proceed to $n + 1$.

Forward induction in the BDT model -2

- Equation (19) can only be solved numerically.
- Let $z = r(n, 0)$ and

$$
H(z) = P(n+1) - \sum_{s=0}^{n} G(n, s) \frac{1}{1 + \delta_n^s z} \tag{20}
$$

• We start by some guess for the solution, say z_0 , and use the Newton-Raphson iteration scheme

$$
z_{k+1} = z_k - \frac{H(z_k)}{H'(z_k)}
$$
(21)

until $H(z_{k+1}) \approx 0$ (convergence).

• The first-order derivative of $H(z)$ is given by

$$
H'(z) = \sum_{s=0}^{n} G(n, s) \frac{\delta_n^s}{(1 + \delta_n^s z)^2}.
$$
 (22)

Calibration in the Ho-Lee model (briefly)

Here, it is more convenient to assume continuous compounding,

$$
p(n,s) = \exp[-r(n,s)] = \exp[-r(n,0) - sh(n)] \tag{23}
$$

- Assume that we have computed $r(n 1, 0)$ in the previous calibration steps, starting from r(0; 0) = log ^P (1).
- The bond price $P(n + 1)$ can be written as [see eq. (19)].

$$
P(n + 1) = \sum_{s=0}^{n} G(n, s) p(n, s)
$$

= $\exp[-r(n, 0)] \sum_{s=0}^{n} G(n, s) \exp[-sh(n)]$ (24)

• For the HL model, we can solve for $r(n, 0)$ in **closed form**

$$
r(n,0) = \log\left(\frac{\sum_{s=0}^{n} G(n,s) \exp[-sh(n)]}{P(n+1)}\right)
$$
 (25)