# **Fixed Income Analysis**

#### Calibration in binomial models

Summary of binomial models
Arrow-Debreu securities
Binomial approximations to the Brownian motion
The Ho-Lee and BDT models
Calibration using forward induction

Jesper Lund April 23, 1998

1

### Binomial model — summary



- The risk-neutral probability of an up-move at time n in state s is denoted  $\theta(n,s)$ .
- For a given tree (node values and probabilities), valuation is done using the backward equation

$$V(n,s) = D(n,s) + p(n,s) \times [\theta(n,s)V(n+1,s+1) + (1-\theta(n,s))V(n+1,s)]$$
 (1)

## Binomial distribution – summary

- A random variable, X, follows the binomial distribution if there are only two possible events (outcomes), denoted  $x_1$  and  $x_2$ .
- We use the binomial distribution for modeling the dynamics of interest rates in a tree, typically a recombining tree.
- Let  $\theta = \Pr(X = x_1)$ , which means that  $\Pr(X = x_2) = 1 \theta$
- Mean and variance of the random variable X:

$$E(X) = \theta x_1 + (1 - \theta)x_2$$

$$Var(X) = [x_1 - \theta x_1 - (1 - \theta)x_2]^2 \cdot \theta + [x_2 - \theta x_1 - (1 - \theta)x_2]^2 \cdot (1 - \theta)$$

$$= \theta (1 - \theta) (x_1 - x_2)^2$$
(3)

• These formulae will be used later on when calibrating trees.

3

#### Arrow-Debreu securities

- Definition of **Arrow-Debreu** (AD) security: pays one dollar in state s at time n, and zero elsewhere.
- The price today is denoted G(n,s). By construction, G(0,0)=1.
- AD securities as building block of the binomial model:
  - A n-period zero-coupon bond pays one dollar in all states at time n, so it is a portfolio of AD securities

$$P(n) = \sum_{s=0}^{n} G(n,s)$$

$$\tag{4}$$

— General fixed-income derivative with cash flows D(n,s) can be priced in the following way:

$$V(0,0) = \sum_{n=0}^{N} \sum_{s=0}^{n} G(n,s)D(n,s)$$
 (5)

- Equation (5) is an alternative to using the backward equation (1).
- Of course, we must first determine G(n,s) for all (n,s).

### Arrow-Debreu prices - 1

- Insights from the geometry of the tree:
  - At time n there are only two nodes leading to (n+1,s), an up-move from (n,s-1) and down-move from (n,s).
  - Note: at the boundaries  $s \in \{0, n+1\}$  there is only one node (down-move if s=0, up-move if s=n+1).
- Basic idea for finding G(n+1,s):
  - Determine the value of the AD security at time n in state u, denoted F(n,u).
  - Note: F(n,u) = 0 if we cannot go to state s in the next period (n+1).
  - Now, we can think of our (n+1,s)-AD security as a n-period security (derivative) with payoffs F(n,u), for  $0 \le u \le n$ .
  - Hence, the value of the AD security today is given by:

$$G(n+1,s) = \sum_{u=0}^{n} G(n,u)F(n,u)$$
 (6)

5

### Arrow-Debreu prices – 2

- The time n prices, F(n, u), for the (n + 1, s)-AD security satisfy:
  - If s < n,

$$F(n,s) = p(n,s)(1 - \theta(n,s)) \tag{7}$$

since a down-move takes us to (n+1,s).

- If  $s \geq 1$ ,

$$F(n, s-1) = p(n, s-1)\theta(n, s-1)$$
(8)

since an up-move takes us to (n+1,s).

- F(n,u) = 0 in all other cases.
- Equation (6) becomes the forward equation,

$$G(n+1,s) = G(n,s)p(n,s)(1-\theta(n,s)) + G(n,s-1)p(n,s-1)\theta(n,s-1)$$
(9)

• If  $G(n,s) \equiv 0$  for non-existing nodes, this holds for **all** (n,s).

### Binomial approximation to the BM - 1

- There are five properties of the Brownian motion:
  - Conditional mean:  $E_t(W_{t+\Delta}) = W_t$ , the martingale property.
  - Conditional variance:  $Var_t(W_{t+\Delta}) = \Delta$ .
  - $W_{t+\Delta}-W_t$  independent of  $W_t-W_{t-\Delta}$ .
  - Increments in  $W_t$  are normally distributed.
  - Sample path of  $W_t$  is continuous ( $W_t$  does not jump).
- ullet A Binomial model (approximation) with constant time steps,  $\Delta$ , can match the first three properties.
- In the binomial approximation, we let
  - $\theta(n,s) = 1/2 \text{ for all } (n,s).$
  - Up move:  $W(n+1,s+1) = W(n,s) + \sqrt{\Delta}$
  - Down move:  $W(n+1,s) = W(n,s) \sqrt{\Delta}$

7

### Binomial approximation to the BM - 2

ullet Four-period model for W(n,s)

• Local mean,  $\mu(n,s)$ , and variance,  $\sigma^2(n,s)$ , are given by  $\mu(n,s) = 0.5 \left\{ \left( W(n,s) + \sqrt{\Delta} \right) + \left( W(n,s) - \sqrt{\Delta} \right) \right\} = W(n,s) \qquad (10)$   $\sigma^2(n,s) = 0.5(1-0.5) \left\{ \left( W(n,s) + \sqrt{\Delta} \right) - \left( W(n,s) - \sqrt{\Delta} \right) \right\}^2$   $= 0.25 \left\{ 2\sqrt{\Delta} \right\}^2 = \Delta \qquad (11)$ 

8

#### BDT and Ho-Lee models - 1

• In their binomial version, both models are approximations to

$$dx_t = \left\{ b(t) + \frac{\sigma'(t)}{\sigma(t)} x_t \right\} dt + \sigma(t) dW_t^Q.$$
 (12)

- Ho-Lee:  $x_t = r_t$  (normal) BDT:  $x_t = \log r_t$  (log-normal).
- Setup of the binomial model:
  - In the binomial model, we define r(n,s) as the **one-period** interest rate (matter of scaling).
  - Risk-neutral probabilities:  $\theta(n,s) = \theta = 0.5$  for all (n,s).
  - The time step is constant for all n we denote it by  $\Delta$ .
  - Additive relationship between states in the x-space:

$$x(n, s+1) = x(n, s) + h(n)$$
(13)

- Because of (13), we have x(n,s) = x(n,0) + sh(n), so the only free parameter (for calibration) at time n is x(n,0).

9

#### BDT and Ho-Lee models - 2

• The conditional variance of x(n) in state (n-1,s) is given by

$$Var(n-1,s) = \theta(1-\theta) \left\{ x(n,s+1) - x(n,s) \right\}^2$$
$$= \theta(1-\theta)h^2(n)$$
(14)

- ullet Note that the variance (14) is independent of the state s.
- From the SDE (12), we have  $Var(n-1,s) = \sigma^2(n\Delta)\Delta$  (exactly), where  $\Delta$  is the time step of the tree (measured in years).
- ullet Hence, we determine the spacing parameter h(n) as

$$h(n) = \frac{\sigma(n\Delta)\sqrt{\Delta}}{\sqrt{\theta(1-\theta)}}$$
(15)

• Today, we **pre**-specify the volatility function  $\sigma(t)$  and **calibrate** r(n,0) (bottom node) to the current yield curve.

#### Calibration in the BDT model

We focus on the BDT model where

$$r(n,s) = \delta_n^s r(n,0), \text{ with } \log \delta_n = h(n). \tag{16}$$

- We assume **discrete** compounding, so  $p(n,s) = 1/\{1 + r(n,s)\}$ .
- Assume that we have prices of zero-coupon bonds for all  $N = T/\Delta$  time periods between t = 0 (today) and t = T (last maturity).
- Normally, this requires some interpolation (curve fitting).
- We have N equations, P(n+1), in N unknowns, but the equations can be solve recursively.
- We determine r(0,0) from the first bond price,

$$P(1) = \frac{1}{1 + r(0,0)}. (17)$$

• For n > 0 we use the forward induction method.

11

### Forward induction in the BDT model -1

- Assume that we have computed r(n-1,0) in the calibration.
- ullet At time n, the price of the zero maturing at time n+1 is

$$p(n,s) = \frac{1}{1+r(n,s)} = \frac{1}{1+\delta_n^s r(n,0)}$$
 (18)

ullet The current bond price, P(n+1), follows from the AD prices

$$P(n+1) = \sum_{s=0}^{n} G(n,s)p(n,s)$$

$$= \sum_{s=0}^{n} G(n,s) \frac{1}{1 + \delta_{n}^{s} r(n,0)}$$
(19)

- Using the forward equation (9), we obtain G(n,s) from G(n-1,u) and p(n-1,u) both of which are known at this stage.
- Equation (19) is solved for r(n,0), and we proceed to n+1.

#### Forward induction in the BDT model - 2

- Equation (19) can only be solved numerically.
- Let z = r(n, 0) and

$$H(z) = P(n+1) - \sum_{s=0}^{n} G(n,s) \frac{1}{1 + \delta_n^s z}$$
 (20)

ullet We start by some guess for the solution, say  $z_0$ , and use the Newton-Raphson iteration scheme

$$z_{k+1} = z_k - \frac{H(z_k)}{H'(z_k)} \tag{21}$$

until  $H(z_{k+1}) \approx 0$  (convergence).

ullet The first-order derivative of H(z) is given by

$$H'(z) = \sum_{s=0}^{n} G(n, s) \frac{\delta_n^s}{(1 + \delta_n^s z)^2}.$$
 (22)

13

# Calibration in the Ho-Lee model (briefly)

• Here, it is more convenient to assume continuous compounding,

$$p(n,s) = \exp[-r(n,s)] = \exp[-r(n,0) - sh(n)]$$
 (23)

- Assume that we have computed r(n-1,0) in the previous calibration steps, starting from  $r(0,0) = -\log P(1)$ .
- The bond price P(n+1) can be written as [see eq. (19)].

$$P(n+1) = \sum_{s=0}^{n} G(n,s)p(n,s)$$

$$= \exp[-r(n,0)] \sum_{s=0}^{n} G(n,s) \exp[-sh(n)]$$
 (24)

ullet For the HL model, we can solve for r(n,0) in **closed form** 

$$r(n,0) = \log \left( \frac{\sum_{s=0}^{n} G(n,s) \exp[-sh(n)]}{P(n+1)} \right)$$
 (25)