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Summary from last week

� We price �xed-income derivatives by constructing a replicating

portfolio, typically from bonds with di�erent maturities.

� The replicating portfolio has the same payo� as the derivative

security in all states in the future.

� The arbitrage-free price of the derivative equals the price of the

replicating portfolio.

� If a security can be priced by arbitrage, there exists a risk-neutral

distribution, such that the price of the security equals the ex-

pected, discounted payo� (under the Q-distribution).

� That is, we can \pretend" that investors are risk-neutral | once

the up-down probabilities are modi�ed.

� A more general version of this result is known as the Equivalent

Martingale Theory, formulated by Harrison and Kreps (1979).
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Multi-period binomial models { 1

� The two-date examples are su�cient to explain all aspects of the

theory (and intuition) of risk-neutral valuation.

� In practice, multi-period models are needed

{ Some derivative securities make payments at more than one day, e.g.,
interest-rate caps. All distinct payment dates should be represented in
the binomial model (tree).

{ The real world does not exactly evolve according to a simple binomial model.
Instead, the binomial model is an approximation, usually to a continuous
distribution such as the normal distribution.

{ Reducing the step size (and thereby increasing the number of periods)
results in a better approximation, see Figures 7.1{7.4 in Tuckman (1995).

� To keep the computational work manageable, we must use a re-

combining tree (lattice), that is an `up-down' move takes us to

the same node as a 'down-up' move.
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Multi-period binomial models { 2

� To account for the nodes in a lattice, we use the following notation

(n; s), where n = 0;1; : : : ; N is the date, and s = 0; : : : ; n denotes

the state, numbered from below.

� Four-period example | short-rate tree:
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� Constructing the tree | such that the prices of all N zeros are

matched exactly | is an exercise known as calibration.
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Backward equation { 1

� Assume we have a binomial tree with risk-neutral probabilities.

� De�ne the following notation:

(n; s) indicates that we are at time n, in state s.

r(n; s) is the short rate at time n in state s.

p(n; s) is the discount factor for one period (in the tree).

If r(n; s) is quoted as the short rate for m periods with simple interest,
we have p(n; s) = 1=f1+ r(n; s)=mg. In chapters 5{7, m = 2.

�(n; s) is the risk-neutral probability of an up-move, that is to state s+1 at
time n+1, from the current state s at time n.

D(n; s) is the payment in state s at time n. If the payment is made in the
next period, it must be discounted using p(n; s).

V (n; s) The value (price) of the security in state s at time n.

� The basic idea of the backward equation is calculating V (0;0) |
the price of the security today.
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Backward equation { 2

� Suppose that the tree covers N dates, that is n= 0;1; : : : ; N .

� At the �nal maturity n = N , the value of the claim is D(N; s) if

we are in state s, where s 2 f0;1; : : : ; Ng.

� If we are in state s at time N � 1, we can only move to states

s (down) and s+ 1 (up). Therefore, the (present) value of the

payments received in the next period is

p(N � 1; s) [�(N � 1; s)D(N; s+1)+ (1� �(N � 1; s))D(N; s)]

� If we add the additional payments received in state s, we obtain

the total value of the security in (N � 1; s),

V (N � 1; s) = D(N � 1; s) + p(N � 1; s)�

[�(N � 1; s)V (N; s+1)+ (1� �(N � 1; s))V (N; s)] (1)

since V (N; s) = D(N; s).
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Backward equation { 3

� Equation (1) is an example of the backward equation.

� In general, for any (n; s), the no-arbitrage condition implies that

V (n; s) = D(n; s) + p(n; s)�

[�(n; s)V (n+1; s+1)+ (1� �(n; s))V (n+1; s)] (2)

� The �rst step in pricing a �xed-income derivative is specifying the

payments in all possible states, that is D(n; s) for all (n; s).

� Many �xed-income securities (derivatives) only make payments at

maturity (expiration). This means that D(n; s) = 0 for n < N .

Examples: European bond options and zero-coupon bonds.

� Second, the backward equation is used recursively. We start

from the last date n= N and work backwards using equation (2)

until we get to V (0;0).
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Numerical example { 1

� The examples in chapter 7 use the following tree (below, the short

rate is for one period):
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�
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�
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@
@
@
@
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�
�
�
�

@
@
@
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�
�
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@
@
@
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0.953

0.047

0.953
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� Note that there is an error in chapter 7 of Tuckman (1995).

� The �rst up probability (0.661) was calculated last week, and the

second calculation (0.953) will be explained later.
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Numerical example { 2

� The �rst example is a 1.5Y zero-coupon bonds, where D(3; s) =

1000 for all s 2 f0;1;2;3g, and D(n; s) = 0 for n < 3.

� Price tree for the zero:

937.7641 �
��

@
@@ 959.8469 �

��

@
@@

954.7405 �
��

@
@@

980.8730 �
��

@
@@

978.9525 �
��

@
@@

976.0859 �
��

@
@@

1000.00

1000.00

1000.00

1000.00

� Sample calculations:

{ (2,1) 978:9525 = 1000:0 =1:0215

{ (1,0) 959:8469 = (0:953� 978:9525+ 0:047� 980:8730) =1:02

{ (0,0) 937:7641 = (0:661� 954:7405+ 0:339� 959:8469) =1:01995
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Numerical example { 3

� The second example is a security with the following payments at

date 2: D(2;0) = �10, D(2;1) = 100 and D(2;2) = 500.

� There are no payments at time 1 or 0, so D(n; s) = 0 for n < 2.

� Price tree for the security:

335.6695 �
��

@
@@ 92.9115 �

��

@
@@

470.3970 �
��

@
@@

-10.00

100.00

500.00

� Calculations in the tree:

{ (1,0) 92:9115 = (0:9525� 100:00� 0:0475� 10:00) =1:02

{ (1,1) 470:3970 = (0:9525� 500:00+ 0:0475� 100:00) =1:0225

{ (0,0) 335:6695 = (0:661� 470:3970+ 0:339� 92:9115) =1:01995
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Introduction to calibration { 1

� Typical situation: we want to price �xed-income derivatives rela-

tive to the current yield curve.

� That is, the zero-coupon bond prices are taken as given | there-

fore the binomial tree should price the zeros correctly.

� Adjusting the tree such that the current (initial) yield curve is

matched exactly is known as calibration.

� Calibration means determining the short rate at the nodes of the

tree, r(n; s), and the risk-neutral probabilities, �(n; s).

� Data input: if the time step is 3 months, we need zeros in maturity

intervals of 3 months up to the �nal horizon, and so on.

� In practice, a certain amount of interpolation between missing

maturities is needed.
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Introduction to calibration { 2

� In the simplest case, we have one degree of freedom per time

period, namely the zero price for that maturity.

� There are two possibilities:

1. At time n, we �x �(n; s) = 0:5, and adjust the short rate r(n; s) in the n+1

nodes. Note that the n+ 1 values of r(n; s) are not uniquely determined
since there is only one degree of freedom.

2. Specify r(n; s) freely, and adjust the risk-neutral probabilities �(n; s). Since
there is only one degree of freedom, we need to assume (for example) that

�(n; s) is the same for all s,

� The second method is used in chapters 5{7, and we focus on this

method today | because it is simpler (at �rst).

� However, it is widely recognized that �xing �(n; s) = 0:5 and ad-

justing r(n; s) is preferable | due to faster convergence.
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Introduction to calibration | 3

� How is the risk-neutral (up) probability for n= 1, �(1; s) = 0:9525

calculated in the earlier example?

� The node values r(n; s) are speci�ed more or less arbitrarily, and

we calculated �(0;0) = 0:661 last week.

� Tree with unknown q = �(1; s)
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Introduction to calibration | 4

� Price tree for the 1.5 Y zero, with a yield of 4.33%

937.7641 �
��

@
@@ P1:5(1;0)

�
��

@
@@

P1:5(1;1)
�
��

@
@@

980.8730 �
��

@
@@

978.9525 �
��

@
@@

976.0859 �
��

@
@@

1000.00

1000.00

1000.00

1000.00

� We know that

P1:5(1;0) = fq 978:9525 + (1� q) 980:8730g =1:02

P1:5(1;1) = fq 976:0859 + (1� q) 978:9525g =1:0225
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Introduction to calibration | 5

� Moreover we have

937:7641 =
1

1:01995
f0:661P1:5(1;1) + 0:339P1:5(1;0)g (3)

� If we substitute the expressions for P1:5(1; i), i = 1;2, into (3),

we get one equation in one unknown, q.

� The solution for q is

q =
0:661p(1;1) [P1:5(2;2)� P1:5(2;1)] + 0:339p(1;0) [P1:5(2;1)� P1:5(2;0)]

937:7641� 1:01995� f0:661p(1;1)P1:5(2;1) + 0:339p(1;0)P1:5(2;0)g

� Note that P1:5(2;0) = 980:8730, p(1; 0) = 1=1:02, and so forth.

� The solution is q = 0:9525 | there is an error in the book.
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