Introduction to the course — 1

- Rapid growth in all fixed income markets recently (government debt, mortgage financing, corporate borrowing, and fixed-income derivatives).

- Many new instruments differ significantly from traditional, plain-vanilla bonds (default-free, non-callable bonds).

- For these securities, traditional measures of interest-rate risk (duration) are either inappropriate, or difficult to compute.

- Black-Scholes model cannot be used for fixed income derivatives (e.g., bond options) because of volatility assumptions.

- **Pricing** and **hedging** requires a stochastic term-structure model describing the future evolution of the entire term structure (not just the underlying asset/bond).
Introduction to the course — 2

- Stochastic term-structure models are the main emphasis of the course.
- Most of these models are relative pricing model: we take the prices of some assets as given (correct), and compute arbitrage-free prices of remaining assets.
- We need to study different models and understand their strengths and weaknesses. No single model can be used for all purposes.
- Institutional details of fixed income markets (and taxes) are only briefly discussed in this course. The securities we study are often simplified as some real-world features are ignored.
- On the other hand, the models we are going to study are quite representative of current “industry practice.”

Zero-coupon bonds

- The basic building blocks of all term-structure models are the so-called zero-coupon bonds.
- Definition: a single payment (e.g., one Dollar) at maturity.
- The price of a zero maturing in \(t \) years is sometimes called the discount factor for time \(t \), denoted \(d(t) \).
- Coupon bonds (bonds with more than one payment) are portfolios (packages) of zero-coupon bonds.
- Alternative representation of \(d(t) \) in terms of spot rates, \(R(t) \):
 \[
 d(t) = \frac{1}{[1 + R(t)]^t} \quad \text{or} \quad d(t) = \frac{1}{[1 + R(t)/2]^{2t}}
 \]
- Tuckman uses the latter formula because of semi-annual coupon payments in the US. We generally prefer the former.
Coupon bonds and absence of arbitrage

- Bond characteristics:
 - Payments at times \(t_1, t_2, \ldots, t_m \). Typical payment frequency for government bonds: annually or semi-annually. Danish mortgage bonds: quarterly.
 - Coupon rate, \(C \), and the repayment scheme of principal (bullets or annuities) determine the \(m \) payments \(b_i \).
 - Bullet bond: principal paid at maturity of the bond.
 - Annuity bond: sum of interest and principal payments is constant.

- Absence of arbitrage requires that the bond price \(P \) satisfies
 \[
 P + A = \sum_{i=1}^{m} b_i d(t_i) = \sum_{i=1}^{m} b_i [1 + R(t_i)]^{-t_i}
 \]
 (1)

- The bond price is quoted without accrued interest (clean price).
- Note that we use different (spot) rates for the \(m \) payment dates.

Day-counting rules

- Rules for computing accrued interest, interest payments on money-market deposits/loans, and payments for interest-rate swaps.
- Typical rules are ACT/360 and ACT/365 for money market deposits, and 30/360 for the bond market (accrued interest).
- Payments are computed as
 \[
 N r \left(\frac{d_1}{d_2} \right),
 \]
 (2)

where

- \(N \) is the nominal amount (deposit/loan amount, or face value of bond).
- \(r \) is the interest rate (or coupon rate) per year, on the given basis.
- \(d_1 \) is the (calculated) number of days until the payment date. For ACT rules, \(d_1 \) is the actual number of days. For the 30/360 rule, each month is assumed to consist of 30 days (bond market convention).
- \(d_2 \) is the number of days in a year (360 or 365), corresponding to the denominator in the rule.
Yield-to-Maturity (YTM) for coupon bonds

- Yield-to-maturity is defined as the Y that solves the equation
 \[P + A = \sum_{i=1}^{m} b_i (1 + Y)^{-t_i} \] (3)

- Compared to (1), all payments in (3) are discounted using the same interest rate.

- For a zero-coupon bond, YTM is equivalent to the spot rate $R(t)$.

- In the Danish bond market, the official YTM is computed on a 30/360 basis (assumptions about the payment dates t_i).

- Interpretation of YTM: another way of quoting the price P.

- Note that: YTM is not a bond return, and two bullets with the same maturity can have different YTM’s.

Forward rates

- Consider the definition of the spot rate for maturity t_2,
 \[[1 + R(t_2)]^{t_2} = 1/d(t_2) \] (4)

- If $R(t_1)$ is the spot rate for another maturity, and $t_1 < t_2$, we can (re)write equation (4) as
 \[[1 + R(t_2)]^{t_2} = [1 + R(t_1)]^{t_1} \times [1 + F(t_1, t_2)]^{t_2-t_1} \] (5)
 where $F(t_1, t_2)$ is defined as the forward rate between t_1 and t_2.

- $F(t_1, t_2)$ can be interpreted as the promised interest rate today ($t = 0$) for a future deposit/loan between times t_1 and t_2.

- There are three ways to represent the term structure: discount factors, spot (zero-coupon) rates, and forward rates.
Duration

- Duration (Macauley) is defined as
 \[D = \frac{\sum_{i=1}^{m} t_i b_i (1 + Y)^{-t_i}}{P + A}. \]

(6)

- For a zero-coupon bond, duration equals the maturity, \(D = t \). For coupon bonds, we always have \(D < t_m \).

- Duration is a measure of interest-rate risk, since
 \[D = -\frac{dP}{dY} \left(\frac{1 + Y}{P + A} \right) \]

(7)

- Useful approximation to bond return (here \(K = P + A \)) if there is a small change in the yield \(Y \),
 \[\frac{\Delta K}{K} \approx \frac{-D}{1 + Y} \Delta Y \]

(8)

Continuous compounding − 1

- If the interest on a bank account is compounded \(n \) times in a year, at the annual rate \(r \), investing one Dollar for \(t \) years gives
 \[\left(1 + \frac{r}{n}\right)^{nt} \]

(9)

- If \(n \to \infty \), we get \(\exp(rt) \), and \(r \) is called an interest rate with continuous compounding.

- In many cases, assuming continuous compounding simplifies the mathematical formulas, especially for continuous-time models.

- The spot rate for maturity \(t \), with continuous compounding, is defined as
 \[R(t) = -\frac{\log d(t)}{t} \]

(10)
Continuous compounding

- If Y is an annual, discretely compounded rate, the continuously compounded rate for the same maturity is $\log(1 + Y)$.

- In Appendix 4A of Tuckman (p. 57-58), the continuously compounded forward rate for time (maturity) t is derived:

$$f(t) = - \frac{d(t)/dt}{d(t)} = -\frac{d}{dt}\log d(t)$$ \hspace{1cm} (11)

- Hence, the forward rate $f(t)$ is the derivative of the logarithm of the discount function.

- The inverse relationship between $f(t)$ and $d(t)$ is given by:

$$d(t) = \exp \left(- \int_0^t f(s) ds \right).$$ \hspace{1cm} (12)