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Abstract

In this thesis, we introduce a non-probabilistic model for the short-term

interest rate. The key concepts involved in this new approach are the non-

diffusive nature of the short rate process and the uncertainty in the model

parameters. The model assumes the worst possible outcome for the short

rate path when pricing a fixed-income product (from the point of view

of the holder) and differs in many important ways from the traditional

approaches of fully deterministic or stochastic rates. In this new model,

delta hedging and unique pricing play no role, nor does any market price

of risk term appear. We present the model and explore the analytical

and numerical solutions of the associated partial differential equation.

We show how to optimally hedge the interest rate risk of a fixed-income

portfolio and price and hedge common and exotic fixed-income products.

Finally, we consider extensions to the model and present conclusions and

areas for further research.
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Chapter 1

Introduction

In contrast to the asset price world, there is no commonly accepted model for the

movement of the underlying in the interest rate world. Consequently, there are a

number of different approaches to the pricing of fixed-income products.

The simplest approach is to price a product off a yield curve. This method is

effective for simple contracts, bonds for instance. However, for more complex prod-

ucts, where optionality or convexity play a role, the precise nature of the interest rate

movements is significant and so the method does not give accurate results.

The ‘traditional’ approach to pricing these more complicated products is to in-

troduce stochastic variables to model a number of ‘unknown’ factors, on which we

believe the interest rate movements depend. These models can be single- or multi-

factor models for the movement of the short-term interest rate, or models for the

movement of the whole yield curve (the Heath, Jarrow & Morton approach). All of

these methods rely on the estimation of parameters. Not only are these parameters

(for instance, volatility) difficult to estimate, but they can also be unstable [2].

The single- and multi-factor models have the additional disadvantages that they

can require fitting to the current yield curve, again in an unstable fashion, and that

they can assume an equally difficult to estimate and unstable correlation between

yields of different maturities.

In the following work, we present an alternative approach to the pricing of fixed-

income products. We introduce a non-stochastic non-probabilistic model for the

short-term interest rate. This work has, in part, been inspired by the work on uncer-

tain volatility in equity derivatives by Avellaneda, Levy and Paras [4] and Lyons [48].

However, the ideas cannot be directly translated into the interest rate world, because

the underlying that we consider is not a traded quantity.

Rather than specify how the short rate evolves, we will just constrain the possible

movements. We will make no probabilistic statements whatsoever, solely stating
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what is possible and what is not. Clearly, there are therefore going to be a number of

possible paths that the short rate could take. For each path, when we use the short

rate as a discount rate, the contract in question could have a different value (where

we consider the position of the holder of the contract). We will consequently find a

range of possible values for the price of a contract. We identify the lowest of these as

the ‘worst-case scenario value’.

The analysis of this worst-case valuation problem leads to a nonlinear, first-order,

hyperbolic partial differential equation. We can solve this equation either analytically

or via numerical methods. The results motivate us to investigate whether there is

any role for hedging. Rather than dynamic hedging, we find that there is an optimal

static hedge for a product [15], [21], [26], [27]. This form of hedging mirrors the yield

curve fitting that is often applied to stochastic interest rate models, but has none of

the associated problems with inconsistency.

There are a number of practical applications for this model. Clearly, it can be used

to find price ranges for instruments and spot potential arbitrage opportunities in the

market [30], [32], [33]. If we have an over-the-counter (OTC) contract - one that is not

listed in the market - then we can use the uncertain interest rate model to construct

an optimal static hedge of market-traded products and reduce the inherent interest

rate risk [34], [35]. Finally, we can use the model as a risk management tool. With

a sensible choice of parameters, it is possible to show that the model is completely

consistent with past interest rate history. In this case, the worst-case scenario value

is a definitive lower bound for the value of a portfolio. The same consistency cannot

easily be shown for any other model [31], [36].

In the next section, we present a review of the common fixed-income products

available in the market and of the traditional approaches and techniques used to price

them, some of which we will use for comparison later on. We then summarise the

theory of uncertain volatility in the equity world, which is analogous to our uncertain

interest rate theory. Finally we present an outline of the contents of the thesis.

1.1 Common fixed-income contracts

The following products are all contracts between two parties. The writer is, in general,

paid a premium at the origination of the contract, for the obligation to pay specified

cashflows to the holder, at specified dates over the life of the contract. (Further details

of the specification of these and many other contracts can be found in Fabozzi [37]).
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1.1.1 Bonds

A bond is a borrowing arrangement in which a borrower (the writer) issues an IOU

to an investor (the holder). In its simplest form, it only requires the writer to pay a

specified amount, the principal, to the holder, at a specified date in the future, the

maturity. This contract is called a zero-coupon bond.

The more general contract, the coupon bond, also requires the writer to make

interim payments, or coupons, of a specified proportion of the principal, the coupon

rate, at specified dates, up to and including the maturity of the bond, as well as

paying the principal at maturity.

Figure 1.1 shows a diagramatic representation of a zero-coupon bond and a coupon

bond. Horizontal distance represents time, with maturity at the right hand end. Each

arrow represents a cashflow. Arrows above the horizontal axis represent positive

cashflow payments from the writer to the holder, and those below the axis represent

negative payments. An arrow with a straight shaft is indicative of a payment of a

known quantity at the origination of the contract, whereas an arrow with a wavy shaft

(as we will see for the next contract) is indicative of a cashflow which is dependent

on some quantity that is not known at the origination of the contract (for instance,

an interest rate).

Zero-coupon bond

Coupon bond

Figure 1.1: Diagramatic representation of a coupon and zero-coupon bond

1.1.2 Swaps

A swap is an agreement whereby two parties exchange interest payments on a prin-

cipal. At specified payment dates, one party pays the the interest that would be

due on the principal due to a predetermined fixed rate. The other party pays the

interest that would be due on the principal due to some designated interest rate (the

reference rate). Further details of the particulars of swap specification can be found

in numerous sources [24], [50], [60]. The individual set of cashflows for a particular
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payment date is called a swaplet. We can express these cashflows mathematically as

P (r − rf), (1.1)

where P is the principal, r is the reference rate and rf is the fixed rate.

The contract must specify which interest rate is to be used, and at what time it

is to be measured, since this may be prior to the payment date [25]. The fixed rate is

usually chosen so that there is no premium payable to either party at the origination

of the contract (in this case, the contract is called a par swap). Figure 1.2 shows a

diagramatic representation of a swap where the holder receives the floating payments

and pays the fixed.

Swap

Figure 1.2: Diagramatic representation of a swap

In certain circumstances, it is possible to decompose a swap into a portfolio of

zero-coupon bonds. Consider a single floating rate payment, as shown in Figure 1.3.

= =
Tc Tc Tc − τ Tc

1rτ

1 + rτ

1 1

Figure 1.3: Decomposition of a single floating rate payment

If the floating rate is the interest rate for a period of τ and is measured at a time

τ before the payment date, Tc, then a cashflow of 1 at the date Tc − τ is equivalent

to a cashflow of 1 + rτ at the date Tc, since rτ is the τ period interest rate. We can

therefore decompose the single floating rate payment into two zero-coupon bonds.

If we now consider the whole floating rate side of the swap, we can see that this

also decomposes into two zero-coupon bond payments, but only in the case when the

payment dates are also τ apart. This is shown in Figure 1.4.
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=

=

Floating rate
side of swap

Figure 1.4: Decomposition of the floating rate side of a swap

=

Swap

Figure 1.5: Decomposition of a swap into zero-coupon bonds

The swap, as a whole, can therefore be expressed as a sum of zero-coupon bonds, as

shown in Figure 1.5. If this swap has N payment dates, at times T1(= τ), T2, . . . , TN ,

then we can write the value of the swap in terms of the fixed interest rate, rf , and

zero-coupon bonds, as

P

(
1− Z(t;TN )− rf

N∑

i=1

Z(t;Ti)

)
,

where Z(t;T ) is the value at time t of a zero-coupon bond with principal 1 and

maturity at time T . For a par swap, we must choose rf so that the swap initially has

no value, i.e.

rf =
1− Z(t;TN )∑N
i=1 Z(t;Ti)

.

This swap decomposition is model-independent. It therefore holds regardless of

which interest rate model we use to value the contracts. We note that the rate rf
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is a τ -period rate. To annualise the rate, we must divide by τ (assuming that τ is

measured in years).

1.1.3 Caps and floors

Caps and floors are interest rate agreements whereby one party (the writer), for an

upfront premium, agrees to compensate the other (the holder) at specific dates if a

designated interest rate, the reference rate, differs from a predetermined level [19].

The agreement is called a cap if payment occurs when the reference rate exceeds a

predetermined level. The agreement is called a floor if payment occurs when the

reference rate falls below a predetermined level. The predetermined level is called the

strike rate.

The individual set of cashflows for a particular cap payment date is called a caplet.

We can express these cashflows mathematically as

P max(r − rs, 0), (1.2)

where P is the principal, r is the reference rate and rs is the strike rate.

The individual set of cashflows for a particular floor payment date is called a

floorlet. We can express these cashflows mathematically as

P max(rs − r, 0). (1.3)

As with the swap contract, a cap or floor contract must specify which interest rate

is to be used, and at what time it is to be measured. It is again possible to decompose

the contract. In this case, into a portfolio of bond options. First of all, we define a

bond option.

1.1.4 Bond options

A vanilla bond option is a contract that gives the holder the right, but not the

obligation, to buy or sell a bond to the writer at, or between prescribed times, for a

specified price. A European option gives the holder this right at a specified date in

the future (the expiry). An American option gives the holder the right at all times

until expiry.

A call option gives the holder the right to buy the prescribed bond (the under-

lying) for a prescribed amount (the exercise price). This payoff can be expressed

mathematically as

max(B − E, 0), (1.4)
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where B is the value of the bond at expiry of the option and E is the exercise price

(since we only exercise the option if B > E at expiry).

A put option gives the holder the right to sell the prescribed bond for a prescribed

amount. This payoff can be expressed mathematically as

max(E −B, 0). (1.5)

1.1.5 Decomposition of caps/floors into bond options

We consider a single caplet, with a floating rate that is the interest rate for a period

of τ and is measured at a time τ before the payment date, Tc. In this case, a cashflow

of 1 at the date Tc − τ is equivalent to a cashflow of 1 + rτ at the date Tc, since rτ is

the τ period interest rate. (We assume, without loss of generality, that the principal

is 1).

The caplet has cashflow

max(rτ − rs, 0),

received at time Tc. This is equivalent to a cashflow of

1

1 + rτ
max(rτ − rs, 0),

received at time Tc − τ . We can rewrite this as

max

(
1− 1 + rs

1 + rτ
, 0

)
,

where we can think of
1 + rs
1 + rτ

,

as being the price at time Tc − τ of a bond that pays out 1 + rs at time Tc. We can

therefore consider the caplet to be equivalent to a put option, with this bond as the

underlying, with exercise price 1 and expiry at time Tc−τ . Hence, we can decompose

a cap into a portfolio of put options.

Similarly, we can decompose a floor into a portfolio of the corresponding call

options.

1.2 Traditional approaches to interest rate

modelling

This section is not intended to be a complete review of the current state of affairs

in the world of interest rate modelling. It is instead a review of some of the key
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definitions and methods and, in detail, only those which we will refer to during this

thesis. Further details of all these approaches can be found in a number of sources,

for instance, Hull [44] or Wilmott [63].

1.2.1 Arbitrage

An arbitrage opportunity is the opportunity to make a risk-free profit. We shall

assume that there is an absence of such arbitrage opportunities throughout this work.

1.2.2 Present value

The present value (at time t) of an amount of cash E to be received at time T is

the amount we would pay now for this future cash flow. To find the present value

of the cash flow, we must discount it using a specified interest rate. If we have a

continuously-compounded short-term interest rate, r, then money invested in the

bank, M(t), grows exponentially according to

dM = rMdt.

When this short interest rate is a known function of time, r(t), and M(T ) = E then

we can solve the resulting ordinary differential equation to find

M(t) = Ee−
R T
t r(τ)dτ . (1.6)

(Note that throughout this work, we shall assume that the short-term interest rate is

continuously-compounded).

1.2.3 Yield to maturity

The yield to maturity is a measure of the rate of return of a bond held until maturity.

It is the constant interest rate that we would have to use to discount all of the bond’s

cashflows to value the bond at its current market price.

For a zero-coupon bond, with principal P , expiry at time T and market price ZM ,

the yield to maturity at time t is

Y = − log (ZM/P )

T − t . (1.7)

If we have a number of traded instruments then we can calculate the yield for each

of their maturities. We can then interpolate between these points to construct the

yield curve. This curve provides us with rates of return for all maturities.
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Figure 1.6 gives an example of a yield curve constructed with linear interpolation

and one constructed with spline interpolation [1] between the points where the yields

have been calculated (the x’s).

x
x

x
x

x
x

Maturity

x
x

x
x

x
x

Maturity
Linear interpolation Spline Interpolation

Yield Yield

Figure 1.6: An interpolated yield curve

1.2.4 Pricing off the yield curve

We can price a product off the yield curve as long as all of its cashflows are known

quantities at the origination of the contract. To do this, we just add up the present

values of all the cashflows. To find the present value of a cashflow, we read off the

rate of return for the payment date of the cashflow from the yield curve and discount

the cashflow at that rate.

However, it is possible to find two instruments with the same maturity but different

yields, for example, two coupon bonds with the same maturity but different coupon

structures. It is not possible to construct a yield curve consistent with both of these

instruments.

In addition, we assume that a yield is constant from now until maturity, so we

cannot use this rate to evaluate any cashflow that depends on an interest rate of

shorter term, for instance, a swap.

We require a method of construction that produces an interest rate curve both

consistent with our yield data and also suitable for the evaluation of rate-dependent

cashflows. For this, we introduce the concept of forward rates.
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1.2.5 Forward rates

Forward rates are interest rates that apply over given periods of time and are consis-

tent with all our yield data. If we have a continuous set of zero-coupon bond prices,

for all maturities, Z(t;T ), then the implied forward rate is the short rate curve that

is consistent with all of these prices, F (t;T ), and satisfies

Z(t;T ) = e−
R T
t F (t;τ)dτ . (1.8)

We can differentiate this equation to find

F (t;T ) = − ∂

∂T
(logZ(t;T )). (1.9)

If we have a finite set of zero-coupon bonds from which we want to generate our

forward rate curve, then we use the following methodology:

• Rank the bonds in order of increasing maturity, T1, T2, . . . , TN .

• Find the constant interest rate that must apply between now and T1, implied by

the market value of the first bond. This is the forward rate that holds between

now and T1.

• Find the constant interest rate that must apply between T1 and T2, implied

by the market value of the second bond, when we apply the first forward rate

between now and T1. This is the forward rate that holds between T1 and T2.

• For the ith forward rate, find the constant interest rate that must apply between

Ti−1 and Ti, implied by the market value of the ith bond, when we apply the

previous forward rates between the appropriate times. This is the forward rate

that holds between Ti−1 and Ti.

• Repeat the previous step as necessary.

This method is called bootstrapping. Figure 1.7 shows the forward rate curve

generated from the yield data used to construct the yield curves of Figure 1.6. We

include the yields of all the instruments for comparison.

This method still applies if there are two contracts with the same maturity, but

different cashflow structures, which may occur if we include coupon bonds, for exam-

ple. In this case, we will have only one market value for a number of cashflow dates.

This means that we will have fewer equations than unknowns. To solve this problem,
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Figure 1.7: The yield to maturity and forward rate

we must make some additional assumptions, grouping some of the cashflow dates, for

instance.

We also note that rather than a piecewise constant forward rate curve, we could

instead construct a continuous curve, using some form of interpolation.

1.2.6 Pricing off the forward rate curve

We can use the forward rate curve to price any simple fixed-income contract. As with

yield curve pricing, we again just add up the present values of the cashflows. If we

have a forward rate curve, F (t;T ), and a cashflow C(r) at time Tc, then the present

value, at time t, of the cashflow is

C(F (t;Tc))e
−
R Tc
t F (t;τ)dτ . (1.10)

However, this method is still inappropriate for more complex products, such as

caps, floors or bond options, whose values depend more strongly on the exact nature

of the underlying interest rate movements. To price these contracts, we must first

construct a model for the interest rate.

1.2.7 Stochastic models

A popular approach to interest rate modelling is to construct a stochastic model for

the movement of the short-term interest rate. We can then price a contract as the

expected value of its cashflows, where we discount at this short rate, and also use the

rate to value any rate-dependent cash flows, i.e.

V =
∑

i

(
E∗t

[
Ci(r)e

−
R Ti
t rτdτ

])
, (1.11)
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where the contract has cashflows Ci(r) at times Ti and we take the risk-neutral ex-

pectation, E∗t [53], [56].

1.2.8 One-factor models

The simplest of these stochastic models are one-factor models. Many such models have

been proposed [11], [23], [28], [39], [58]. They assume that interest rate movements

are driven by a single random factor. They have the general form

dr = u(r, t)dt + v(r, t)dX, (1.12)

where u and v are some specified functions of r and t and dX is a Wiener process (that

is, a random variable drawn from a Normal distribution with mean 0 and variance

dt).

We can derive a pricing equation for the value of a fixed income product under

this model. We find that the price of a contract, V (r, t), satisfies

Vt + 1
2
v2Vrr + (u− λv)Vr − rV = 0, (1.13)

where λ is the market price of risk [65].

This is a second-order, parabolic, partial differential equation. It has final condi-

tion V (r, T ) given by the value of the contract at maturity and boundary conditions

which depend on the specification of the contract. We include a cashflow at time Tc

as a jump condition (due to an absence of arbitrage opportunities) of the form

V (r, T−c ) = V (r, T+
c ) + Λ(r), (1.14)

when there is a cashflow Λ(r) at time Tc and where the superscript ‘−’ denotes just

before the cashflow date and ‘+’ just after.

The market price of risk is the ratio of the excess return above the risk-free rate to

the level of risk inherent in a portfolio. The increase in the value of the portfolio over a

time step dt is an extra λdt for each unit of risk, dX. It is necessary to introduce such

a measure because the underlying process, the short rate, is not a traded quantity.

There are many possible choices for the functions u and v. Below, we consider

two particular examples that we will refer to later in the thesis.
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1.2.8.1 Vasicek

In the Vasicek model, we set

u(r, t) = a− br and v(r, t) = ν,

(where a, b and ν are constants), so that the short rate is mean-reverting to the level

a/b at a rate b [61]. In this case, the short rate process satisfies

dr = (a− br)dt+ νdX.

We can generalise this model by allowing a and b to be functions of r and t. In

the extended Vasicek model of Hull & White, a is time-dependent, so that

dr = (a(t)− br)dt+ νdX. (1.15)

If we estimate b and ν, then we can choose a(t) to fit the current yield curve (i.e. so

that the theoretical and actual market bond prices coincide). To fit the yield curve

at time t∗, we find that a(t) must satisfy

a(t) = − ∂2

∂t2
log(ZM(t∗; t))− b ∂

∂t
log(ZM(t∗; t)) +

c2

2b

(
1− e−2b(t−t∗)) , (1.16)

where ZM(t∗, T ) is the market price of the T -maturity zero-coupon bond at time t∗

[42], [43].

1.2.8.2 ACKW

The ACKW model is an empirical model of the short rate, proposed by Apabhai,

Choe, Khennach and Wilmott [2]. Rather than choosing a model that has tractable

solutions, they consider a general form for the short rate model and perform an

empirical analysis of short rate data to choose the precise parameters. They assume

that

u(r, t) = ν2r2β−1

(
β − 1

2
− 1

2a2
log(r/r̄)

)

and

v(r, t) = νrβ,

so that the short rate process is

dr = ν2r2β−1

(
β − 1

2
− 1

2a2
log(r/r̄)

)
dt+ νrβdX. (1.17)
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They then perform a statistical analysis of US short rate data to choose the model

parameters, and find that

β = 1.13 and ν = 0.126, (1.18)

from an examination of the expected average value of (δr)2, and that

a = 0.4 and r̄ = 0.08, (1.19)

by considering the steady-state probability density function for the short rate. The

model is therefore approximately lognormal and mean-reverts to 8%.

1.2.9 Multi-factor models

The simplest generalisation of the one-factor stochastic model is the multi-factor

model. This assumes that movements in the yield curve depend on more than one

random factor. If an instrument depends on the difference between different sections

of the yield curve, rather than just its level, then we need at least a second source of

randomness to model this movement effectively [18], [46], [47].

Generally, we model the short-term interest rate, r, along with another indepen-

dent variable, l, where

dr = udt + vdX1, (1.20)

and

dl = pdt+ qdX2. (1.21)

u, v, p and q are some specified functions of r, l and t and dX1 and dX2 are ran-

dom variables drawn from Normal distributions with mean 0 and variance dt, with

correlation ρ.

We can derive a pricing equation for the value of a fixed income product under

this model. We find that the price of a contract, V (r, l, t), satisfies

Vt + 1
2
v2Vrr + ρvqVrl + 1

2
q2Vll + (u− λrv)Vr + (p− λlq)Vl − rV = 0, (1.22)

where λr(r, l, t) and λl(r, l, t) are the market prices of risk for r and l respectively.
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1.2.10 Heath, Jarrow & Morton

All of the previous stochastic models have been models of the movement of one

or more interest rate factors. However, Heath, Jarrow & Morton suggest a more

general approach, by modelling the movement of the whole forward rate curve [38].

The method consistently reproduces the current yield curve, since this information is

contained in the initial forward rate curve.

We assume that zero-coupon bonds evolve, in a risk-neutral world, according to

dZ(t;T ) = r(t)Z(t;T )dt + σ(t, T )Z(t;T )dX. (1.23)

We can then determine the stochastic differential equation for the evolution of the

risk-neutral forward rate curve

dF (t;T ) =

(
ν(t, T )

∫ T

t

ν(t, s)ds

)
dt+ ν(t, T )dX, (1.24)

where

ν(t, T ) = − ∂

∂T
σ(t, T ). (1.25)

Since

r(t) = F (t; t) = F (t∗; t) +

∫ t

t∗
dF (τ ; t), (1.26)

we can also find the short rate for any time t in the future of today, t∗.

Using this information, we can price a contract by calculating the present value

of all of its cashflows. To do this, we must first choose a specific form for σ and

then either proceed analytically, or implement a Monte Carlo method to simulate the

various forward and short rate paths [22].

We remark that more recently, Brace, Gatarek and Musiela have proposed a sim-

ilar model for a non-infinitessimal short rate, BGM, which can be used to model

discrete (and observable) forward rates directly [16].

1.3 The uncertain volatility model

In the final section of this review, we present the uncertain volatility model for equity

derivatives. Our motivation for including this model is that it was one of the original

inspirations for the form of our uncertain interest rate model.

The uncertain volatility model is an extension of the original Black-Scholes model

for equity derivatives [7], [12]. In the Black–Scholes model, we consider an asset price

random walk of the form,

dS = µSdt+ σSdX, (1.27)
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where µ and σ are known parameters, and dX is drawn from a Normal distribution

with mean 0 and variance dt.

It is then possible to derive a pricing equation for the value of an equity derivative,

V (S, t), of the form

Vt + 1
2
σ2S2VSS + rSVS − rV = 0, (1.28)

with appropriate final and boundary conditions for the specific contract.

In the uncertain volatility model, we generalise the assumption that σ is known,

to allow σ to lie anywhere within a given range,

σ− ≤ σ ≤ σ+, (1.29)

Since there is a range of possible values for σ, we find that there is a range of possible

values for the equity derivative. We identify the lowest of these as the worst-case

scenario value and find that it is possible to derive the following nonlinear, second-

order, parabolic differential equation for this value,

Vt + 1
2
σ2 (VSS)S2VSS + rSVS − rV = 0, (1.30)

where

σ(X) =

{
σ+ if X < 0
σ− if X > 0.

(1.31)

Since this is a nonlinear problem, the value of a portfolio of contracts is not

necessarily the same as the sum of their individual values. The price of a product

therefore depends on what it is hedged with. Consequently, we can statically-hedge

an OTC contract with market-traded contracts and find that there is an optimal

static hedge which gives the OTC contract the highest possible worst-case scenario

value [3], [6].

We remark that Avellaneda and Lewicki have also applied this approach to in-

terest rate modelling, where they propose a Heath, Jarrow & Morton model with an

uncertain volatility [5]. In the following work, we will eliminate the consideration

of volatility altogether and propose a more general form of uncertain model for the

interest rate.

1.4 Overview

In Chapter 2, we discuss the concept of a worst-case scenario valuation and illustrate

the idea with a simple uncertain model for the short-term interest rate. We then

describe our general uncertain, non-probabilistic model for the short rate. In this
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model, we prescribe bounds on both the short-term interest rate and its growth

rate. We derive the partial differential equation for the worst-case scenario value of

a contract under this model and find that it is first-order, nonlinear and hyperbolic.

We then examine the solution of this equation via the method of characteristics.

We illustrate the solution by the method of characteristics in Chapter 3. We first

discuss the general methodology and then considered various examples of final data.

In each case, we consider all of the possible characteristic pictures that could occur

and find the solution of the equation for each of these situations.

We begin Chapter 4 with a discussion of the consequences of the nonlinearity of

our pricing equation and consider the problem of the contract value in a best-case

scenario. Using the zero-coupon bond to illustrate the procedure, we then consider in

detail the pricing and hedging of a contract. We show that there is an optimal static

hedge for which the worst-case scenario value of the contract reaches a maximum

level. Similarly, there is another optimal static hedge for which the best-case scenario

value of the contract reaches a minimum level. Associated with these results is the

Yield Envelope. This is similar in form to the yield curve, however, at a maturity

where no traded contract exists, there is a yield spread. We then apply the model to

the pricing and hedging of swaps, caps and floors, describing the appropriate jump

and final conditions for the pricing equation in each case. Finally, in the light of

these results, we discuss possible applications for the model and price and hedge a

real-world leasing portfolio.

In Chapter 5, we apply our model to the pricing and hedging of more exotic fixed-

income contracts. We begin with the European bond option and derive two different

methodologies for the pricing of the option, dependent on the type of the option

and the hedging strategy to be followed. Second, we price the multi-choice swap, a

contract with embedded decisions. This swap allows the holder to choose on which

m of the M possible cashflow dates to exchange interest rate payments. To price this

contract, we introduce a set of functions for the contract value, dependent on how

many cashflows there are left to take.

We then consider the index amortising rate swap. In this contract, the princi-

pal amortises on cashflow dates, at a rate determined by an amortising schedule. We

derive the pricing equation for the worst-case scenario value of the contract and deter-

mine a similarity reduction to reduce the problem from three independent variables to

two. Finally, we examine the convertible bond. This contract has coupon payments,

of the same form as a vanilla coupon bond, but has the additional property that the

holder can choose to exchange the bond for a specified number of an underlying asset.
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We describe the partial differential equation for the worst-case value of the bond and

compare the results of the pricing process to a number of more traditional approaches

to interest rate modelling.

In Chapter 6, we present extensions to our uncertain model. These allow for

interest rate paths that are indistinguishable from those seen in practice. We consider

the concept of the uncertainty band, in which our model for the short-term interest

rate becomes an estimate of the real short-term rate. We derive the new partial

differential equation for the worst-case value of a contract under this assumption and

describe how to relate the short-term interest rate to rates of a longer period. Using

this concept, we can examine past interest rate data to choose a sensible width for

the band. As a further extension, we include the possibility for crashes in the short-

term interest rate. These crashes can take one of two forms. There can either be a

maximum possible total number or a maximum possible frequency for the crashes.

We describe the pricing equation framework for each case and then re-examine the

data to find an adjusted uncertainty bandwidth, along with sensible parameters for

these events. To close the chapter, we study the effect of illiquidity of the hedging

instruments on the worst-case scenario valuation of a contract and present an illiquid

version of the Yield Envelope.

Finally, in Chapter 7, we summarise the key ideas and results of the thesis. We

then consider areas for further research and draw our conclusions.
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Chapter 2

An uncertain interest rate model

In this chapter, we present a non-probabilistic model for the short-term interest rate.

We use this as a discount rate to price fixed-income products. If a contract has

cashflows Ci(r) at times Ti then the present value of the contract under this model is

∑

i

Ci(r(Ti))e
−
R Ti
t r(τ)dτ , (2.1)

where r(t) is the evolution of the short-term interest rate over the maturity of the

contract.

We will place bounds on the possible movements of the short rate. Consequently,

there will be a range of possible prices for a fixed-income contract, since there will

be a number of possible paths for the short rate and each of these could give the

contract a different present value. We identify the lowest of these prices as the worst-

case scenario value (for the holder of the contract). Under our short rate model, the

contract must be worth at least this much, regardless of which path the short rate

actually takes. We remark that the worst-case scenario for the holder of the contract

will be the best-case scenario for the writer of the contract (the best-case scenario is

discussed in Section 4.2). In this thesis, we will always consider the case of the holder

of the contract. In the next section, we motivate this concept using the simplest

possible model.

2.1 A simple example of worst-case scenario

valuation

Consider the simple case where the only constraint on the movement of r is that it is

bounded above and below, i.e.

r− ≤ r ≤ r+, (2.2)
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where r+ and r− are constants. This means that it is possible for r to jump instan-

taneously from any value to any other value within the range [r−, r+].

2.1.1 Pricing a single cashflow

Consider a zero-coupon bond with principal P that matures at time T . We want to

find the value of this bond in a worst-case scenario, at time t. This value will depend

on the evolution of the short rate, r, in the intervening period.

Since there is only a single cashflow to consider, it is simple to identify the worst-

case path for the interest rate. If the cashflow is positive, then the worst-case scenario

will occur when the interest rate is always as high as possible, so that the present

value of the cashflow is as low as possible. However, if the cashflow is negative, then

the worst-case scenario will occur when the interest rate is always as low as possible.

Therefore, if P > 0 then the worst-case scenario occurs when r immediately jumps

from its initial value to r+ and remains at this rate until maturity. In this case, the

value of the bond is then

Pe−r
+(T−t).

If P < 0 then the worst-case scenario occurs when r instantaneously falls to r− and

stays there until maturity. The value of the bond is then

Pe−r
−(T−t).

Figure 2.1 shows the evolution of the interest rate in a worst-case scenario for

these two cases of zero-coupon bond valuation.

Time (t)

r+

r−

r+

r−

Time (t)

Interest rate (r) Interest rate (r)

TT

Figure 2.1: The interest rate paths for a zero-coupon bond under our simple model
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2.1.2 Pricing two cashflows

Now, let us make the problem slightly harder. We consider a coupon bond that has

a cashflow of C at time T1 and P at maturity, T2 (T1 < T2). This is equivalent to two

zero-coupon bonds, one with a principal of C and maturity at time T1 and the other

with a principal of P and maturity at time T2.

If both cashflows are of the same sign, then the problem reduces to that of the

previous section for a single cashflow. If the cashflows are positive, then the worst-

case scenario will occur when the interest rate is always as high as possible, and if

the cashflows are negative, then the worst-case scenario will occur when the interest

rate is always as low as possible.

Consequently, If C > 0 and P > 0 then the worst-case scenario occurs when r

immediately jumps to r+ and stays there until maturity. The value of the bond at

time t is then

Ce−r
+(T1−t) + Pe−r

+(T2−t).

If C < 0 and P < 0 then the worst-case scenario occurs when r instantaneously

falls to r− and stays there until maturity. The value of the bond in a worst-case

scenario is then

Ce−r
−(T1−t) + Pe−r

−(T2−t).

But what if the cashflows are of opposite sign? By way of illustration, we consider

the case where C < 0 and P > 0. Since the latter cashflow is positive, the worst-case

scenario will occur when the interest rate is always as high as possible between the

two cashflow dates, T1 and T2. We must then examine the present value of the sum

of the two cashflows at the first cashflow date. If this value is still positive, then

the worst-case scenario will occur when the interest rate is always as high as possible

from now until the first cashflow date. However, if this value is negative, then the

worst-case scenario will occur when the interest rate is always as low as possible from

now until the first cashflow date.

Under our simple model, r can instantaneously jump from one value to another.

Therefore, in the worst-case scenario, the interest rate will be r+ between T1 and T2.

This is because it will be possible for the interest rate to jump to r+ at time T1,

regardless of what value it takes between t and T1. The present value of the second

cashflow at time T1 is then

Pe−r
+(T2−T1).
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The present value of the two cashflows at time T1 is therefore

C + Pe−r
+(T2−T1).

If C + Pe−r
+(T2−T1) > 0, then the worst case-scenario occurs when the interest rate

immediately jumps to r+ (at time t) and stays there until T2. The value of the bond

at time t is therefore

Ce−r
+(T1−t) + Pe−r

+(T2−t).

However, if C + Pe−r
+(T2−T1) < 0, then the worst case-scenario occurs when the

interest rate immediately jumps to r− (at time t) and stays there until T1 when it

jumps to r+ and remains there until T2. The value of the bond at time t is then

Ce−r
−(T1−t) + Pe−r

−(T1−t)−r+(T2−T1).

This interest rate evolution is shown in Figure 2.2.

Time (t)

r+

r−

Interest rate (r)

T2T1

Figure 2.2: The interest rate path for a coupon bond under our simple model.

(We note that if C + Pe−r
+(T2−T1) = 0, then the value of the bond today will be

zero regardless of which path the interest rate takes between t and T1. This is because

it is the present value of zero at time T1).

In this simple case, where r can instantaneously jump between values, the worst-

case scenario interest rate only changes on a cashflow date and it is clear when this

change should occur. Unfortunately, this ‘bounded r’ model is too broad to be useful.

In the next section, we fine tune our model for the interest rate.
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2.2 A model for the evolution of the interest rate

We now propose our non-probabilistic model for the evolution of the short-term in-

terest rate. We assume that r is continuous and has a given initial value, r(t). We do

not describe a model for the actual behaviour of the short rate. Instead, we bound

the possibilities by placing the following constraints on its movement:

r− ≤ r ≤ r+, (2.3)

and

c− ≤ dr

dt
≤ c+. (2.4)

Equation (2.3) states that the short rate is bounded above and below. For instance,

we could say that the short rate must be at least 3% and no more than 20%. However,

the two bounds, r+ and r−, can be time dependent.

Equation (2.4) places similar constraints on the change in the short rate. For

instance, we could say that the short rate cannot increase or fall by more than 4%

per annum. These two bounds, c+ and c−, can be dependent on both r and t.

However, we assume that c+ > 0 and c− < 0.

We remark that this model does not appear to replicate the locally unbounded

growth seen in the traditional stochastic models for the short rate and, to some extent,

observed in practice. Since we are trying to model a long-term behaviour, we are not

so concerned with these short-term movements as they will not significantly affect the

worst-case price. However, in Section 6.1, we address the problem by considering cer-

tain modifications to our model. When we perform a statistical analysis of short-term

interest rate data, we find that we can make this extended model indistinguishable

from the actual underlying process.

2.2.1 Pricing a single cashflow

For the zero-coupon bond, with principal P at maturity T , there is still an obvious

solution to the worst-case scenario valuation problem.

Since there is only a single cashflow to consider, it is again simple to identify the

worst-case path for the interest rate. If the cashflow is positive, then the worst-case

scenario will occur when the interest rate is always as high as possible, and if the

cashflow is negative, then it will occur when the interest rate is always as low as

possible.
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Therefore, if P > 0 then the worst-case scenario occurs when r increases from its

initial value as quickly as possible (i.e. dr
dt

= c+) until it reaches r+. It then remains

at this rate until maturity.

Similarly, if P < 0 then the worst-case scenario occurs when r decreases from its

initial value as quickly as possible (i.e. dr
dt

= c−) until it reaches r− and then stays

there until maturity.

The zero-coupon bond value is then given by

Pe−
R T
t r(τ)dτ ,

where r(t) is the realised short rate path for the particular case under consideration.

Figure 2.3 shows the evolution of the interest rate in a worst-case scenario for

these two cases of zero-coupon bond valuation. In this and the following figure, we

assume that r−, r+, c− and c+ are constants.

Time (t)

r+

r−

r+

r−

Time (t)

Interest rate (r) Interest rate (r)

TT

Figure 2.3: The interest rate paths for a zero-coupon bond under our non-probabilistic
model

2.2.2 Pricing two cashflows

Now we consider the coupon bond, with a cashflow of C at time T1 and P at maturity,

T2.

If both cashflows are of the same sign, then the problem again reduces to that

of the previous section for a single cashflow. If the cashflows are positive, then the

worst-case scenario will occur when the interest rate is always as high as possible,

and if the cashflows are negative, then it will occur when the interest rate is always

as low as possible.
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Therefore, if C > 0 and P > 0 then the worst-case scenario occurs when r increases

from its initial value as quickly as possible (i.e. dr
dt

= c+) until it reaches r+ and then

remains at this rate until maturity.

Similarly, if C < 0 and P < 0 then the worst-case scenario occurs when r decreases

from its initial value as quickly as possible (i.e. dr
dt

= c−) until it reaches r− and then

stays there until maturity.

The coupon bond value is then given by

Ce−
R T1
t r(τ)dτ + Pe−

R T2
t r(τ)dτ ,

where r(t) is the realised short rate path for the particular case under consideration.

But if the cashflows are of different sign, then the solution to the problem is far

less obvious. By way of illustration, we again consider the case where C < 0 and

P > 0. Since the latter cashflow is positive, it will have least value when the interest

rate is always as high as possible (between t and T2). On the other hand, the former

cashflow is negative and will have least value when the interest rate is as low as

possible between t and T1.

If the interest rate were to remain at r+ for the entire period T1 to T2 then the

present value of the second cashflow at time T1 would be

Pe−r
+(T2−T1).

If we include the first cashflow, then we find that the present value of the bond at

time T1 would be

C + Pe−r
+(T2−T1).

If this value is positive, then the worst-case scenario occurs when r is always as high

as possible over the entire period until maturity. The evolution of r will consequently

be the same as for the case with solely positive cashflows. (Note that we have assumed

a growth rate such that r can grow from its original value to r+ before T1). However,

if the value is negative, then in the worst-case scenario, we need r to be as low as

possible for all times preceding T1 and as high as possible for all times after T1.

Unfortunately, r cannot instantly jump from one value to another under this model

and it is not clear at what time r should start increasing from r− to reach r+. Figure

2.4 shows three plausible short rate evolutions. The outer paths are in some sense

‘bounding paths’. These paths either begin or end the change from r− to r+ at time

T1. Since we want the interest rate to be as low as possible before T1 and as high as

possible afterwards, the worst-case scenario short rate path will lie within this region.
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Time (t)

r+

r−

Interest rate (r)

T1 T2

Figure 2.4: Possible interest rate paths for a coupon bond under our non-probabilistic
model

However, there are still infinitely many possible paths, and only one may give the

correct worst-case scenario value.

We must develop a method for establishing the realised interest rate over the

period for which we want to perform a worst-case scenario valuation, or for directly

calculating the value of a contract in this scenario. In the next section, we approach

the problem from the perspective of the change in the contract’s value over a small

time step dt and obtain a differential equation for the worst-case price.

2.3 The differential equation for V (r, t)

2.3.1 The formulation of the differential equation

Let V (r, t) be the value of our contract, when the short-term interest rate is r at time

t. We consider the movement in the value of the contract over a time step dt.

Using Taylor’s theorem to expand the value of the contract over a small time step

dt and space step dr:

V (r + dr, t+ dt) = V (r, t) + Vr(r, t)dr + Vt(r, t)dt+O(dr2) +O(dt2).

We note that, under our model, dr is bounded (from Equation (2.4)) in the form

c−dt ≤ dr ≤ c+dt, (2.5)

and so dr = O(dt).
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Hence, we approximate (to O(dt))

dV = V (r + dr, t+ dt)− V (r, t) = Vr(r, t)dr + Vt(r, t)dt.

We want to find the worst-case scenario value of this contract. This is the value of the

contract when the short rate evolves, consist with the bounds of Equations (2.3) and

(2.4), such that no other possible evolution would give the contract a lower value.

Over a time step dt, this translates to the choice of dr such that the value of the

contract increases by the minimum possible amount.

This worst-case increase must be equal to the risk-free increase. Otherwise, we

could make an arbitrage profit on our belief that it is the worst-case scenario. We

illustrate this point with the following example:

Consider the contract shown in Figure 2.5. Today, it is worth 1. There are five

possible paths for the interest rate. Depending on which path the interest rate takes,

the contract can have a final value ranging between 1.01 and 1.03. Over the time

step, the risk-free increase is rdt.

1 + rdtRisk-free rate 1

1

1.010

1.020

1.015

1.020

1.030

Contract

Figure 2.5: The worst-case increase and risk-free increase for a contract

The worst-case scenario path for the contract is the one that results in a final

value of 1.01. This is an increase of 0.01.

If the risk-free increase were lower than this, then we could make a risk-free

profit by borrowing from the bank and buying the contract. The contract would be

guaranteed to increase by at least the worst-case amount and this would be greater

than the interest owed to the bank.

On the other hand, if the risk-free increase were higher than 0.01, then we would

own a contract that was going to increase, in our belief (that the worst-case scenario

will occur), by less than the risk-free rate. This would lead to the contradiction that
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we would rather sell and invest the money in the bank than hold the contract in the

first place.

We therefore have

min(dV ) = dVworst case = rV dt.

Hence, we find

min
dr

(dV ) = min
dr

(Vrdr + Vtdt) = rV dt.

Thus,

min
dr

(Vrdr + Vtdt) = rV dt.

Since dr is bounded by Equation (2.5), we can take the minimisation inside the

brackets, to give

Vt + c (r, Vr)Vr − rV = 0, (2.6)

where

c(r,X) =

{
c+ if X < 0
c− if X > 0.

(2.7)

This is a first-order, nonlinear, hyperbolic partial differential equation (pde) for

the contract value. We can solve this equation to value a contract with cashflows

Ci(r) at times Ti, for i = 1, 2, . . . , N . We apply the last cashflow as final data for the

pde,

V (r, TN) = CN(r), (2.8)

and solve backwards in time from maturity, TN , to the present day, t. Since the

initial short rate is known, this solution contains the current worst-case price for the

contract, V (r, t). We remark that with this form for c(r, Vr), our problem is similar

in nature to a bang-bang optimal control problem [8], [40].

In the absence of arbitrage opportunities, V is everywhere continuous except at

cash flow dates. If there is a cash flow Ci(r) at time Ti, then a no-arbitrage assumption

gives us that over the cash flow date,

V (r, T−i ) = V (r, T+
i ) + Ci(r). (2.9)

We first show how to solve the equation for an unbounded interval using the

method of characteristics, when Vr is nonzero everywhere. We then consider the

various cases in which Vr = 0 can occur on the unbounded interval, before finally

examining the bounded problem.
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2.4 The method of characteristics

To solve a hyperbolic partial differential equation analytically, we use the method of

characteristics. Essentially, this method allows us to construct the solution surface

as a family of characteristic curves which pass through a given curve of Cauchy data

[62]. To illustrate the method, we consider the linear problem,

Vt + cVr − rV = 0,

where c is some positive constant. We will solve the problem on the unbounded

interval, (−∞,∞), with final data V (r, T ) = Λ(r). We can rewrite this as Cauchy

data for the problem, in the form

Γ(r, t, V ) = (p, T,Λ(p)) for −∞ < p <∞, (2.10)

where p measures distance along the data curve.

The characteristics for the problem are defined to be

dt

1
=
dr

c
=
dV

rV
= ds, (2.11)

where we have introduced a second parameter, s, to measure distance along the

characteristic. The characteristic projections in the (r, t) plane are then

dr

dt
= c. (2.12)

It is possible to find a unique solution to this problem as long as the Cauchy data

is not tangent to the characteristics. We can then construct a solution surface which

is made up of characteristics which pass through the Cauchy data curve [55].

Since all of the jump and final conditions for our pde will be equations for the

contract value in terms of r at a particular time, our Cauchy data will always be

parallel to the t-axis in the (r, t) plane, in the direction (0, 1). We will therefore be

able to solve the pde uniquely as long as the characteristics are never parallel to the

t-axis. The characteristic path is given, according to Equation (2.12), by dr/dt = c,

i.e. in the direction (1, c). Consequently, there will be a unique solution as long as c

is finite. Equation (2.4) guarantees that this will always be the case.

The characteristics for the problem are shown in Figure 2.6. They span the whole

(r, t) plane for t ≤ T and we expect a well-defined solution in this region.

We can solve Equations (2.10) and (2.11) to find

t = s+ T , r = cs+ p and V = Λ(p)e
1
2
cs2+ps.
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Interest rate (r)

Time (t)

T

Figure 2.6: Characteristics for the linear problem

Since the Cauchy data is not parallel to the characteristics, we can invert the equations

for (r, t) in terms of (s, p) to find (s, p) in terms of (r, t),

s = −(T − t) and p = r + c(T − t).

We can then substitute for these into the equation for V to find

V = Λ(r + c(T − t))e− 1
2
c(T−t)2−r(T−t).

This solution holds for s ≤ 0 and −∞ < p <∞, i.e.

T − t ≥ 0 and −∞ < r + c(T − t) <∞,

which covers the whole (r, t) space for t ≤ T .

2.5 The characteristics for the nonlinear problem

The characteristics of Equation (2.6) are given by

dt

1
=

dr

c(r, Vr)
=
dV

rV
. (2.13)

The characteristic projections in the (r, t) plane are then

dr

dt
= c(r, Vr). (2.14)

We can solve this problem with final condition V (r, T ) as long as Vr is nonzero

over the solution surface. If this is the case, the characteristics are well-defined
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by Equation (2.13) and span the solution space. We can then solve along these

characteristics, using the final condition as Cauchy data.

If the Cauchy data is discontinuous, then the discontinuity will propagate along

a characteristic. This is because any discontinuity in the solution of a hyperbolic

partial differential equation must occur across a characteristic. To solve the problem,

we simply ‘patch together’ the two classical solutions to the continuous problems

either side of the characteristic [54].

However, as soon as there is a point at which Vr = 0, then we do not yet have

a systematic method for constructing the characteristic path through the point. We

cannot use Charpit’s method [13] to improve the situation, as the approach does not

simplify the dependence of c on Vr into a more tractable form. Instead, we must

examine the various forms in which Vr = 0 can occur, and go back to the modelling

of the problem to explain what happens to the characteristics.

We shall assume that the zero r-derivative occurs in our final data. If this not

the case, then we can construct the characteristics and find a solution back until the

time when Vr(r, t) = 0 first occurs and then consider this solution as our final data to

proceed further back. To simplify matters, we shall initially only concern ourselves

with the local problem around the point where the derivative is zero (i.e. away from

the boundaries).

There are essentially two cases to consider:

• A maximum at rT - where Vr(rT , T ) = 0, Vr(r
−
T , T ) > 0 and Vr(r

+
T , T ) < 0.

• A minimum at rT - where Vr(rT , T ) = 0, Vr(r
−
T , T ) < 0 and Vr(r

+
T , T ) > 0,

where r−T and r+
T are an infinitessimal negative and positive distance away from rT ,

respectively.

In the following work, we solve the pde backwards in time, from the final data.

All discussion of the evolution of a solution, or the propagation of a turning point

refers to the change as time to maturity increases (i.e. backwards in time).

2.5.1 Vr = 0 at a maximum

We consider the problem with V (r, T ) = f(r), where the final data has a maximum

at (rT , T ). In this case, we have

fr(r) > 0 for r < rT , fr(r) < 0 for r > rT and fr(rT ) = 0.
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Therefore, for r < rT , we have c(r, Vr) = c− and for r > rT , we have c(r, Vr) = c+.

The characteristics are given by
dr

dt
= c−,

for r < rT at t = T and by
dr

dt
= c+,

for r > rT at t = T .

There is a region, shown in Figure 2.7, in which points can be reached by two

characteristics. Consequently, there will not be a unique solution in this region. In

this and the following figures, we have set c+ = −c− to be some positive constant,

for ease of pictorial representation.

Time(t)

(rT , T )

Interest rate (r)

Figure 2.7: Multiple characteristics when there is a maximum at (rT , T )

To find a unique solution, we must introduce a shock into the problem. The shock

splits the solution space into two regions. In each region, there will only be a single

set of characteristics and hence, a unique solution for V . To solve for the position of

the shock, we have to go back to the modelling of the problem:

In the worst-case scenario, information (containing the solution) flows from inter-

est rates where the contract value is low to those at which it is high. When there

is a point at which the contract value has a maximum, then information flows into

this point from both sides. This is shown in Figure 2.8, where we have ignored the

effect of discounting and examine the evolution of the contract value in a worst-case

scenario.

The information from each side leads to a different contract value and so there

is a region which has a non-unique solution. Clearly, only one of these values is the

worst-case value (the lower one). It is clear from the diagram that the changeover
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Figure 2.8: Evolution of a maximum without discounting

from one solution to the other, so that the contract value is always as low as possible,

must occur such that the solution is continuous. The maximum will always be at the

point where the two solutions meet.

Therefore, the condition that we must apply is that the solution for V is continu-

ous. This is, in effect, an arbitrage argument, since the formation of a discontinuity

would lead to arbitrage opportunities. With this information, we can use the fol-

lowing methodology to find the path of the shock. We split the Cauchy data into

two sections, with the split at the maximum. We solve the two resulting problems

individually. We then equate these two solutions and solve the resulting equation to

find a relationship between r and t. This describes the path of the shock. On each

side of the shock, we use the solution that came from the Cauchy data to that side.

Across the shock, the solution is continuous, by definition. The path of the shock also

describes the evolution of the maximum and so the characteristic picture is consistent

with this evolution. In Figure 2.9, we show a typical set of characteristics for this

problem.

Time(t)

(rT , T )

Interest rate (r)

Figure 2.9: Characteristics when there is a maximum at (rT , T ) and we introduce a
shock
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2.5.2 The evolution of a maximum

Since the method of solution tracks the maximum, we can study the path that it

takes. In the following work, we consider the case where c+ and c− are constants and

examine the local problem around the maximum (i.e. away from the boundaries).

The problem we solve is Equation (2.6) with final data

V (r, T ) =

{
f1(r) for r ≤ rT
f2(r) for r > rT ,

where
df1

dr
> 0 ,

df2

dr
< 0 and f1(rT ) = f2(rT ),

so that we have a continuous solution. This is shown in Figure 2.10.

1

2

Vr < 0Vr > 0

f2(r)
f1(r)

rT

V (r, T )

r

Time(t)

(rT , T )

Interest rate (r)

Figure 2.10: The local problem with a maximum at (rT , T )

In region 1, the characteristics are defined by

dt =
dr

c−
=
dV1

rV1
= ds,

and we have Cauchy data of

Γ1(r, t, V1) = (p, T, f1(p)),

for p < rT . We can solve this to find

V1(r, t) = f1(r + c−(T − t))e− 1
2
c−(T−t)2−r(T−t),

for r ≤ rT − c−(T − t).
In region 2, the characteristics are defined by

dt =
dr

c+
=
dV2

rV2

= ds,
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and we have Cauchy data of

Γ2(r, t, V2) = (p, T, f2(p)),

for p > rT . We can solve this to find

V2(r, t) = f2(r + c+(T − t))e− 1
2
c+(T−t)2−r(T−t),

for r ≥ rT − c+(T − t).
To find the path of the maximum, we solve V1(r, t) = V2(r, t). For small times

before maturity, T − t = ε, say, this is

f1(r + c−ε)e−
1
2
c−ε2−rε = f2(r + c+ε)e−

1
2
c+ε2−rε,

i.e

f1(r + c−ε) = f2(r + c+ε)e−
1
2

(c+−c−)ε2,

which, to O(ε), is

f1(r + c−ε) = f2(r + c+ε).

We can also find the first derivatives of the two solutions,

V1r(r, t) =

(
df1

dr
(r + c−(T − t))− (T − t)f1(r + c−(T − t))

)
e−

1
2
c−(T−t)2−r(T−t),

and

V2r(r, t) =

(
df2

dr
(r + c+(T − t))− (T − t)f2(r + c+(T − t))

)
e−

1
2
c+(T−t)2−r(T−t),

At a time ε before maturity, to O(ε),

V1r =

(
df1

dr
(r + c−ε)− εf1(r + c−ε)

)
e−rε,

and

V2r =

(
df2

dr
(r + c+ε)− εf2(r + c+ε)

)
e−rε.

We consider two examples, a ‘linear’ maximum (with a discontinuous first deriva-

tive) and a ‘quadratic’ maximum (with a continuous first derivative).
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2.5.2.1 A ‘linear’ maximum

In the linear case, we set

f1(r) = a+ b1(r − rT ),

and

f2(r) = a+ b2(r − rT ),

where b1 > 0 and b2 < 0. We then find that the equation of the shock and the

evolution of the maximum are given by

r = rT + ε

(
c+b2 − c−b1

b1 − b2

)
,

We can express this movement locally, since the first derivative is discontinuous, as

r = rT − ε
[cVr]

[Vr]
,

where [.] represents the jump across the discontinuity.

The first derivatives of the two solutions are given by

V1r = b1 + ε(−a− 2b1r + b1rT ),

and

V2r = b2 + ε(−a− 2b2r + b2rT ).

We therefore find that the jump in derivative at the maximum is

V2r − V1r = (b2 − b1)− ε(2r − rT )(b2 − b1)),

which we can express as

= [Vr]− ε([V ] + r[Vr]).

2.5.2.2 A ‘quadratic’ maximum

In the quadratic case, we set

f1(r) = a− b1(r − rT )2,

and

f2(r) = a− b2(r − rT )2,

where b1 > 0 and b2 > 0. The equation of the shock and the evolution of the maximum

are then given by

r = rT + 2ε

(
c+b2 − c−b1

b1 − b2

)
.
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The first derivatives of the two solutions are

V1r = −2b1(r − rT ) + ε
(
−a+ b1((r − rT )2 + r2 − rrT )− 2b1c

−) ,

and

V2r = −2b2(r − rT ) + ε
(
−a+ b2((r − rT )2 + r2 − rrT )− 2b2c

+
)
,

and we find that the jump in derivative at the maximum is given by

V2r − V1r = −2(b2 − b1)(r − rT ) + ε
(
(b2 − b1)(2r − rT )(r − rT )− 2b2c

+ + 2b1c
−) .

2.5.3 Vr = 0 at a minimum

We now consider the problem with V (r, T ) = f(r), where the final data has a mini-

mum at (rT , T ). In this case, we have

fr(r) < 0 for r < rT , fr(r) > 0 for r > rT and fr(rT ) = 0.

Therefore, for r < rT , we have c(r, Vr) = c+ and for r > rT , we have c(r, Vr) = c−.

The characteristics are given by
dr

dt
= c+,

for r < rT at t = T and by
dr

dt
= c−,

for r > rT at t = T .

There is a region, shown in Figure 2.11, in which there are no characteristics.

Consequently, solving along the characteristics does not find a solution in this region.

We must find a way of extending our solution into this middle section. Again, we

refer back to the modelling of the situation. In the worst-case scenario, information

flows away from the minimum, in both directions. This is shown in Figure 2.12, where

we have ignored the effect of discounting and examine the evolution of the contract

value in a worst-case scenario.

There is a gap in the middle of each of the diagrams. All the points in the gap can

reach the minimum by maturity and so have a present value that is the value of this

minimum. If the contract has positive value at the minimum, then the lowest of these

will be the one associated with the highest interest rate, when we take discounting

into account, and so the minimum propagates to higher interest rates. On the other

hand, if the contract has negative value at the minimum, then it will propagate to

lower interest rates.
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Time (t)

Interest rate (r)

(rT , T )?

Figure 2.11: The incomplete set of characteristics originating from a minimum
.

Figure 2.12: Evolution of a minimum without discounting

Consequently, we can consider the region in question as the area within which it

is possible for the interest rate to evolve so that it reaches the minimum at maturity.

Since this is a worst-case scenario, the worst-case interest rate paths will all start at

this minimum. Moreover, the paths will follow the evolution of the minimum as far

back from maturity as they can. They are constrained by their final condition (where

in the solution space they must end up).

There will therefore be a set of characteristics which span the inner solution space.

These characteristics will all propagate from the path taken by the minimum. We use

the solution on this curve as Cauchy data for the characteristics. First of all, we must

find the path for the evolution of the minimum. To do this we re-examine Equation

(2.6).

We are interested in the evolution of the minimum from (rT , T ). This path has

equation r = R(t) say, where R(T ) = rT . To follow the path, we set

c(r, Vr) =
dR(t)

dt
,
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and find

Vt +
dR

dt
Vr − rV = 0,

with final data V (r, T ) = f(r).

We set τ = T − t and ξ = r − R(T − τ) to examine times close to maturity and

the local problem around the minimum. The equation becomes

Vτ + (ξ +R(T − τ))V = 0,

which we can integrate to get

V = f(ξ +R(T ))e
R τ
0 (ξ+R(T−s))ds.

We can then transform back to our original variables to find

V = f(r −R(t) + rT )e−
R T
T−t(r−R(t)+R(T−s))ds.

On the path in question, r = R(t), and

V = f(rT )e−
R T
T−tR(T−s)ds.

For the worst case scenario, the evolution of the interest rate will minimise V. If

f(rT ) > 0 we will want R to be as high as possible over the time period and therefore

have
dR

dt
= c−,

(since we are constrained to end up at (rT , T )) and if f(rT ) < 0 we will have

dR

dt
= c+.

In summary, to find the solution for V in the inner region, we find the solution

along the path taken by the minimum and use this as Cauchy data for the inner

region, as shown in Figure 2.13. The minimum itself propagates along the bounding

characteristic of one of the outer two regions, and has equation

dr

dt
= c−,

when V (rT , T ) > 0, and
dr

dt
= c+,

when V (rT , T ) < 0.

If V (rT , T ) = 0 then the inner region has solution V = 0, because the initial

minimum of zero is the lowest value attainable (it cannot be discounted to a lower

level) and if we start anywhere within the region, we can reach the point (rT , T ) at

maturity and have a final value of zero for the contract.
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Interest rate (r)

Time (t)

(rT , T )

Figure 2.13: The complete set of characteristics with a minimum at (rT , T )

2.5.4 The effect of a minimum on the solution

We can study the behaviour of the solution at the ‘edges’ of the region which the

minimum can affect (along the bounding characteristics for the three regions). In

the following work, we again consider the case where c+ and c− are constants and

examine the local problem. We solve Equation (2.6) with final data

V (r, T ) =

{
f1(r) for r ≤ rT
f2(r) for r > rT ,

where
df1

dr
< 0 ,

df2

dr
> 0 and f1(rT ) = f2(rT ),

so that we have a continuous problem. This is shown in Figure 2.14. We will assume

that the minimum occurs at a positive contract value (i.e. f1(rT ) > 0).

In region 1, the characteristics are defined by

dt =
dr

c+
=
dV1

rV1
= ds,

and we have Cauchy data of

Γ1(r, t, V1) = (p, T, f1(p)),

for p < rT . We can solve this to find

V1(r, t) = f1(r + c+(T − t))e− 1
2
c+(T−t)2−r(T−t),

for r ≤ rT − c+(T − t).
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2

Vr < 0 Vr > 0

rT

f2(r)
f1(r)

V (r, T )

r

Interest rate (r)

Time (t)

(rT , T )

Figure 2.14: The local problem with a minimum at (rT , T )

In region 2, the characteristics are defined by

dt =
dr

c−
=
dV2

rV2

= ds,

and we have Cauchy data of

Γ2(r, t, V2) = (p, T, f2(p)),

for p > rT . We can solve this to find

V2(r, t) = f2(r + c−(T − t))e− 1
2
c−(T−t)2−r(T−t),

for r ≥ rT − c−(T − t).
The minimum propagates along

r = rT − c−(T − t).

Substituting into the solution for V2, we find that on this line, the solution is given

by

f2(rT )e
1
2
c−(T−t)2−rT (T−t).

This gives us Cauchy data for region 3 of

Γ3(r, t, V ) =
(
rT − c−p, T − p, f2(rT )e

1
2
c−p2−rT p

)
,

for 0 ≤ p ≤ T − t. The characteristics in this region are given by

dt =
dr

c+
=
dV3

rV3

= ds.
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We can solve this to find

V3(r, t) = f2(rT )e
1
2
c−(T−t)2−rT (T−t)+ 1

2

(c−(T−t)+(r−rT ))2

c+−c− ,

for

rT − c+(T − t) ≤ r ≤ rT − c−(T − t).

The first derivatives of these solutions are

V1r(r, t) =

(
df1

dr
(r + c+(T − t))− (T − t)f1(r + c+(T − t)

)
e−

1
2
c+(T−t)2−r(T−t),

V2r(r, t) =

(
df2

dr
(r + c−(T − t))− (T − t)f2(r + c−(T − t)

)
e−

1
2
c−(T−t)2−r(T−t),

and

V3r(r, t) = f2(rT )

(
c−(T − t) + (r − rT )

c+ − c−
)
e

1
2
c−(T−t)2−rT (T−t)+ 1

2

(c−(T−t)+(r−rT ))2

c+−c− .

There are two lines along which we may expect to find some change in the first

derivative of the solution. These are the characteristics that form the boundaries

between the three solution regions. They are

r = rT − c+(T − t),

where the jump in derivative is V3r − V1r, between regions 1 and 3, and

r = rT − c−(T − t),

where the jump in derivative is V2r − V3r, between regions 2 and 3.

We find that

V3r − V1r = −df1

dr
(rT )e−rT (T−t)+ 1

2
c+(T−t)2

,

on r = rT − c+(T − t), and

V2r − V3r =

(
df2

dr
(rT )− (T − t)f2(rT )

)
e−rT (T−t)+ 1

2
c−(T−t)2

,

on r = rT − c−(T − t).
Again, we consider two examples, a ‘linear’ minimum (with a discontinuous first

derivative) and a ‘quadratic’ minimum (with a continuous first derivative).
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2.5.4.1 A ‘linear’ minimum

In the linear case, we set

f1(r) = a+ b1(r − rT ),

and

f2(r) = a+ b2(r − rT ),

where a > 0, b1 < 0 and b2 > 0. We find that

V3r − V1r = −b1e
−rT (T−t)+ 1

2
c+(T−t)2

along r = rT − c+(T − t) and a small time before maturity, ε, this is equal to

−b1 + b1rT ε+ . . .

We also find that along r = rT − c−(T − t),

V2r − V3r = (b2 − a(T − t)) e−rT (T−t)+ 1
2
c−(T−t)2

= b2 − (a+ rT b2)ε+ . . .

2.5.4.2 A ‘quadratic’ minimum

In the quadratic case, where

f1(r) = a+ b1(r − rT )2,

and

f2(r) = a+ b2(r − rT )2,

with a > 0, b1 > 0 and b2 > 0, we find that

V3r − V1r = 0,

(and hence there is a smooth join) along r = rT − c+(T − t), and

V2r − V3r = −a(T − t)e−rT (T−t)+ 1
2
c−(T−t)2

= −aε+ . . .

along r = rT − c−(T − t).
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2.5.5 Multiple maxima and minima

We have shown how to construct the local characteristic surface around a maximum

or minimum. Of course, it is possible that a problem could have more than a single

point at which Vr = 0. In these circumstances, we piece together the characteristic

picture using the knowledge we have about the characteristic behaviour around the

points in question.

The exact nature of the characteristics will depend on the precise problem that

we are to solve. As an example, we consider the effect of having a maximum and a

minimum in close proximity. We assume that the minimum is at a positive contract

value so that it propagates to higher interest rate values, and that the maximum is

such that it propagates to lower interest rate values. There are two cases to consider,

as shown in Figure 2.15.
.

(b)

(a)

Figure 2.15: Evolution of a pair of a maximum and a minimum

In case (a), the maximum and minimum move towards each other, and ‘cancel

each other out’ when they meet. In case (b), they move away from each other. The

characteristics for both of these possibilities are shown in Figure 2.16. We remark that

in case (a), the characteristic along which the minimum propagates meets the shock

along which the maximum propagates. At this point, the two disappear and we are

left with the simple characteristic picture for the situation when Vr < 0 everywhere.
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Interest rate (r)

Time (t)

(a) Interest rate (r)

Time (t)

(b)

Min

Max

Min

Max

Figure 2.16: Characteristics for the pair of a maximum and a minimum

2.5.6 Other possible occurrences of Vr = 0

There are many other circumstances in which there can be a point or region where

Vr = 0, without the existence of any maxima or minima.

For instance, consider the problem with V (r, T ) = f(r), where the final data has

an inflection point at (rT , T ). In this case, we must have either

fr(r) < 0 for r 6= rT and fr(rT ) = 0, (2.15)

or

fr(r) > 0 for r 6= rT and fr(rT ) = 0. (2.16)

Alternatively, we could have a whole region with zero-derivative, e.g.

fr(r) < 0 for r < r1 , fr(r) < 0 for r1 ≤ r ≤ r2 and fr(r) > 0 for r < r2.

Naively, we may think that we can use a similar form of argument to that for the

maxima and minima. If we apply this to the inflection point problem, we find the

following:

In the first case (2.15), for r 6= rT , we have c(r, Vr) = c+. The characteristics are

given by
dr

dt
= c+,

for r 6= rT at t = T .

The characteristic originating from the inflection point must then be of the same

form as those just above and below it. If it were not, then the characteristics would

45



cross, creating a non-unique solution. Hence, the characteristic originating from

(rT , T ) has equation dr
dt

= c+. Financially, it is clear that in the worst-case, the

interest rate will always decrease and so information travels to lower interest rates as

we go backwards in time. The information from the inflection point logically has to

travel in the same direction.

The characteristics for the problem are shown in Figure 2.17.

Interest rate (r)

Time (t)

(rT , T )

Figure 2.17: Characteristics with an inflection point at (rT , T )

Similarly, in the second case (2.16), where Vr(r, T ) < 0 except at the inflection

point, the characteristic originating from the inflection point must be of the same

form as those just above and below it. Hence, the characteristic originating from

(rT , T ) has equation dr
dt

= c−.

However, this method only predicts the correct characteristic picture for an in-

stant in time. The method works for maxima and minima because it tracks their

propagation and because maxima or minima persist until they either reach a bound-

ary or collide. Inflection points, in contrast, only exist for a moment in time. As soon

as the contract value is discounted slightly, they disappear.

To illustrate this, we consider Figure 2.18. This diagram shows the evolution of

various contract values with inflection points, where the inflection point occurs at

either a positive or negative contract value.

In all four cases, the inflection point instantaneously disappears. in cases (a) and

(d) we are left with a problem where Vr is one-signed, which we can easily solve.

In the other two cases, the inflection point turns into a pair of a maximum and a

minimum which then propagate away from each other. The characteristics for the

four cases are shown in Figure 2.19.
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(c)

(d)

Positive contract value

Negative contract value

(a)

(b)

Figure 2.18: Evolution of various inflection points

We could compare cases (a) and (d) to (b) and (c) by thinking of them as cases

where the inflection point also turns into a pair of a maximum and a minimum.

The only difference is that in (a) and (d), they propagate towards each other and so

immediately ‘cancel out’.

In summary, if there is an inflection point, or region with zero derivative, in our

problem, then we must piece together a suitable characteristic picture. This picture

will depend on the exact specification of the problem to be solved.
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(d)

(a)

(c)

(rT , T )

Interest rate (r)

(rT , T )

Interest rate (r) Interest rate (r)

(rT , T )

Time(t)

Interest rate (r)

(rT , T )

Time(t)

Time (t)

Time (t)

Figure 2.19: Characteristics with various inflection points
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2.6 Behaviour at the interest rate boundaries

We do not have to impose interest rate boundary conditions on our pde, per se, since

the first-order hyperbolic problem is well-posed without them. However, we must still

determine the characteristic picture near to a boundary. There are two situations to

consider: when the characteristics are flowing into the boundary, and when they are

flowing away from it. Figure 2.20 includes examples of both of these situations. (This

is in fact a possible characteristic picture for a zero-coupon bond).

Time (t)

Interest rate (r)

Figure 2.20: Characteristics with boundaries

At the lower end, the characteristics flow from our final data into the lower bound-

ary. If we solve the pde with Cauchy data from the final condition, then we can find

a unique solution on the lower boundary.

However, at the upper end, the characteristics flow out from the boundary. We

must therefore specify Cauchy data on the upper boundary and use this to find a

solution in the inner region by propagating characteristics from the boundary. The

bold characteristic in the figure is the bounding characteristic that separates the

solution found from the Cauchy data at maturity and that from the Cauchy data on

the upper boundary. In this case, the latter data will be the discounted value of the

contract when the interest rate remains at the upper boundary until maturity.

It is possible for minima or maxima to propagate into or away from a boundary, in

which case, we just incorporate the relevant characteristic picture from the previous

section. In the next chapter, we determine the analytical solution for a number of

problems, which include examples of this behaviour.
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Chapter 3

Analytical solutions of the
bounded problem

This chapter contains examples of the techniques of the previous chapter applied in

practice. We solve our hyperbolic partial differential equation on a bounded interval,

with various forms of positive final data. The examples we choose are of a derivative

solely of one sign (both positive and negative) and final data containing an internal

maximum or minimum.

We assume that c+ and c− are positive and negative constants, respectively, and

use the method of characteristics to solve our partial differential equation.

3.1 The general methodology

We examine the final data for our problem and construct the relevant characteristic

picture, according to the ‘rules’ of the previous chapter. We then solve the pde along

these characteristics. Finally, we check that our solution does not contain any point

at which Vr = 0 (excluding those already accounted for). Otherwise we must identify

the turning point in question and adjust our characteristic picture accordingly.

In practice, it is possible to inspect the final data and have some idea of where

additional turning points might arise. We do this by considering how the final data

will discount. Clearly, if the data has an internal turning point, then this will evolve

as discussed. However, there are other possibilities which we now consider.

All of our examples have positive final data. When we discount a positive contract

value, it decreases faster at higher interest rates. Consequently, Vr also decreases. If

the final data for our problem is such that Vr(r, T ) < 0 everywhere, then we can be

sure that we will have Vr(r, t) < 0 at all times.
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This means that if we have a maximum at the lower boundary then it will remain

at the lower boundary (since the effect of discounting is least at the lower interest

rate boundary on a positive contract value). Similarly, if there is a minimum at the

upper boundary, then it will remain there (since the effect of discounting is always

greatest at the highest interest rate).

On the other hand, if we have a minimum at the lower boundary, then it will

propagate to higher interest rates, as discussed in Section 2.5.3. The situation is not

quite so clear for a maximum at the upper boundary. In this case, information flows

into the maximum from lower interest rates. Without discounting, the maximum

would therefore remain at the upper boundary. However the effect of discounting is

greatest at this boundary. Consequently, the contract value may decrease to a lower

value at the upper boundary than that of nearby lower interest rates, in which case

the maximum propagates into the solution region. We must therefore check to see if

there is a point where Vr = 0 on the upper boundary. If there is, then we have to

consider the possibility that the maximum may propagate into the region.

3.1.1 A note on the figures

In the characteristic pictures of this chapter, we use bold to highlight the lines on

which we specify Cauchy data and dashed bold for the boundaries between solution

regions.

In the solution figures, since the contract values are all positive and discount to

lower values, the lower the curve, the higher the time to maturity.

3.2 Vr(r, T ) < 0 everywhere

We first consider the solution of our equation when our final data has a negative

derivative. In this case, V (r, T ) = f(r), where df
dr
< 0. We do not expect there to be

any turning points in the solution and can draw the characteristic picture, as shown

in Figure 3.1.

There are two solution regions. In both, the characteristics are defined by

dt =
dr

c+
=
dV

rV
= ds.

In region 1, we have Cauchy data, from the final data, of

Γ1(r, t, V1) = (p, T, f(p)),
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1
2

Γ2

Γ1

r−

t

r+

T

r+r− r

V (r, T )

f(r)

Figure 3.1: Characteristics when Vr(r, T ) < 0

for r− ≤ p ≤ r+. We can solve this to find

V1(r, t) = f(r + c+(T − t))e− 1
2
c+(T−t)2−r(T−t),

for r− − c+(T − t) ≤ r ≤ r+ − c+(T − t).
In region 2, the Cauchy data comes from the boundary at r+. The contract value

on this boundary is the value of the contract at r+ at time T , f(r+), discounted at

the rate r+ over the time to maturity. This is

V (r+, t) = f(r+)e−r
+(T−t).

The Cauchy data on the boundary is therefore

Γ2(r, t, V2) =
(
r+, p, f(r+)e−r

+(T−p)
)
,

for 0 ≤ p ≤ T . We can solve this to find

V2(r, t) = f(r+)e−r
+(T−t)+ 1

2c+
(r+−r)2

,

for r+ − c+(T − t) ≤ r ≤ r+ + c+t.

The solution to the problem is then

V (r, t) =

{
V1(r, t) for r− ≤ r ≤ max(r−, r+ − c+(T − t))
V2(r, t) for max(r−, r+ − c+(T − t)) ≤ r ≤ r+,

since we are on the bounded interval, r− ≤ r ≤ r+.

In Figure 3.2 we show the solution with various times to maturity, where

f(r) = 0.3− r,

and

r− = 0.03 , r+ = 0.2 , c− = −0.04 and c+ = 0.04.
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r
0.20.180.160.140.120.10.080.060.04

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

Figure 3.2: Contract value with 0, 1, 2, 3, 4, 5 years to maturity

3.3 Vr(r, T ) > 0 everywhere

We now consider the solution to our problem when we have final data with a positive

derivative, i.e. V (r, T ) = f(r), where df
dr
> 0.

We expect the minimum at the lower boundary to propagate towards the upper

boundary. The maximum at the upper boundary may remain there until the minimum

reaches the upper boundary (Case I) or may propagate into the solution region at

a time before the minimum reaches the upper boundary (Case II). In this case, the

minimum and maximum will collide in the interior region.

We solve the problem assuming that we are in Case I and check that we do not

have Vr = 0 on the upper boundary. If we do find a point where Vr = 0, then we

must resolve the problem assuming that we are in Case II.

3.3.1 Case I

The characteristic picture for Case I is shown in Figure 3.3.

In region 1, the characteristics are defined by

dt =
dr

c−
=
dV1

rV1
= ds,

and we have Cauchy data, from the final data, of

Γ1(r, t, V1) = (p, T, f(p)),
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r+r− r

V (r, T )

Γ1

Tt
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Γ2

r+

r−

f(r)

Figure 3.3: Possible characteristics when Vr(r, T ) > 0: Case I

for r− ≤ p ≤ r+. We can solve this to find

V1(r, t) = f(r + c−(T − t))e− 1
2
c−(T−t)2−r(T−t),

for r− − c−(T − t) ≤ r ≤ r+ − c−(T − t).
In region 2, the characteristics are defined by

dt =
dr

c+
=
dV2

rV2

= ds,

and we have Cauchy data specified along r = r− − c−(T − t) from t = T to t =

T + r+−r−
c− . Along this line, the solution from region 1 is

V = f(r−)e
1
2
c−(T−t)2−r−(T−t).

We therefore have Cauchy data of

Γ2(r, t, V2) =
(
r− − c−(T − p), p, f(r−)e

1
2
c−(T−p)2−r−(T−p)

)
,

for T + r+−r−
c− ≤ p ≤ T . We can solve this to find

V2(r, t) = f(r−)e
1
2
c−(T−t)2−r−(T−t)+ 1

2
(r−r−+c−(T−t))2/(c+−c−),

for r− − c+(T − t) ≤ r ≤ r+ − c+(T − t)− c+

c− (r+ − r−).

In region 3, the characteristics are defined by

dt =
dr

c+
=
dV3

rV3

= ds,

and we have Cauchy data specified along r = r+. The bounding characteristic at the

end of region 1 reaches r+ at time T + r+−r−
c− . The solution at this point is

V

(
r+, T +

r+ − r−
c−

)
= f(r−)e

− 1
2c− (r+−r−)2+r+

“
r+−r−
c−

”
.
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The Cauchy data for region 3 is then this value discounted at a rate of r+,

Γ3(r, t, V3) =

(
r+, p, V

(
r+, T +

r+ − r−
c−

)
e
−r+

“
T+ r+−r−

c− −p
”)

,

for 0 ≤ p ≤ T + r+−r−
c− . We can solve this to find

V3(r, t) = f(r−)e−r
+(T−t)− 1

2c− (r+−r−)2+ 1
2c+

(r+−r)2

,

for r+ − c+(T − t)− c+

c− (r+ − r−) ≤ r ≤ r+ + c+t.

The solution is therefore

V (r, t) =

{
V1(r, t) for r− − c−(T − t) ≤ r ≤ r+

V2(r, t) for r− ≤ r ≤ r− − c−(T − t),

if T + r+−r−
c− < t ≤ T , and

V (r, t) =

{
V2(r, t) for r− ≤ r ≤ max(r−, r+ − c+(T − t)− c+

c− (r+ − r−))

V3(r, t) for max(r−, r+ − c+(T − t)− c+

c− (r+ − r−)) ≤ r ≤ r+,

if t ≤ T + r+−r−
c− .

The solution with various times to maturity is shown in Figure 3.4, where

f(r) = 0.1 + r,

and

r− = 0.03 , r+ = 0.2 , c− = −0.04 and c+ = 0.04.

r 0.20.180.160.140.120.10.080.060.04

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

Figure 3.4: Contract value with 0, 1, 2, 3, 4, 5, 6 years to maturity
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3.3.2 Case II

The characteristics when the maximum propagates into the region from the upper

boundary are shown in Figure 3.5, where we assume that we first find Vr = 0 at

(r+, t∗) say.

1

2

4

Γ1

Γ4

Γ2

t T

r+

r−

t∗t∗∗

r∗∗

Figure 3.5: Possible characteristics when Vr(r, T ) > 0: Case II

The solutions found for regions 1 and 2 are the same as those for Case I. We are

only left to solve for region 4. In this region, the characteristics are defined by

dt =
dr

c+
=
dV4

rV4

= ds,

and we have Cauchy data specified along r = r+, which is the value of the maximum,

V1(r+, t∗), discounted at the rate r+, i.e.

Γ4(r, t, V4) =
(
r+, p, V1(r+, t∗)e−r

+(t∗−p)
)
,

for 0 ≤ p ≤ t∗. We can solve this to find

V4(r, t) = V1(r+, t∗)e−r
+(t∗−t)+ (r+−r)2

2c+ ,

for r+ − c+(t∗ − t) ≤ r ≤ r+ + c+t.

We must then solve V1(r, t) = V4(r, t) for t ≤ t∗ to find the position of the shock,

R(t) say. Above the shock, V = V4 and below the shock, V = V1. The shock (and

therefore the maximum) meets the minimum (which propagates along the bounding

characteristic separating regions 1 and 2, r− − c−(T − t)) at (r∗∗, t∗∗), say. From this

point, the boundary

r = r∗∗ − c+(t∗∗ − t),

separates the solutions of regions 2 (below the line) and 4 (above the line).
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The solution is therefore

V (r, t) =

{
V1(r, t) for r− − c−(T − t) ≤ r ≤ r+

V2(r, t) for r− ≤ r ≤ r− − c−(T − t),

if t∗ < t ≤ T ,

V (r, t) =





V1(r, t) for r− − c−(T − t) ≤ r ≤ R(t)
V2(r, t) for r− ≤ r ≤ r− − c−(T − t)
V4(r, t) for R(t) ≤ r ≤ r+,

if t∗∗ < t ≤ t∗, and

V (r, t) =

{
V2(r, t) for r− ≤ r ≤ max(r−, r∗∗ − c+(t∗∗ − t))
V4(r, t) for max(r−, r∗∗ − c+(t∗∗ − t)) ≤ r ≤ r+,

if t ≤ t∗∗.

The solution with various times to maturity is shown in Figure 3.6, where

f(r) = 0.1 + r,

and

r− = 0.03 , r+ = 0.5 , c− = −0.04 and c+ = 0.04.

In this particular example, the maximum starts to propagate into the solution

region 1.91 years from maturity, and collides with the minimum 6.06 years from

maturity, at an interest rate of 0.272.

r 0.50.40.30.20.1

0.6

0.5

0.4

0.3

0.2

0.1

r 0.50.40.30.20.1

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

(a) (b)

Figure 3.6: (a) Contract value with 0, 1, 2, 3, 4, 5, 6 years to maturity, (b) Contract
value with 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 years to maturity

We remark that there is only one difference between the two examples that we have

chosen to illustrate the solutions. The upper interest rate boundary is at 0.2 in the first

case and 0.5 in the second. This has two effects. First of all, the minimum has further

to travel to reach the upper boundary, which means that there is a larger interval of
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time between maturity and the minimum reaching the upper boundary. Second, the

effect of discounting is greater at the upper boundary in the latter example, since it

is at a higher interest rate. This means that Vr = 0 will occur on the upper boundary

at a time closer to maturity than in the former example. These two effects combined

cause the change from Case I to Case II.

3.4 Vr(r, T ) has an interior maximum

In this example, we have a maximum in the final data at an interior point of the

region, rT . We therefore have final data V (r, T ), where,

V (r, T ) =

{
f1(r) for r ≤ rT
f2(r) for r > rT ,

and
df1

dr
> 0 ,

df2

dr
< 0 and f1(rT ) = f2(rT ),

We expect the minimum at the lower boundary to propagate towards the upper

boundary. This minimum may collide with the interior maximum before the max-

imum reaches the upper boundary (Case I). Otherwise, the maximum reaches the

upper boundary (Case II).

We will find the same set of solutions for both cases. However, the regions in

which these solutions are valid will be case-dependent. In practice, we first find this

set of solutions and then solve for the position of the shock. We determine whether

or not the minimum reaches this shock to decide which case we are in and can then

calculate the boundaries for each solution region.

3.4.1 Case I

The characteristics when the minimum reaches the maximum before the upper bound-

ary are shown in Figure 3.7.

In region 1, the characteristics are defined by

dt =
dr

c−
=
dV1

rV1

= ds,

and we have Cauchy data, from the final data, of

Γ1(r, t, V1) = (p, T, f1(p)),

for r− ≤ p ≤ rT . We can solve this to find

V1(r, t) = f1(r + c−(T − t))e− 1
2
c−(T−t)2−r(T−t),
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Figure 3.7: Possible characteristics when there is an interior maximum: Case I

for r− − c−(T − t) ≤ r ≤ rT − c−(T − t).
In regions 2, 3 and 4, the characteristics are defined by

dt =
dr

c+
=
dV

rV
= ds.

In region 2, we have Cauchy data, from the final data, of

Γ2(r, t, V2) = (p, T, f2(p)),

for rT ≤ p ≤ r+. We can solve this to find

V2(r, t) = f2(r + c+(T − t))e− 1
2
c+(T−t)2−r(T−t),

for rT − c+(T − t) ≤ r ≤ r+ − c+(T − t).
In region 3, we have Cauchy data on the upper boundary of

Γ3(r, t, V3) =
(
r+, p, f2(r+)e−r

+(T−p)
)
,

for 0 ≤ p ≤ T. We can solve this to find

V3(r, t) = f2(r+)e−r
+(T−t)+ 1

2c+
(r+−r)2

,

for r+ − c+(T − t) ≤ r ≤ r+ + c+t.

In region 4, we have Cauchy data along the bounding characteristic, r = r− −
c−(T − t). Along this line, the solution from region 1 is

V = f1(r−)e
1
2
c−(T−t)2−r−(T−t).
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We therefore have Cauchy data of

Γ4(r, t, V4) =
(
r− − c−(T − p), p, f1(r−)e

1
2
c−(T−p)2−r−(T−p)

)
,

for T + r+−r−
c− ≤ p ≤ T . We can solve this to find

V4(r, t) = f1(r−)e
1
2
c−(T−t)2−r−(T−t)+ 1

2
(r−r−+c−(T−t))2/(c+−c−),

for r− − c+(T − t) ≤ r ≤ r+ − c+(T − t)− c+

c− (r+ − r−).

We then solve V1(r, t) = V2(r, t) to find the position of the shock, R(t) say. Below

the shock, V = V1 and above the shock, V = V2. The shock meets the minimum

(which propagates along the bounding characteristic separating regions 1 and 4) at

(r∗, t∗), say. From this point, the boundary

r = r∗ − c+(t∗ − t),

separates the solutions of regions 2 (above the line) and 4 (below the line).

The solution is therefore

V (r, t) =





V1(r, t) for r− − c−(T − t) ≤ r ≤ R(t)
V2(r, t) for R(t) ≤ r ≤ r+ − c+(T − t)
V3(r, t) for r+ − c+(T − t) ≤ r ≤ r+

V4(r, t) for r− ≤ r ≤ r− − c−(T − t),

if t∗ ≤ t ≤ T , and

V (r, t) =





V2(r, t) for max(r−, r∗ − c+(t∗ − t)) ≤ r ≤ max(r−, r+ − c+(T − t))
V3(r, t) for max(r−, r+ − c+(T − t)) ≤ r ≤ r+

V4(r, t) for r− ≤ r ≤ max(r−, r∗ − c+(t∗ − t)),

if t < t∗.

The solution with a ‘linear’ maximum and various times to maturity is shown in

Figure 3.8, where

f1(r) = 0.5 + (r − rT ) , f2(r) = 0.5− (r − rT ),

and

r− = 0.03 , r+ = 0.25 , rT = 0.12 , c− = −0.04 and c+ = 0.04.

In this example, the maximum collides with the minimum 1.66 years from matu-

rity, at an interest rate of 0.096.

The solution with a ‘quadratic’ maximum and various times to maturity is shown

in Figure 3.9, where

f1(r) = f2(r) = 0.5− 10(r − rT )2,
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r
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0.5
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0.44
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r
0.240.220.20.180.160.140.120.10.080.060.04
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0.24
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0.2

0.18

(a) (b)

Figure 3.8: (a) Contract value with 0, 0.5, 1, 1.5, 2, 2.5, 3 years to maturity, (b)
Contract value with 1.5, 2, 2.5, 3 years to maturity

and

r− = 0.03 , r+ = 0.25 , rT = 0.12 , c− = −0.04 and c+ = 0.04.

In this example, the maximum collides with the minimum 1.76 years from matu-

rity, at an interest rate of 0.100.

r
0.240.220.20.180.160.140.120.10.080.060.04

0.5
0.48
0.46
0.44
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0.4

0.38
0.36
0.34
0.32
0.3

0.28
0.26
0.24
0.22
0.2

0.18
0.16

r
0.240.220.20.180.160.140.120.10.080.060.04

0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

(a) (b)

Figure 3.9: (a) Contract value with 0, 0.5, 1, 1.5, 2, 2.5, 3 years to maturity, (b)
Contract value with 1.5, 2, 2.5, 3 years to maturity

Alternatively, the shock could reach the minimum after the bounding character-

istic from the upper boundary. In this case, our characteristic picture would be that

shown in Figure 3.10.

The solution that we have calculated is still valid, but the regions in which each

solution holds have changed. If the equation of the shock is R(t), and the shock

collides with the minimum at (r∗, t∗), then our solution becomes

V (r, t) =





V1(r, t) for r− − c−(T − t) ≤ r ≤ R(t)
V2(r, t) for R(t) ≤ r ≤ max(R(t), r+ − c+(T − t))
V3(r, t) for max(R(t), r+ − c+(T − t)) ≤ r ≤ r+

V4(r, t) for r− ≤ r ≤ r− − c−(T − t),
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Figure 3.10: Possible characteristics when there is an interior maximum: Case I

if t∗ ≤ t ≤ T , and

V (r, t) =

{
V3(r, t) for max(r−, r∗ − c+(t∗ − t)) ≤ r ≤ r+

V4(r, t) for r− ≤ r ≤ max(r−, r∗ − c+(t∗ − t)),
if t < t∗.

3.4.2 Case II

The characteristic picture for the second case is shown in 3.11.

1

23

4

5

r−

r∗

r+

rT

Γ2

Γ1

Γ3Γ5

Γ4

t t∗ T

Figure 3.11: Possible characteristics when there is an interior maximum: Case II

The solutions that we have found for regions 1, 2, 3 and 4 are still valid. However,

the regions in which the solutions are valid have changed. We must also find the
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solution for region 5. In this region, the characteristics are defined by

dt =
dr

c+
=
dV5

rV5

= ds.

We have Cauchy data along the upper boundary of

Γ5(r, t, V5) =

(
r+, p, V

(
r+, T +

r+ − r−
c−

)
e
−r+

“
T+ r+−r−

c− −p
”)

,

where 0 ≤ p ≤ T + r+−r−
c− and

V

(
r+, T +

r+ − r−
c−

)
= f1(r−)e

− 1
2c− (r+−r−)2+r+

“
r+−r−
c−

”
.

We can solve this to find

V5(r, t) = f1(r−)e−r
+(T−t)− 1

2c− (r+−r−)2+ 1
2c+

(r+−r)2

,

for r+ − c+(T − t)− c+

c− (r+ − r−) ≤ r ≤ r+ + c+t.

Again, we solve V1(r, t) = V2(r, t), and then V1(r, t) = V3(r, t) to find the position

of the shock, R(t) say. Below the shock, V = V1 and above the shock, V = V2 or V3,

depending which side of the bounding characteristic, r = r+−c+(T −t), we are. (The

shock meets this bounding characteristic at time t∗ say).

The solution is therefore

V (r, t) =





V1(r, t) for r− − c−(T − t) ≤ r ≤ R(t)
V2(r, t) for R(t) ≤ r ≤ r+ − c+(T − t)
V3(r, t) for r+ − c+(T − t) ≤ r ≤ r+

V4(r, t) for r− ≤ r ≤ r− − c−(T − t),

if t∗ < t ≤ T , and

V (r, t) =





V1(r, t) for r− − c−(T − t) ≤ r ≤ min(r+, R(t))
V3(r, t) for min(r+, R(t)) ≤ r ≤ r+

V4(r, t) for r− ≤ r ≤ r− − c−(T − t),

if T + r+−r−
c− < t ≤ t∗, and

V (r, t) =

{
V4(r, t) for r− ≤ r ≤ max(r−, r+ − c+(T − t)− c+

c− (r+ − r−))

V5(r, t) for max(r−, r+ − c+(T − t)− c+

c− (r+ − r−)) ≤ r ≤ r+,

if t < T + r+−r−
c− .

The solution with a ‘linear’ maximum and various times to maturity is shown in

Figure 3.12, where

f1(r) = 0.1 + (r − rT ) , f2(r) = 0.1− (r − rT ),

63



and

r− = 0.03 , r+ = 0.2 , rT = 0.12 , c− = −0.04 and c+ = 0.04.

In this example, the maximum meets the minimum from the upper boundary 2.04

years from maturity, at an interest rate of 0.118.

r 0.20.180.160.140.120.10.080.060.04

0.1

0.08

0.06

0.04

0.02

r 0.20.180.160.140.120.10.080.060.04

0.032
0.03

0.028
0.026
0.024
0.022

0.02
0.018
0.016
0.014
0.012

0.01
0.008

(a) (b)

Figure 3.12: (a) Contract value with 0, 0.5, 1, 1.5, 2, 2.5, 3 years to maturity, (b)
Contract value with 1.5, 2, 2.5, 3 years to maturity

The solution with a ‘quadratic’ maximum and various times to maturity is shown

in Figure 3.13, where

f1(r) = f2(r) = 0.1− 10(r − rT )2,

and

r− = 0.03 , r+ = 0.2 , rT = 0.12 , c− = −0.04 and c+ = 0.04.

In this example, the maximum meets the minimum from the upper boundary 2.04

years from maturity, at an interest rate of 0.118.

r 0.20.180.160.140.120.10.080.060.04

0.1

0.08

0.06

0.04

0.02

r 0.20.180.160.140.120.10.080.060.04

0.05

0.04

0.03

0.02

(a) (b)

Figure 3.13: (a) Contract value with 0, 0.5, 1, 1.5, 2, 2.5, 3 years to maturity, (b)
Contract value with 1.5, 2, 2.5, 3 years to maturity
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3.5 Vr(r, T ) has an interior minimum

In our final example, we have a minimum in the final data at an interior point of the

region, rT . This takes the form,

V (r, T ) =

{
f1(r) for r ≤ rT
f2(r) for r > rT ,

where
df1

dr
< 0 ,

df2

dr
> 0 and f1(rT ) = f2(rT ),

We expect the minimum to propagate to the upper boundary (Case I). It is possible

that the maximum at the upper boundary may propagate into the region before the

minimum reaches the upper boundary, in which case they collide in the inner region

(Case II).

We solve the problem assuming that we are in Case I and then check that we do

not have Vr = 0 on the upper boundary. If we find a point at which Vr(r
+, t) = 0,

then we resolve the problem assuming that we are in Case II.

3.5.1 Case I

The characteristic picture when the minimum reaches the upper boundary is shown

in Figure 3.14.

2

3

4

1
r+r− r

V (r, T )

rT

f1(r)
f2(r)

Γ4

Tt

Γ2

r−

rT

r+

Γ1

Γ3

Figure 3.14: Possible characteristics when there is an interior minimum: Case I

In region 1, the characteristics are defined by

dt =
dr

c+
=
dV1

rV1

= ds,
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and we have Cauchy data, from the final data, of

Γ1(r, t, V1) = (p, T, f1(p)),

for r− ≤ p ≤ rT . We can solve this to find

V1(r, t) = f1(r + c+(T − t))e− 1
2
c+(T−t)2−r(T−t),

for r− − c+(T − t) ≤ r ≤ rT − c+(T − t).
In region 2, the characteristics are defined by

dt =
dr

c−
=
dV2

rV2
= ds,

and we have Cauchy data, from the final data, of

Γ2(r, t, V2) = (p, T, f2(p)),

for rT ≤ p ≤ r+. We can solve this to find

V2(r, t) = f2(r + c−(T − t))e− 1
2
c−(T−t)2−r(T−t),

for rT − c−(T − t) ≤ r ≤ r+ − c−(T − t).
In regions 3 and 4, the characteristics are defined by

dt =
dr

c+
=
dV

rV
= ds.

In region 3, we have Cauchy data along the bounding characteristic of region 1,

r = rT − c−(T − t), of V = V2(rT − c−(T − t), t). This gives us

Γ3(r, t, V3) =
(
rT − c−(T − p), p, f2(rT )e

1
2
c−(T−p)2−rT (T−p)

)
,

for T + r+−rT
c− ≤ p ≤ T . We can solve this to find

V3(r, t) = f2(rT )e
1
2
c−(T−t)2−rT (T−t)+ 1

2
(r−rT+c−(T−t))2/(c+−c−),

for rT − c+(T − t) ≤ r ≤ rT − c+(T − t)− (c+ − c−) r
+−rT
c− .

In region 4, we have Cauchy data along the upper boundary of the discounted

value of the contract when the minimum reaches the upper boundary,

Γ4(r, t, V4) =

(
r+, p, V2

(
r+, T +

r+ − rT
c−

)
e
−r+

„
T+

r+−rT
c− −p

«)
,
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for 0 ≤ p ≤ T + r+−rT
c− . We can solve this to find

V4(r, t) = f2(rT )e−r
+(T−t)− 1

2c− (r+−rT )2+ 1
2c+

(r+−r)
2

,

for r+ − c+(T − t)− c+

c− (r+ − rT ) ≤ r ≤ r+ + c+t.

The solution is therefore

V (r, t) =





V1(r, t) for r− ≤ r ≤ max(r−, rT − c+(T − t))
V2(r, t) for min(r+, rT − c−(T − t)) ≤ r ≤ r+

V3(r, t) for max(r−, rT − c+(T − t)) ≤ r ≤ min(r+, rT − c−(T − t)),
if T + r+−rT

c− ≤ t ≤ T , and

V (r, t) =





V1(r, t) for r− ≤ r ≤ max(r−, rT − c+(T − t))
V3(r, t) for max(r−, rT − c+(T − t)) ≤ r

≤ max(r−, r+ − c+(T − t)− c+

c− (r+ − rT ))

V4(r, t) for max(r−, r+ − c+(T − t)− c+

c− (r+ − rT )) ≤ r ≤ r+,

if t < T + r+−rT
c− .

The solution with a ‘linear’ minimum and various times to maturity is shown in

Figure 3.15, where

f1(r) = 0.1− (r − rT ) , f2(r) = 0.1 + (r − rT ),

and

r− = 0.03 , r+ = 0.2 , rT = 0.12 , c− = −0.04 and c+ = 0.04.

r 0.20.180.160.140.120.10.080.060.04

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04
r 0.20.180.160.140.120.10.080.060.04

0.12

0.1

0.08

0.06

0.04

(a) (b)

Figure 3.15: (a) Contract value with 0, 0.5, 1, 1.5, 2, 2.5, 3 years to maturity, (b)
Contract value with 1.5, 2, 2.5, 3 years to maturity

The solution with a ‘quadratic’ minimum and various times to maturity is shown

in Figure 3.16, where

f1(r) = f2(r) = 0.1 + 10(r − rT )2,

and

r− = 0.03 , r+ = 0.2 , rT = 0.12 , c− = −0.04 and c+ = 0.04.
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r 0.20.180.160.140.120.10.080.060.04

0.18

0.16

0.14

0.12

0.1

0.08

0.06

Figure 3.16: Contract value with 0, 0.5, 1, 1.5, 2, 2.5, 3 years to maturity

3.5.2 Case II

The characteristics when the maximum propagates into the region from the upper

boundary are shown in Figure 3.17, where we assume that we first find Vr = 0 at

(r+, t∗) say.
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1

2
5

Γ5

Γ2

r−

rT

r+

Γ1

r∗∗

Γ3

Tt∗∗ t∗t

Figure 3.17: Possible characteristics when there is an interior minimum: Case II

The solutions that we found in Case I for regions 1, 2 and 3 are still valid. We

must now find the solution for region 5 along with the new regions in which these

solutions hold.
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In region 5, the characteristics are defined by

dt =
dr

c+
=
dV5

rV5

= ds,

and the Cauchy data for this region is

Γ5(r, t, V5) =
(
r+, p, V2(r+, t∗)e−r

+(t∗−p)
)
,

for 0 ≤ p ≤ t∗. We can solve this to find

V5(r, t) = V2(r+, t∗)e−r
+(t∗−t)+ 1

2c+
(r+−r)2

,

for r+ − c+(t∗ − t) ≤ r ≤ r+ + c+t.

We then solve V2(r, t) = V5(r, t) to find the path of the shock, R(t). This meets

the minimum (which travels along r = rT − c−(T − t)) at (r∗∗, t∗∗) say. The bounding

characteristic between regions 3 and 5 is then r = r∗∗ − c+(t∗∗ − t).
The solution is therefore

V (r, t) =





V1(r, t) for r− ≤ r ≤ max(r−, rT − c+(T − t))
V2(r, t) for min(r+, rT − c−(T − t)) ≤ r ≤ r+

V3(r, t) for max(r−, rT − c+(T − t)) ≤ r ≤ min(r+, rT − c−(T − t)),

if t∗ ≤ t ≤ T ,

V (r, t) =





V1(r, t) for r− ≤ r ≤ max(r−, rT − c+(T − t))
V2(r, t) for min(r+, rT − c−(T − t)) ≤ r ≤ R(t)
V3(r, t) for max(r−, rT − c+(T − t)) ≤ r ≤ min(r+, rT − c−(T − t))
V5(r, t) for R(t) ≤ r ≤ r+,

if t∗∗ < t < t∗, and

V (r, t) =





V1(r, t) for r− ≤ r ≤ max(r−, rT − c+(T − t))
V3(r, t) for max(r−, rT − c+(T − t)) ≤ r ≤ max(r−, r∗∗ − c+(t∗∗ − t))
V5(r, t) for max(r−, r∗∗ − c+(t∗∗ − t)) ≤ r ≤ r+,

if t < t∗∗.

The solution with a ‘linear’ minimum and various times to maturity is shown in

Figure 3.18, where

f1(r) = 0.1− 0.15(r − rT ) , f2(r) = 0.1 + 0.15(r − rT ),

and

r− = 0.03 , r+ = 0.2 , rT = 0.12 , c− = −0.04 and c+ = 0.04.
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r 0.20.180.160.140.120.10.080.060.04

0.11

0.1

0.09

0.08

r 0.20.180.160.140.120.10.080.060.04

0.114
0.112

0.11
0.108
0.106
0.104
0.102

0.1
0.098
0.096
0.094
0.092

0.09
0.088

(a) (b)

Figure 3.18: (a) Contract value with 0, 0.5, 1, 1.5, 2 years to maturity, (b) Contract
value with 0, 0.2, 0.4, 0.6, 0.8, 1 year to maturity

The maximum starts to propagate into the region 1.45 years from maturity and

the minimum meets the maximum 1.63 years from maturity at an interest rate of

0.185.

The solution with a ‘quadratic’ minimum and various times to maturity is shown

in Figures 3.19, where

f1(r) = f2(r) = 0.1 + (r − rT )2,

and

r− = 0.03 , r+ = 0.2 , rT = 0.12 , c− = −0.04 and c+ = 0.04.

The maximum starts to propagate into the region 0.879 years from maturity and

the minimum meets the maximum 0.944 years from maturity at an interest rate of

0.158.

r 0.20.180.160.140.120.10.080.060.04

0.108
0.106
0.104
0.102

0.1
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0.096
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0.09
0.088
0.086
0.084
0.082

0.08
0.078

Figure 3.19: Contract value with 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4 years to maturity
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Chapter 4

Pricing and hedging simple
products

In this chapter, we apply our model to the pricing and hedging of simple fixed-

income products. We begin with a discussion of the consequences of the existence

of a nonlinear pricing equation. We then solve the valuation problem of the best-

case scenario. With this information, and using the zero-coupon bond as a case-

example, we explain how to price and hedge a product. We apply these procedures

to value other simple products - swaps, caps and floors. Finally we discuss possible

applications of the methodology and provide a ‘real-world’ example.

4.1 Consequences of our nonlinear model

We have derived a first-order, nonlinear, hyperbolic partial differential equation for

the value of a contract in a worst-case scenario and demonstrated the analytical

solution of this equation. In practice, however, the complexity of the characteristic

picture requires us to solve the pde numerically. Details of the numerical solution of

the problem can be found in Appendix A. Subsequent results in this thesis will be of

a numerical nature.

In addition to the complexity of solution, there are a number of other significant

properties associated with the nonlinearity of our pricing equation.

4.1.1 Spreads for prices

Since our uncertain interest rate model solely places bounds on the short-term interest

rate, it is not surprising that the best we can do is to find bounds for the value of a

contract. We have derived a partial differential equation for the value of a contract in

a worst-case scenario (a lower bound). As we shall show in the next section, it is also

71



possible to derive an equation for the upper bound. We therefore find a spread for the

possible price of a contract. Consequently, long and short positions in a contract have

different values (since the worst-case value for the long position will be equivalent to

the best-case for the short position and vice-versa).

Finding a spread for prices is not necessarily a disadvantage of the model. After

all, the market itself has such a property (the bid-offer spread). In some sense,

spreads are therefore a more realistic result than a single price. However, it becomes

a disadvantage when the spreads are so large that the results become meaningless.

We require a method to reduce large spreads to more sensible levels - this is the

process of static hedging.

4.1.2 Static hedging

The concept of static hedging relies on another property associated with the pres-

ence of a nonlinear pricing equation, that the value of a portfolio of contracts is not

necessarily equal to the sum of their individual values. Hence the value of a contract

depends on what else it is priced with. The financial reasoning for this is as follows:

Imagine that we have two contracts, A and B. If we value A in a worst-case

scenario, then we can find the lowest possible amount that A is worth, and the

corresponding worst-case interest rate path. Similarly, we can value B in a worst-case

scenario and find the lowest possible amount that this contract is worth, along with

its worst-case path. The crucial point is that these two paths do not have to be

the same. If we follow the worst-case path for A, then B may be worth more than

its lowest value. Similarly, if we follow the path for B, then A may be worth more

than its worst-case value. Hence, if we value the combined portfolio of A and B in

a worst-case scenario, we may find that the interest rate path follows some sort of

‘compromise’ between the two separate worst-case paths. Our overall portfolio may

then have a worst-case scenario value that is higher than the two separate worst-case

values added together. In fact, this will always be the case except when the worst-case

scenario interest rate paths for A and B coincide.

Suppose that we want to buy or sell an OTC contract. We can price the contract

under our model, to find a worst- and best-case value. To guarantee that we never

lose money on the deal, we would then buy at the worst-case and sell at the best-case

price. However, the spread between these prices may be too large to make the values

of any practical use in the marketplace. We must use the information available in the

market (the market prices) to reduce the spread.
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Although our OTC contract does not exist in the market, there may be similar

contracts available. We can static hedge our contract with these market-traded prod-

ucts to alter the marginal worst- and best-case values of our contract. (The marginal

value of a contract in a portfolio is the overall value of the portfolio minus the cost

of the other instruments in the portfolio).

The idea of static hedging for spread reduction was originally due to Avellaneda

and Paras [6] in the uncertain volatility model for equity derivatives. It will be

possible to find an optimal static hedge for which the marginal worst-case value of

the contract is as high as possible. Similarly, there will be a (possibly different)

optimal static hedge for which the marginal best-case value of the contract will be as

low as possible.

If we price a contract that is actually a market-traded instrument and then set

up a static hedge using all the available instruments in the market, we find that

the optimal static hedge in both worst- and best-case scenarios will be to hedge the

contract one-for-one with itself. This will close the position and leave no residual

portfolio, a perfect replication hedge strategy. Both the worst- and best-case values

after hedging will then be equal to the market price (and there is zero spread). In

this way, the contract price replicates the observed market price, without the need

for any fitting or calibration of model parameters.

This approach can successfully reduce the spread in contract prices to realistic

levels. Before illustrating the theory of static hedging, we first develop the idea of the

best-case scenario.

4.2 Contract value in a best-case scenario

So far, we have concentrated on finding the value of a contract in a worst-case scenario.

This is the scenario in which, under our given constraints on the interest rate, the

contract value is as low as possible. We can be sure that the contract is worth at least

this much. If we were interested in buying a contract, for instance, then paying this

price would guarantee that we could not make a loss on the transaction. But say we

wanted to sell the contract. In this case, we would be interested in an upper bound

for the contract value.

Since all possible interest rate movements are bounded under our model, we can

find such a bound. This upper bound is the value of the contract in a best-case

scenario (the scenario in which the evolution of the interest rate is such that no other

possible evolution would give the contract a higher value).
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There are a number of possible approaches to the solution of this best-case prob-

lem. For instance, we can repeat the analysis of Section 2.3.1, but maximise where

previously we had minimised. The result is that the contract value in a best-case

scenario, V , satisfies

max
dr

(Vrdr + Vtdt) = rV dt,

and since dr is bounded by

c−dt ≤ dr ≤ c+dt,

we obtain

Vt + c̄(r, Vr)Vr − rV = 0, (4.1)

where

c̄(r,X) =

{
c+ if X > 0
c− if X < 0

= c(r,−X).

Alternatively, we can view the best-case scenario valuation as equivalent to a

worst-case scenario valuation in which we hold the contract short instead of long.

The financial reasoning behind this is that the best-case scenario for the holder of a

contract will always be the worst-case scenario for the writer, and vice-versa. There

is also a mathematical argument behind this result. If we substitute −W for V in

Equation (2.6), then we obtain Equation (4.1) for W . Consequently, we find

Vbest case = −(−V )worst case. (4.2)

To work out the value of a contract in a best-case scenario, we can therefore

either solve Equation (4.1) for long the contract, or solve Equation (2.6) for short the

contract and take the negative of the result.

4.3 The zero-coupon bond

We will use the zero-coupon bond as a case example to demonstrate the pricing and

hedging of a contract. To price a zero-coupon bond under our model, we solve our

partial differential equation, either (2.6) or (4.1), with final condition

V (r, T ) = P,

where T is the maturity and P the principal of the bond.

To price a coupon bond, we would just add each coupon in as a jump condition.

For example, to include a coupon of size cP at time Tc, we would add the condition

V (r, T−c ) = cP + V (r, T+
c ).
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Figure 4.1 shows a worst-case scenario valuation for a zero-coupon bond with

principal 1, with varying time to maturity and initial short-term interest rate. Figure

4.2 shows a best-case scenario valuation for the same bond. Figures 4.3 and 4.4 show

the yield for these bond prices respectively.
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Figure 4.1: Zero-coupon bond value in a worst-case scenario
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Figure 4.2: Zero-coupon bond value in a best-case scenario
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Figure 4.3: Yield in a worst-case scenario
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Figure 4.4: Yield in a best-case scenario

(The interest rate bounds for these figures are 3% and 20% and the growth rate

is bounded by -4% pa and 4% pa).
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We note that there is a significant spread between these worst- and best-case

yields. This is illustrated in Figure 4.5 which shows the worst- and best-case yields

for the zero-coupon bond with principal 1, maturity in 5 years and varying initial

interest rate, as well as the spread between these values. (The interest rate bounds

are 3% and 20% and the growth rate is bounded by -4% pa and 4% pa in this figure).
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Figure 4.5: Spread in zero-coupon bond yields

4.4 Hedging a contract

We now demonstrate how to use the fixed income products available in the market

as hedging instruments to reduce the exposure of our contract to changes in the

interest rate. We will perform an optimisation on our hedged contract, using the same

philosophy as practised by Avellaneda, Levy and Paras to hedge volatility risk with

derivatives [4]. We concentrate on the worst-case scenario valuation for a contract V

and solve Equation (2.6). To perform a best case scenario valuation, we would just

hedge a contract of −V (from Equation (4.2)) and solve Equation (2.6) or hedge a

contract of V and solve Equation (4.1).

We omit the bid-offer spreads to simplify the arguments involved, and note that

their inclusion would not affect the discussion.

77



4.4.1 Hedging with one instrument

Consider a contract consisting of a set of cash flows. We wish to value this contract

in a worst-case scenario. Suppose that there exists a market-traded instrument, with

known market price (a zero-coupon bond, for instance). We hedge with this instru-

ment and price the resulting portfolio in a worst-case scenario. The value of the

overall portfolio is

value(contract + hedging instrument).

where ‘value’ means the solution of the nonlinear partial differential equation,

Equation (2.6), with relevant final and jump conditions.

The cost of setting up this static hedge is equal to the current market value of

the hedging instrument. The marginal value of our hedged contract is therefore the

value of the overall portfolio minus the cost of the static hedge,

value(hedged contract) = value(contract + hedging instrument)− cost of hedge.

We show this type of hedging in Figure 4.6, where we hedge a set of known

cashflows with λ of a zero-coupon bond.

Original portfolio

Hedging bond

Resulting portfolio

V

Π

+

λZ

=

Figure 4.6: Hedging a contract with a zero-coupon bond

We assume that the market value of a hedging instrument is contained within the

best- and worst-case scenario prices for the instrument, obtained from our model.

This is in fact an assumption that there are no arbitrage opportunities. If this were

not true, then we could make a risk-free profit by buying (selling) the instrument

at a price we are certain is below (above) its minimum (maximum) possible value

(assuming that r moves within our specified constraints). If the market value was

actually equal to one of the two bounding prices, then this would still be an arbitrage

opportunity, as there would be the possibility of making a risk-free profit, with the
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guarantee of no loss - a weak arbitrage opportunity. (If the market price were outside

of the bounding prices, then there would be a guarantee of a risk-free profit - a strong

arbitrage opportunity) [52].

If we hedge a contract, with λ of a zero-coupon bond with positive principal, then

the value of the contract in a worst-case scenario reaches its maximum at a finite

value of λ.

For instance, when we hedge our portfolio of cashflows with the zero-coupon bond:

The portfolio V has cash flows Ci at times Ti, for 1 ≤ i ≤ n. The value of this

portfolio in a worst case scenario is

V =
n∑

i=1

Cie
−
R Ti
t r(τ)dτ ,

where the interest rate realised for the worst case scenario is r(t).

Suppose that there also exists a zero-coupon bond in the market, with known

market price Z. This bond has a single principal payment of 1 at time S. We hedge

V with this zero-coupon bond. We then price the resulting portfolio, Π, in a worst

case scenario.

We hedge with λ of the bond. The value of the overall portfolio is

Π =
n∑

i=1

Cie
−
R Ti
t r̄(τ)dτ + λe−

R S
t r̄(τ)dτ ,

where the interest rate realised for this worst case scenario is r̄(t).

The cost of setting up this static hedge is the equal to the current market value

of the hedging instrument,

λZ.

The marginal value of our contract, V , is therefore the value of the overall portfolio,

Π, minus the cost of the static hedge,

V =
n∑

i=1

Cie
−
R Ti
t r̄(τ)dτ + λ

(
e−

R S
t r̄(τ)dτ − Z

)
.

Note that r̄(t) will depend implicitly on the value of λ. The particular evolution

of the interest rate in a worst case scenario for the portfolio will depend on the exact

makeup of the portfolio, and consequently on the amount, λ, of the hedging bond

contained in the portfolio.

As λ tends to∞, the presence of the hedging bond dominates the overall portfolio.

The evolution of the interest rate in a worst case scenario for the overall portfolio
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becomes the evolution of the interest rate in a worst case scenario for the zero-coupon

bond. We have assumed that the market value for the zero-coupon bond, Z, is greater

than the worst case scenario value. We then have that

e−
R S
t r̄(τ)dτ − Z < 0.

The value of our portfolio after we have hedged is

V =
n∑

i=1

Cie
−
R Ti
t r̄(τ)dτ + λ

(
e−

R S
t r̄(τ)dτ − Z

)
.

The worst case scenario value for V therefore tends to −∞ as λ tends to ∞.

Similarly, as λ tends to −∞, the evolution of the interest rate in a worst case

scenario for the overall portfolio becomes the evolution of the interest rate in a best

case scenario for the zero-coupon bond. We have assumed that the market value for

the zero-coupon bond, Z, is less than the best case scenario value. We then have that

e−
R S
t r̄(τ)dτ − Z > 0.

The value of our portfolio after we have hedged is

V =

n∑

i=1

Cie
−
R Ti
t r̄(τ)dτ + λ

(
e−

R S
t r̄(τ)dτ − Z

)
.

The worst case scenario value for V therefore tends to −∞ as λ tends to −∞.

There will consequently be a finite optimal value of λ which maximises the value of

V in a worst case scenario. Similarly, there will be a finite value of λ which minimises

the value of V in a best-case scenario.

Example: We hedge a 5 year zero-coupon bond, with principal 1, with a 1 year

zero-coupon bond, with principal 1 and market price 0.905. The spot short-term

interest rate is 10%. The interest rate bounds are 3% and 20% and the growth rate

is bounded by -4% pa and 4% pa.

Without hedging, the worst-case value of the 5 year bond is 0.417 and the best-

case value is 0.810. If we hedge on the worst-case scenario, the optimal static hedge is

-1.949 of the 1 year bond. In this case, the worst-case value is 0.444 and the best-case

value is 0.777.

If we hedge on the best-case scenario, then the optimal static hedge is -2.470 of

the 1 year bond. In this case, the worst-case value is 0.443 and the best-case value is

0.775.
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Figure 4.7: Value of a 5 year zero-coupon bond when we hedge with λ of a 1 year
zero-coupon bond

Figure 4.7 shows the effect of different hedge quantities on the value of the 5

year bond in both a worst- and best-case scenario. (The lower curve represents the

worst-case value and the upper curve, the best-case value).

We remark that the optimal static hedges for the two scenarios are similar but

not identical. They are of the same sign and order of magnitude since the form of

the interest rate risk is similar in both circumstances. However, the nonlinearity of

the problem means that the actual hedge quantities still vary for the two different

scenarios.

4.4.2 Hedging with multiple instruments

Suppose that there exist m instruments in the market, and each has a known market

price Pj, for 1 ≤ j ≤ m. We hedge our original contract with these instruments. We

then price the resulting portfolio, Π, in a worst-case scenario.

We hedge with λj of the jth instrument. The value of the overall portfolio is

Π = value(original contract + hedging instruments).

The cost of setting up this static hedge is equal to the current market value of the

hedging instruments,
m∑

j=1

λjPj.
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The marginal value of our hedged contract, V , is therefore the value of the overall

portfolio, Π, minus the cost of the static hedge,

V = value(original contract + hedging instruments)−
m∑

j=1

λjPj.

We show this hedge in Figure 4.8.

Z1

Z2

Z3

Z4

Z5

Z6

VOriginal portfolio

Hedging bonds

Resulting portfolio

Figure 4.8: Hedging a contract with market-traded instruments

To avoid arbitrage opportunities, we must again assume that the market value of

each hedging instrument is contained within the best- and worst-case scenario values

for that instrument, obtained from our model.

There will be an optimal static hedge, for which we obtain the maximum possible

worst-case scenario value for V . To find this, we maximise the value of the portfolio

with respect to the hedge quantities, λj:

V = max
λj

(
value(original contract + hedging instruments)−

m∑

j=1

λjPj

)
.

Similarly, there will be an optimal static hedge, for which we obtain the minimum

possible best-case scenario value for V . To find this, we minimise the value of the
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portfolio with respect to the hedge quantities, λj:

V = min
λj

(
value(original contract + hedging instruments)−

m∑

j=1

λjPj

)
,

where ‘value’ now denotes the solution of Equation (4.1).

To include a bid-offer spread in the market price for a hedging instrument, we

simply make Pj dependent on the sign of λj. If λj > 0 then we are long the bond

and the market price is the offer price. If λj < 0 then we are short the bond and the

market price is the bid price, i.e.

Pj(λj) =

{
P+
j if λj > 0
P−j if λj < 0,

where P+
j is the offer price and P−j is the bid price.

By hedging with market-traded instruments, we can significantly decrease the

spread between the worst- and best-case valuations for our contract. For instance,

Example: We hedge a 4 year zero-coupon bond, with principal 1, with zero-

coupon bonds, with principal 1. These hedging bonds are shown in Table 4.1. The

spot short-term interest rate is 6%. The interest rate bounds are 3% and 20% and

the growth rate is bounded by -4% pa and 4% pa.

Hedging bond Maturity (yrs) Market price
Z1 0.5 0.970
Z2 1 0.933
Z3 2 0.868
Z4 3 0.805
Z5 5 0.687
Z6 7 0.579
Z7 10 0.449

Table 4.1: The zero-coupon bonds with which we hedge

The results of the valuation for the 4 year bond, with and without hedging, are

shown in Table 4.2. The optimal static hedges for the worst- and best-case valuations

are shown in Table 4.3. The short-term interest rate paths for the optimally-hedged

worst- and best-case scenarios are shown in Figure 4.9.

We note that the hedge quantities are different (although similar) for worst and

best case scenarios, and that not all hedging instruments are used in the optimal

hedging strategy. Only the hedging bonds most similar in form to our contract figure
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Figure 4.9: Interest rate paths for the 4 yr bond optimally hedged in (a) a worst-case
scenario and (b) a best-case scenario

Worst case Best case
No hedge 0.575 0.877

Optimal hedge on worst-case 0.730 0.761
Optimal hedge on best-case 0.728 0.758

Table 4.2: Value of a 4 year zero-coupon bond

Hedging Worst case Best case
bond hedge quantity hedge quantity
Z1 0.000 0.002
Z2 -0.004 -0.004
Z3 0.169 0.117
Z4 -0.699 -0.653
Z5 -0.468 -0.481
Z6 0.020 0.000
Z7 0.000 0.000

Table 4.3: The optimal static hedges for a 4 year zero-coupon bond

noticeably in the static hedge. Hedging has significantly reduced the spread in the

value of the 4 year bond, from a spread of 0.302 to 0.028. The latter figure is the

difference between the two bold values in Table 4.2, i.e. the difference between the

two optimally-hedged values. It is important to note that the hedges for these two

values are different. Which hedge we create is dependent on whether we want to

guarantee that the worst- or best-case price is optimal (i.e. on whether we are buying

or selling the contract). When we have set up a particular hedge, the relevant row in

the table describes the consequent possible spread for the contract price.
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4.5 The Yield Envelope

The tools we have developed allow us to calculate the Yield Envelope. This is an

extension of the yield curve. At a maturity for which there are no traded instruments,

we obtain a yield spread.

We first calculate the lowest and highest possible values of a zero-coupon bond

with principal 1, and maturity at time T , that is, the worst- and best-case scenario

valuations. We can then calculate the lowest and highest possible yields at this time,

using the formula

Y = − logZ

T
.

We can reduce the yield spread using hedging. If we hedge our zero-coupon bond

with market-traded zero-coupon bonds of known value, and various maturities, then

we can reduce the spread between the worst- and best-case scenario bond prices at

time T , and therefore reduce the yield spread at time T .

Example: We hedge our zero-coupon bond (with maturity at time T and a

principal of 1) with the zero-coupon bonds in Table 4.1. The spot short-term interest

rate is currently 6%. The interest rate bounds are 3% and 20% and the growth rate

is bounded by -4% pa and 4% pa. The results are shown in Table 4.4, where bold

denotes that a bond of that maturity is available in the market, and Figure 4.10.

For a maturity at which there is a market-traded zero-coupon bond, we find that

both our worst- and best-case scenario valuations equal this market value. This is

because we can completely hedge our zero-coupon bond with the market-traded bond

and this will be the optimal static hedge in both cases (assuming that the market value

of the bond is within its worst- and best-case scenario valuations). For this reason, we

find that the Yield Envelope closes up to the observable yield at a maturity for which

there exists a market-traded instrument. Therefore, the Yield Envelope is consistent

with observable yield data.
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Maturity Worst case Best case Yield in Yield in
(yrs) bond value bond value worst case best case
0.00 1.000 1.000 0.060 0.060
0.25 0.985 0.986 0.059 0.057
0.50 0.970 0.970 0.061 0.061
0.75 0.952 0.953 0.066 0.065
1.00 0.933 0.933 0.069 0.069
1.25 0.913 0.916 0.073 0.070
1.50 0.895 0.902 0.074 0.069
1.75 0.881 0.886 0.073 0.069
2.00 0.868 0.868 0.071 0.071
2.50 0.832 0.840 0.074 0.070
3.00 0.805 0.805 0.072 0.072
3.50 0.765 0.784 0.077 0.069
4.00 0.730 0.758 0.079 0.069
4.50 0.705 0.725 0.078 0.071
5.00 0.687 0.687 0.075 0.075
5.50 0.648 0.677 0.079 0.071
6.00 0.618 0.643 0.080 0.073
6.50 0.595 0.613 0.080 0.075
7.00 0.579 0.579 0.078 0.078
7.50 0.542 0.567 0.082 0.076
8.00 0.512 0.552 0.084 0.074
8.50 0.488 0.531 0.084 0.075
9.00 0.469 0.506 0.084 0.076
9.50 0.457 0.477 0.083 0.078

10.00 0.449 0.449 0.080 0.080

Table 4.4: Hedging a zero-coupon bond with maturity T
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Figure 4.10: Yield Envelope with hedging

Figures 4.11 and 4.12 show the yield at varying maturities and with varying initial

spot short-term interest rate, in a worst-case scenario and in a best case scenario,

respectively. In both cases, we have hedged with the zero-coupon bonds (with unit

principal) in Table 4.5. (The interest rate bounds for these figures are 3% and 20%

and the growth rate is bounded by -4% pa and 4% pa).

Hedging bond Maturity (yrs) Market price
Z1 0.5 0.950
Z2 1 0.899
Z3 2 0.803
Z4 3 0.712
Z5 5 0.566
Z6 7 0.448
Z7 10 0.304

Table 4.5: The hedging bonds for Figures 4.11 and 4.12
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Figure 4.11: Yield in a worst-case scenario
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Figure 4.12: Yield in a best-case scenario
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4.6 Swaps

With the methodology that we have built up, we can price and hedge a variety of

simple fixed-income products. To value any instrument whose cashflows solely depend

on the short-term interest rate, we simply solve our partial differential equation and

include these cashflows as jump conditions. We now show how to price swaps using

this approach, and in the next section, apply the method to caps and floors.

We will consider a swap with a τ -period reference rate (measured τ before the

payment date), an annualised fixed rate rf , maturity at time T , a principal of P

and swaplet dates every τ . There are two approaches to the pricing of this contract.

Market practice is to decompose the swap into a portfolio of zero-coupon bonds, as

shown in Section 1.1.2. These can then be priced using our model for the short-term

interest rate.

We solve Equation (2.6), for the worst-case scenario value, or Equation (4.1), for

the best-case scenario value, with a final condition of,

V (r, T ) = −P (1 + rf/τ),

jump conditions of,

V (r, t−s ) = −P (rf/τ) + V (r, t+s ),

at each swaplet date (before maturity), ts, and a jump condition of,

V (r, t−r ) = P + V (r, t+r ),

at a time τ before the first swaplet date, tr say.

An alternative method, more often seen in academia, is to approximate the τ -

period rate by substituting our annualised short-term interest rate (which is instan-

taneously compounding) in its place. We can then price the cashflows directly using

our model since they now only depend on our short-term interest rate. The method

is only valid when the period τ is short enough to make this a reasonable assumption.

To solve the problem using this latter approach, we solve Equation (2.6) or Equa-

tion (4.1) with a final condition of,

V (r, T ) = P (r − rf )/τ,

and the jump condition,

V (r, t−s ) = P (r − rf)/τ + V (r, t+s ),
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at each swaplet date, ts, before maturity.

(Note that we divide by τ because the fixed rate, rf , and (in the second approach)

the short-term interest rate, r, are annualised rates, and we require rates that hold

for a period of τ only).

Example: We price and hedge a 2 year swap, on the three month interest rate,

with a principal of 1. Swaplets occur every three months and the last payment is 3

years from today. The spot short-term interest rate is 6%. The interest rate bounds

are 3% and 20% and the growth rate is bounded by -4% pa and 4% pa.

We use the yield curve determined from the hedging bonds of table 4.1 and the

decomposition approach to find the ‘fair value’ for rf . We linearly interpolate to

construct the yield curve, as shown in Figure 4.13. We can then price the relevant

zero-coupon bonds and find that the fixed interest rate should be 7.44% per annum.
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Figure 4.13: The yield curve for the bonds from Table 4.1

We first value the swap using the decomposition into zero-coupon bonds. The

results of this valuation, with and without hedging, are shown in Table 4.6. The

optimal static hedges for the worst- and best-case valuations are shown in Table 4.7

(where we hedge with the bonds in Table 4.1).

Worst case Best case
No hedge -0.0822 0.1056

Optimal hedge on worst-case -0.0002 0.0003
Optimal hedge on best-case -0.0003 0.0002

Table 4.6: Value of the decomposed swap
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Hedging bond Worst case Best case
hedge quantity hedge quantity

Z1 0.000 0.000
Z2 -0.977 -0.983
Z3 0.092 0.097
Z4 1.037 1.035
Z5 0.000 0.000
Z6 0.000 0.000
Z7 0.000 0.000

Table 4.7: The optimal static hedges for the decomposed swap

We also value the swap using the short-term interest rate to approximate the

three month rate. The results of the valuation, with and without hedging, are shown

in Table 4.8. The optimal static hedges for the worst- and best-case valuations are

shown in Table 4.9.

Worst case Best case
No hedge -0.0824 0.1095

Optimal hedge on worst-case -0.0060 0.0056
Optimal hedge on best-case -0.0169 0.0036

Table 4.8: Value of the approximated swap

Hedging bond Worst case Best case
hedge quantity hedge quantity

Z1 -0.050 1.625
Z2 -0.746 -1.863
Z3 -0.312 -0.036
Z4 1.237 1.163
Z5 0.000 0.000
Z6 0.000 0.000
Z7 0.000 0.000

Table 4.9: The optimal static hedges for the approximated swap

The value of the swap before hedging is similar for both the decomposition and

approximation methods. The small difference between the two prices could be due

to the choice of fixed rate via the former rather than the latter approach. We could

therefore remark that the latter method is a reasonable approximation to make.
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However, the effect of hedging is far more effective for the decomposition method,

where the spread is reduced from 0.1878 to 0.0004, than for the approximation

method, where the spread is reduced from 0.1919 to 0.0096. (Even so, hedging has

still had a significant effect in the latter case). A plausible explanation for the greater

spread reduction could be that, in the first case, we are hedging cashflows with cash-

flows of the same form (both are zero-coupon bonds) whereas in the second case, the

cashflows to be hedged are of a different form and consequently, the hedge will not

be as effective.

We conclude that in choosing which instruments to use in the setting up of a

static hedge, we should identify those products most similar in form to our contract

as the most suitable hedging instruments. (For example, when we come to price the

convertible bond, in Section 5.4, zero-coupon bonds are a natural choice of hedging

instrument, but when we price the index amortising rate swap, in Section 5.3, we

choose to hedge with swaps).

4.7 Caps and floors

We consider an interest rate agreement with a τ -period reference rate, an annualised

strike rate rs, with maturity at time T , a principal of P and cashflow dates every τ . As

with the swap valuation, there are two approaches to the pricing of these contracts.

Market practice is to decompose the contract into a portfolio of bond options, as

shown in Section 1.1.5. However, to value a bond option, we will need to extend our

pricing methodology. We discuss the valuation of such options in the next chapter.

Alternatively, we can again approximate the τ -period rate by substituting our

short-term interest rate in its place. We then price the cashflows directly using our

model. The method is only valid when the period τ is short enough to make this a

reasonable assumption.

To solve the problem using the latter approach, we solve Equation (2.6), for the

worst-case scenario value, or Equation (4.1), for the best-case scenario value, with

jump and final conditions dependent on the particular specification of the interest

rate agreement.

For a cap, we apply a final condition of

V (r, T ) = P max(r − rs, 0)/τ,

and the jump condition

V (r, t−c ) = P max(r − rs, 0)/τ + V (r, t+c ),
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at each caplet date, tc, before maturity. We must again divide by τ because the short-

term interest rate, r, and the strike rate, rs, are annualised rates, and we require rates

that hold for a period of τ only.

For a floor, we apply a final condition of

V (r, T ) = P max(rs − r, 0)/τ,

and the jump condition

V (r, t−f ) = P max(rs − r, 0)/τ + V (r, t+f ),

at each floorlet date (before maturity), tf .

Example: We price and hedge 2 year contracts, on the three month interest rate,

with a principal of 1. Cashflows occur every three months and the last payment is 2

years from today. The spot short-term interest rate is 6%. The interest rate bounds

are 3% and 20% and the growth rate is bounded by -4% pa and 4% pa.

We hedge the contracts with the zero-coupon bonds in Table 4.1. The results for

the valuation are shown in Tables 4.10 and 4.11.

Cap (5% strike) Worst case Best case
No hedge 0.000 0.096

Optimal hedge on worst-case 0.035 0.072
Optimal hedge on best-case 0.003 0.046

Cap (6% strike) Worst case Best case
No hedge 0.000 0.078

Optimal hedge on worst-case 0.018 0.072
Optimal hedge on best-case 0.000 0.036

Cap (7% strike) Worst case Best case
No hedge 0.000 0.060

Optimal hedge on worst-case 0.003 0.072
Optimal hedge on best-case -0.058 0.022

Table 4.10: Value of a cap with varying strike
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Floor (5% strike) Worst case Best case
No hedge 0.000 0.031

Optimal hedge on worst-case 0.000 0.031
Optimal hedge on best-case -0.035 0.005

Floor (6% strike) Worst case Best case
No hedge 0.000 0.050

Optimal hedge on worst-case 0.000 0.050
Optimal hedge on best-case -0.050 0.011

Floor (7% strike) Worst case Best case
No hedge 0.000 0.069

Optimal hedge on worst-case 0.002 0.063
Optimal hedge on best-case -0.054 0.020

Table 4.11: Value of a floor with varying strike

We remark that hedging appears to be more effective at reducing the best-case

price than raising the worst-case price. A cause of this could be that, in the worst-

case, the interest rate will move to ensure that the caplets or floorlets have zero value.

To have an effect hedging must either move the worst-case interest rate path so that

these cashflows have value, or take advantage of the worst-case path to make a profit

on the hedging bonds. On the other hand, to reduce the best-case price, the hedging

only has to counteract the positive value of the cashflows.

4.8 Applications of the model

There are a number of different ways in which the theory and techniques that we have

developed can be applied in the marketplace.

4.8.1 Identifying arbitrage opportunities

Assuming that the movements of the interest rate conform to our constraints, the

realised value of any contract must lie within our bounds. We have therefore obtained

a spread for the possible price of a contract. If we find a contract whose value lies

outside of these bounds, then we have identified an arbitrage opportunity. We should

obviously buy the contract if its current market value is below this range, and sell

the contract if its value is above the range.

94



4.8.2 Establishing prices for the market maker

If we are making a market in a contract, then setting our bid price at the low end

and our offer price at the high end of the spread range guarantees that we cannot lose

money on any deal. This technique is particularly appropriate in the OTC contracts

business where spreads are usually much higher because of the often exotic nature

and illiquidity of the product.

4.8.3 Static hedging to reduce interest rate risk

In both of the above applications, we can create a static hedge, using market-traded

instruments, to reduce the spread in our prices and make them more competitive. It

is important to note that these new prices are only valid as long as we create the

static hedge in reality (on trading the contract).

We can static hedge with any product in the market. It does not have to be similar

to the contract we are pricing. However, the most effective static hedges are likely to

be those which are made up of contracts similar in form to that being priced. Hence,

the more exotic a contract, the fewer similar contracts that will be available and the

larger the spread, as we would expect.

This form of hedging is ‘static’ in that, once we have set up a hedge, we should

leave it until maturity of our contract. However, if the market changes significantly,

then a re-hedging of the contract may yield a different static hedge, with a higher

worst-case (or lower best-case) price. Subject to transaction costs, updating our static

hedge guarantees a better worst-case (or best-case) price and ‘locks-in’ an additional

profit of the difference between this price and the old one.

4.8.4 Risk management - a measure of absolute loss

Conventional risk management models produce results of the form - a maximum loss

of X with probability Y or model the possibility of extremal events [29], [45]. Since

our spreads for prices are absolute, they give us a good measure of the total risk in a

portfolio, and we can predict the absolute maximum loss possible [14].

Furthermore, by static hedging, we can generate an optimal static hedge to reduce

this interest rate risk. This would not be possible with a linear model calibrated to the

yield curve. This is because the price of a contract would be invariant to the addition

of hedging instruments if they had originally been used to construct the yield curve.

Hence, a further use of the model is to construct static hedges for portfolios, regardless

of which interest rate model we choose to finally price them.
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4.8.5 A final remark on the application of the model

In Chapter 6 we describe various extensions to our model. These extensions allow

for interest rate evolutions that are indistinguishable from those observed in practice.

With these extensions in place, we can be confident that actual interest rate move-

ments will definitely lie within our bounds. The applications that we have described

above then become feasible in the marketplace.

We end this chapter by considering a real world application.

4.9 A real portfolio

We use our model to price and hedge a fixed-rate lease portfolio, consisting of various

set cashflows, owned by Dresdner Kleinwort Benson (DKB) [49]. There are 15,300

cashflows, over a period of 1,830 days, as shown in Figure 4.14. The current yield

curve, as of 8th January 1998, is shown in Figure 4.15. The benchmark contracts

that make up this yield curve are shown in Table 4.12.
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Figure 4.14: Cashflows of the leasing portfolio

First of all, we price the portfolio off the yield curve. The present value of the

portfolio is found to be −£3, 539, 362. We can then examine the sensitivity of this

price to changes in the yield curve. Table 4.13 shows the sensitivity of the price to

instantaneous parallel shifts in the yield curve. This is a traditional measure of the

extent to which the portfolio is hedged against future interest rate movements. From
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Figure 4.15: The current yield curve

Hedging bond Coupon rate Maturity Market price (£)
1M T-Bill 0 04 FEB 1998 99.46
3M T-Bill 0 08 APR 1998 98.15
1Y GILT 0.12 20 NOV 1998 104.125
2Y GILT 0.06 10 AUG 1999 99.125
3Y GILT 0.08 07 DEC 2000 104.03125
4Y GILT 0.07 06 NOV 2001 102.09375
5Y GILT 0.07 07 JUN 2002 102.75
6Y GILT 0.08 10 JUN 2003 108.09375
7Y GILT 0.0675 26 NOV 2004 103.40625
8Y GILT 0.085 07 DEC 2005 114.75
9Y GILT 0.075 07 DEC 2006 109.625
10Y GILT 0.0725 07 DEC 2007 108.96875
15Y GILT 0.08 27 SEP 2013 119.21875
20Y GILT 0.0875 25 AUG 2017 130.75
25Y GILT 0.08 07 JUN 2021 125.03125

Table 4.12: The benchmark bonds (principal £100)

the point of view of the owners of the portfolio (DKB), the concern was to hedge the

portfolio to try and prevent significantly increased loss (hence we are interested in

the worst-case scenario value). We note that a 2% downward shift reduces the value

of the portfolio to −£4, 432, 153, a loss of £892, 791.

Using the uncertain interest rate model, with bounds of 3% and 20% on the interest

rate, and −4% pa and 4% pa on its growth rate, we find that the worst-case scenario

value for the portfolio is −£6, 135, 878. (The best-case value is −£1, 898, 173). Our

worst-case scenario value is much lower than the price predicted off the yield curve.
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Yield shift Present value (£)
2% -2,620,568
1% -3,083,010
0% -3,539,362
-1% -3,989,194
-2% -4,432,153

Table 4.13: Present value of the portfolio with parallel shifts in the yield curve

However, we can static hedge the portfolio, to increase this worst-case scenario

value. We use the benchmark bonds (those used to calculate the yield curve) to

construct an optimal static hedge for the worst-case scenario value of the portfolio.

The hedge quantities for this static hedge are shown in Table 4.14 and the hedging

cashflows are shown in Figure 4.16. The marginal worst-case value of the portfolio,

with this hedge in place, is −£4, 009, 582. This value is only −£470, 220 less than

the original price predicted from the yield curve and is comparable to the present

value with a 1% downwards yield shift. (The best-case value with this static hedge

in place is −£3, 112, 337).

Hedging bond Hedge quantity
1M T-Bill 763
3M T-Bill 557
1Y GILT 745
2Y GILT -7113
3Y GILT -123014
4Y GILT 7064
5Y GILT -30844
6Y GILT 1689
7Y GILT 3135
8Y GILT -6945
9Y GILT -285
10Y GILT 11674
15Y GILT -123
20Y GILT 1457
25Y GILT -1299

Table 4.14: The optimal hedge for the worst-case scenario valuation

The optimal static hedge has significantly increased the worst-case price. If we

set up this static hedge, then we are guaranteed to lose no more than the equivalent

of a 1% yield shift down. The static hedge therefore reduces the downside risk in a
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Figure 4.16: The hedging cashflows

robust fashion (a guaranteed maximum loss) but still leaves some upside (the new

best-case value is approximately equivalent to a 1% upwards yield shift). In addition,

if we re-price our hedged portfolio off the yield curve, then we find the same result

as before. This is because we have hedged with the benchmark bonds that were used

to calibrate the yield curve in the first place. Since pricing off the curve is linear,

addition of these bonds will have no effect on the price of the portfolio.

Examining worst-case scenarios and yield shifts are both reasonable approaches to

interest rate risk management. But there is a fundamental difference between these

two methodologies. The advantage of the worst-case scenario approach is that the

actual realised value of the portfolio can never be lower than this hedged worst-case

value (assuming that the interest rate stays within the constraints), when we set up

the optimal static hedge. On the other hand, if the actual shift in the yield curve is

larger than -1%, then the realised value when we price off of the yield curve will be

far lower than we first thought.

Also, our method gives us a systematic approach for creating a static hedge of

liquid, market-traded products. This static hedge decreases the interest rate risk in

our position and hence improves the worst-case price.
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Chapter 5

Pricing and hedging complex
products

In this chapter, we apply our uncertain interest rate model to the pricing and hedging

of more complex products. We are unable to price these instruments directly using

our current methodology. This is because their specification is such that we require

a further factor to complete our model (asset price, for instance) or must take into

account some form of optionality.

5.1 Bond options

We begin by considering the bond option. This is the first contract that we have

encountered which includes optionality in its specification. We first demonstrate

how to price a European option on a zero-coupon bond. This approach will still be

appropriate when we hedge the option with the underlying bond. However, if we

wish to hedge with a different instrument, or price the American option, we will need

to modify our approach to ensure that we have a consistent and optimal worst- or

best-case interest rate path. This will be a more general method of solution and,

consequently, computationally more intensive.

5.1.1 Pricing a European option on a zero-coupon bond

We consider a European option with a zero-coupon bond as the underlying. The

bond has a principal payment of P at time TZ . The option expires at time TO < TZ

and has payoff Λ(Z),

e.g. for a long call option,

Λ(Z) = max(Z − E, 0),
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where E is the exercise price of the option.

We will consider the option value in a worst-case scenario and price the option in

two stages. We first ascertain the spread for the zero-coupon bond price at expiry of

the option.

Consider a fixed value of r, r∗ say. For this value of r, we find the worst-case

scenario price, Z−(r∗, TO), and the best-case scenario price, Z+(r∗, TO), for the zero-

coupon bond, at time TO. (The solution to this problem is discussed in Section 4.3).

We then know that at TO, the actual bond price, Z(r∗, TO), lies between these two

values, i.e.

Z−(r∗, TO) ≤ Z(r∗, TO) ≤ Z+(r∗, TO).

We can thus find the spread in price for the zero-coupon bond for each value of r

between r− and r+, at time TO.

Figure 5.1 shows the form that these results take.

Bond price

E

r+Interest rate

Z+(r, TO)

Z−(r, TO)

r− r∗

Figure 5.1: Worst- and best-case prices for the underlying zero-coupon bond

We then consider the value of the option at expiry, for this fixed value of r, r∗.

In general, this is Λ(Z(r∗, TO)). Figure 5.2 shows the extremal possible values for a

long call option.

To find the option value in a worst-case scenario, we determine the minimum

possible value of Λ(Z(r∗, TO)), when Z(r∗, TO) can vary between Z−(r∗, TO) and

Z+(r∗, TO). This minimum value is Λ−(r∗), say, where

Λ−(r∗) = min
Z(r∗,TO)

(Λ(Z(r∗, TO))) ,
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Option price

r+Interest rater− r∗

Λ+(r)

Λ−(r)

Figure 5.2: Value of the call option

e.g. for a long call option,

Λ−(r∗) = min
Z(r∗,TO)

(max(Z(r∗, TO)− E, 0)) .

The minimum value will occur, for this call option, when the bond price Z(r∗, TO) is

as low as possible. We therefore take Z(r∗, TO) = Z−(r∗, TO) and find that,

Λ−(r∗) = max(Z−(r∗, TO)− E, 0).

This holds for each possible value of r∗ between r− and r+. We have therefore

determined the worst-case scenario value of the option, Λ−(r), at its expiry, for all

possible r.

We solve Equation (2.6) with Λ−(r) as our final data, to determine the worst-case

value of the option, V −(r, t) say, at earlier times t ≤ TO. The method of solution is

shown schematically in Figure 5.3.

We can also value the option in a best-case scenario. Here, we find the maximum

possible value of Λ(Z(r, TO)), Λ+(r) say, where

Λ+(r∗) = max
Z(r∗,TO)

(Λ(Z(r∗, TO))) ,

and solve Equation (4.1) with this as our final data to determine the best-case value

of the option, V +(r, t), at earlier times.
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Figure 5.3: Pricing a bond option in a worst-case scenario

5.1.2 Hedging the European option with the underlying zero-
coupon bond

We can hedge our option with the underlying bond to reduce the spread between the

worst- and best-case prices. We will buy λ of the bond, which has a current market

price of ZM and price the resulting portfolio in a worst-case scenario.

The first stage of the pricing process remains the same. For each possible fixed

value of r, r∗, we find the worst and best-case prices for the zero-coupon bond at time

TO, Z−(r∗, TO) and Z+(r∗, TO) respectively. We then value our combined portfolio of

the option and the hedging bond, Π, at expiry of the option. The portfolio is worth,

Π(Z(r∗, TO), TO) = Λ(Z(r∗, TO)) + λZ(r∗, TO).

We want to value this portfolio in a worst-case scenario. We therefore deter-

mine the minimum possible value of the portfolio, when Z(r∗, TO) can vary between

Z−(r∗, TO) and Z+(r∗, TO). This value is Π−(r∗, TO) say, where

Π−(r∗, TO) = min
Z(r∗,TO)

(Λ(Z(r∗, TO)) + λZ(r, TO)) .

We perform this calculation for each value of r∗ between r− and r+. We then have

the minimum possible value of the portfolio, Π−(r, TO), for all r at time TO. This is

the worst-case value of the portfolio at expiry of the option.

We solve Equation (2.6) with Π−(r, TO) as final data to find the value of the

portfolio in a worst-case scenario at earlier times, Π−(r, t). This is our minimum

possible value for the portfolio when we hedge with λ of the bond.
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To find the marginal worst-case value of the option, V −(r, t), we must subtract

the cost of the static hedge, λZM , to obtain,

V −(r, t) = Π−(r, t)− λZM .

We can maximise the worst-case value of the option, with respect to λ, to find the

optimal static hedge of the underlying bond, λ, and the best worst-case value,

V −(r, t) = max
λ

(
Π−(r, t)− λZM

)
.

This is the minimum possible value for the optimally hedged bond option.

We can also value the hedged option in a best-case scenario. Here, we find the

maximum possible value of the portfolio at expiry of the option, Π+(r, TO) say, where,

Π+(r∗, TO) = max
Z(r∗,TO)

(Λ(Z(r∗, TO)) + λZ(r, TO)) .

We can then work out the current value of the portfolio in a best-case scenario, by

solving Equation (4.1) with Π+(r, TO) as final data. To determine the optimal static

hedge and the minimal best-case value for the bond option, we minimise with respect

to λ to find,

V +(r, t) = min
λ

(
Π+(r, t)− λZM

)
.

This is the maximum possible value for the optimally hedged bond option.

Example: We price vanilla European call and put options with expiry in 1 year

and exercise price E, on a zero-coupon bond with principal 1 and maturity in 5 years.

The current market price of the bond is 0.687. The spot short-term interest rate is

6% and the parameters of our model are

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

The results for the option valuation, without hedging and with the optimal static

hedges for both worst- and best-case valuations, are shown in Tables 5.1 and 5.2.

We see that hedging significantly reduces the spread in price and that the optimal

hedges for both worst- and best-case valuations are similar. When the option is

significantly ‘in the money’, the hedge is almost exactly one of the underlying (short

for the call, or long for the put). To reduce the spread further, however, we will need

to hedge the option with contracts other than the underling bond.
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E = 0.4 Worst case Best case Hedge quantity
No hedge 0.102 0.468 -

Optimal hedge on worst-case 0.303 0.318 -0.993
Optimal hedge on best-case 0.303 0.318 -0.996

E = 0.5 Worst case Best case Hedge quantity
No hedge 0.009 0.372 -

Optimal hedge on worst-case 0.207 0.226 -0.993
Optimal hedge on best-case 0.207 0.226 -0.996

E = 0.6 Worst case Best case Hedge quantity
No hedge 0.000 0.276 -

Optimal hedge on worst-case 0.111 0.215 -0.993
Optimal hedge on best-case 0.077 0.161 -0.743

Table 5.1: Value of a European call option hedged with the underlying

E = 0.8 Worst case Best case Hedge quantity
No hedge 0.000 0.268 -

Optimal hedge on worst-case 0.052 0.164 0.996
Optimal hedge on best-case 0.021 0.117 0.710

E = 0.9 Worst case Best case Hedge quantity
No hedge 0.012 0.361 -

Optimal hedge on worst-case 0.144 0.177 0.996
Optimal hedge on best-case 0.144 0.177 0.993

E = 1.0 Worst case Best case Hedge quantity
No hedge 0.108 0.453 -

Optimal hedge on worst-case 0.237 0.273 0.996
Optimal hedge on best-case 0.237 0.273 0.993

Table 5.2: Value of a European put option hedged with the underlying
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5.1.3 Hedging the European option with other instruments

Unfortunately, this approach to option pricing is no longer appropriate when we try

to hedge the option with a contract that is not the underlying. This is because there

will now be two quantities that we need to determine at expiry of the option. The

first of these is the spread for prices for the underlying zero-coupon bond. Without

this spread, we cannot determine the worst-case payoff for the option. The second

quantity of interest is the value of the hedging instruments in a worst-case scenario.

The worst-case value of the overall portfolio at expiry of the option will be the sum

of the value of these instruments and the worst-case value of the option payoff.

We could perform two separate valuations to find these two quantities. To achieve

this we would solve Equation (2.6) for the underlying bond price and then resolve

the same equation, with different final data and jump conditions, to find the value

of the hedging instruments, at expiry of the option. However, there is no guarantee

that these two solutions would have the same interest rate path. This is because of

the nonlinearity of the pricing equation. If the interest rate paths were different, then

there would be an inconsistency in our pricing methodology.

There are a number of ways in which this could manifest itself. Our spread

for the underlying bond price may be be too large - the presence of the hedging

bonds should narrow the spread in zero-coupon bond price at expiry of the option (as

shown in Section 4.4). Alternatively, our worst-case value for the portfolio of hedging

instruments may be too low. In either occurrence, our eventual option price will not

be optimal. It will be lower than the actual worst-case value (hence it will still be a

valid lower bound, just not the best one).

We will develop a more general approach to the pricing of contracts with option-

ality by considering the cases in which we exercise and do not exercise the option

separately, i.e. we consider all of our options individually and then choose the appro-

priate course of action. The drawback to this approach will be that for each instance

of ‘either/or’ optionality, we double the number of cases to be considered.

Let Π0 be the overall portfolio of cashflows that we would have if we chose to

exercise the option at expiry. This consists of the cashflows due to the hedging

instruments plus the cashflows that we would receive if we were to exercise the option.

In the case of a call option, the latter cashflows would be those of the underlying bond

(for a put option, they would be the cashflows for the short bond). We also let Π1

be the portfolio of cashflows that we would have if we did not exercise the option

(i.e. just those from the hedging instruments). We remark that this approach is

only appropriate for options whose payoff we can express as a series of cashflows (e.g.
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vanilla calls and puts). We discuss an area for further research that may enable us

to price more exotic options in Section 7.2.2.

We solve Equation (2.6) with the appropriate final and jump conditions (depen-

dent on the nature of the hedging instruments and option payoff) to find the value

of the portfolio in a worst-case scenario at expiry, when we do exercise the option.

This is Π−0 (r, T0). We also solve Equation (2.6) with the appropriate final and jump

conditions to find the value of the portfolio in a worst-case scenario at expiry, when

we do not exercise the option. This is Π−1 (r, T0).

Since we are long the option, we have control over whether or not to exercise,

and so we set the value of the portfolio at expiry to be the more valuable of the two

courses of action, where we take the exercise price into account. For a call option, this

is the maximum of the value of the portfolio when we do exercise minus the exercise

price and the value when we do not exercise, i.e.

Π−(r, TO) = max
(
Π−0 (r, T0)− E,Π−1 (r, T0)

)
.

(For a put option, we add the exercise price, since the holder of the option receives

the exercise price at expiry).

We then solve Equation (2.6) with Π−(r, TO) as final data and apply appropriate

jump conditions (for the hedging instruments) to find the current worst-case scenario

value of the portfolio. This method is shown schematically in Figure 5.4. To find

the marginal worst-case value of the option, we then subtract the cost of the static

hedge. Finally, we can maximise the marginal option value with respect to the hedge

quantities to find the optimal worst-case scenario value for the option.

We can also find the value of the option in a best-case scenario. We solve Equation

(4.1) with appropriate final and jump conditions to find the best-case values of Π0

and Π1 at expiry of the option, Π+
0 (r, T0) and Π+

1 (r, T0) respectively. We then set the

value of the portfolio at expiry of the option to be the most valuable course of action.

For example, for a call option,

Π+(r, TO) = max
(
Π+

0 (r, T0)− E,Π+
1 (r, T0)

)
.

We solve Equation (4.1) with Π+(r, TO) as final data and appropriate jump conditions

to find the current best-case scenario value of the portfolio. We then subtract the

cost of the static hedge to find the marginal best-case value of the option. Again, we

can optimise the result and minimise with respect to the hedge quantities to find the

optimal best-case value.
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Figure 5.4: A more general approach to option pricing

Example: We price vanilla European call and put options with expiry in 1 year,

on a zero-coupon bond with principal 1 and maturity in 5 years. The current market

price of the bond is 0.687. The spot short-term interest rate is 6% and the parameters

of our model are

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

We hedge with the hedging bonds of Table 4.1.

The results when we price a call option, with exercise price 0.5, are shown in

Tables 5.3 and 5.4 and those when we price a put option, with exercise price 0.9,

are shown in Tables 5.5 and 5.6. Figure 5.5 show the value of the put option in a

worst-case scenario under the various hedging strategies.

From the figure, we can see that although the extra hedging instruments have not

had a particularly noticeable effect in raising the worst-case price at the spot short

rate (over and above that when we hedged with the underlying), they have ‘flattened

out’ the curve and this must correspond to a significant decrease in the interest rate

risk in the portfolio.

If we examine the static hedges, we see that they still include approximately

one of the underlying bond (short for the call, long for the put) although the specific

quantities of this bond have altered slightly. The hedges also include sizeable amounts

of the one year bond. This bond matures at the same time as the option expires and is

consequently an effective hedging tool for the option payoff. With the extra hedging

instruments it has been possible to reduce the option price spread to a level which is

of the same magnitude as the bid-offer spread seen in practice.
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Call, E = 0.5 Worst case Best case
No hedge 0.009 0.372

Optimal hedge on worst-case 0.220 0.221
Optimal hedge on best-case 0.220 0.221

Table 5.3: Value of the optimally-hedged European call option

Hedging Maturity Worst case Best case
bond (yrs) hedge quantity hedge quantity
Z1 0.5 0.012 0.082
Z2 1 0.488 0.456
Z3 2 0.001 0.002
Z4 3 -0.002 -0.008
Z5 5 -1.004 -0.994
Z6 7 0.006 0.000
Z7 10 0.000 0.000

Table 5.4: The optimal static hedges for the European call option

Put, E = 0.9 Worst case Best case
No hedge 0.012 0.361

Optimal hedge on worst-case 0.152 0.154
Optimal hedge on best-case 0.152 0.153

Table 5.5: Value of the optimally-hedged European put option

Hedging Maturity Worst case Best case
bond (yrs) hedge quantity hedge quantity
Z1 0.5 -0.136 -0.034
Z2 1 -0.826 -0.874
Z3 2 -0.003 -0.003
Z4 3 0.008 0.008
Z5 5 0.996 0.995
Z6 7 -0.001 -0.001
Z7 10 0.000 0.000

Table 5.6: The optimal static hedges for the European put option
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Figure 5.5: European put option value in a worst-case scenario

Finally, we remark that if we were to construct the yield curve from the hedging

instruments and then price the options off this, the call would be worth

0.687− 0.5× 0.933 = 0.2205,

and the put would be worth

0.9× 0.933− 0.687 = 0.1527.

Both of these values are contained within their respective spreads for the prices.

Alternatively, we could use the Black approximation to the bond option value, an

approach popular with practitioners [10]. We value the bond option using the Black–

Scholes equity option pricing methodology, where we have assumed that the bond

price behaves in a lognormal fashion. The price of a European call option, expiring

at time T1, on a bond maturing at time T2, is then given by

Z(t;T1)(FN(d1)− EN(d2)),

where the forward price of the bond at expiry of the option, F , is

F =
Z(t;T2)

Z(t;T1)
,

d1 =
log(F/E) + 1

2
σ2(T − t)

σ
√
T − t

,
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and,

d2 = d1 − σ
√
T − t.

The corresponding put option has value

Z(t;T1)(EN(−d2)− FN(−d1)).

In our example, with a volatility of 8%, the call option is then worth 0.2205 and

the put option, 0.1528. Again, both of these prices are contained within the spreads

predicted.

5.1.4 Pricing and hedging American options

For the European option, we compared the value of two portfolios at expiry of the

option and just picked the course of action that had the higher value. However, for

the American option, we may also exercise at earlier times. We must therefore be

aware that at any time before expiry, it may be optimal to exercise rather than hold

the option. This presents itself as a constraint on the value of the portfolio in which

we continue to hold the option.

We again consider two portfolios - one containing the cashflows we would have

if we were to exercise the option, the other containing those we would have if we

continued to hold the option. We consider an option with the same specification as

before, with the one exception that the holder now has the right to exercise the option

at any time before TO. We let Π0(r, t) be the overall portfolio of cashflows that we

would have at time t if we were to exercise the option at time t and Π1(r, t) be the

portfolio of cashflows that we would have if we continued to hold the option at time

t (this does not include any cashflow due to the option payoff at expiry). We remark

that when t = TO, these are the same portfolios as for the European option in Section

5.1.3.

We solve Equation (2.6) with the appropriate final data and jump conditions to

find the worst-case value of the portfolio when we do exercise at time t, Π−0 (r, t). This

tells us what our portfolio payoff would be if we decided to exercise at time t.

We then solve Equation (2.6) with the appropriate final data and jump conditions

to find the worst-case value of the portfolio when we continue to hold the option at

time t, Π−1 (r, t). In absence of arbitrage, we would exercise the option if the value

of the consequent portfolio, with the exercise price taken into account, were greater
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than the current value of the portfolio when we continue to hold the option. For the

call option, this gives us the additional constraint

Π−1 (r, t) ≥ Π−0 (r, t)− E,

during the period in which we are allowed to exercise the option (in this case, for

t ≤ TO). We show this method schematically in Figure 5.6. For a put option, the

constraint is

Π−1 (r, t) ≥ Π−0 (r, t) + E.

The marginal worst-case value of the option at time t is then the value of the

portfolio in which we still hold the option, Π−1 (r, t), minus the cost of the static

hedge. We can maximise with respect to the hedge quantities to find the optimal

marginal value.

t TO T

(option exercised)

Solve worst-case

(option not exercised)

(early exercise region)

Π−1 (r, t) ≥ Π−0 (r, t)− E

Solve worst-case
scenario for Π0

scenario for Π1

Figure 5.6: Pricing American options

We can also find the best-case scenario value of the option. We solve Equation

(4.1) with the appropriate final data and jump conditions to find the best-case value

of the portfolio in which we still hold the option, Π+
1 (r, t), with a suitable constraint

whilst we are allowed to exercise the option (e.g. for a call option,

Π+
1 (r, t) ≥ Π+

0 (r, t)− E,

where Π+
0 (r, t) is the solution of Equation (4.1) for the portfolio value when we exercise

the option at time t).
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Example: We price the vanilla American put option with expiry in 1 year and

exercise price E, on a zero-coupon bond with principal 1 and maturity in 5 years.

The current market price of the bond is 0.687. The spot short-term interest rate is

6% and the parameters of our model are

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

Initially, we solely hedge with the underlying zero-coupon bond. The results for

the option valuation, without hedging and with the optimal static hedges for both

worst- and best-case valuations, are shown in Table 5.7.

E = 0.8 Worst case Best case Hedge quantity
No hedge 0.000 0.328 -

Optimal hedge on worst-case 0.112 0.164 0.998
Optimal hedge on best-case 0.090 0.142 0.862

E = 0.9 Worst case Best case Hedge quantity
No hedge 0.048 0.428 -

Optimal hedge on worst-case 0.212 0.213 0.998
Optimal hedge on best-case 0.211 0.213 1.000

E = 1.0 Worst case Best case Hedge quantity
No hedge 0.148 0.528 -

Optimal hedge on worst-case 0.312 0.313 0.998
Optimal hedge on best-case 0.311 0.313 1.000

Table 5.7: Value of an American put option hedged with the underlying

We then hedge the option with the bonds of Table 4.1. The results when we price

a put option, with exercise price 0.9, are shown in Tables 5.8 and 5.9. Figure 5.7

shows the value of the unhedged option in a worst-case scenario.

Put, E = 0.9 Worst case Best case
No hedge 0.048 0.428

Optimal hedge on worst-case 0.212 0.213
Optimal hedge on best-case 0.212 0.213

Table 5.8: Value of the optimally-hedged American put option
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Hedging Maturity Worst case Best case
bond (yrs) hedge quantity hedge quantity
Z1 0.5 -0.002 -0.036
Z2 1 0.002 -0.001
Z3 2 -0.002 -0.003
Z4 3 0.008 0.009
Z5 5 0.994 0.994
Z6 7 0.000 -0.001
Z7 10 0.000 0.000

Table 5.9: The optimal static hedges for the American put option

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.03 0.08 0.13 0.18

Interest rate

O
pt

io
n 

va
lu

e

European American

Figure 5.7: American put option value in a worst-case scenario

The further an option is ‘in the money’ (whether American or European) the

more likely it is to be exercised and the nearer the quantity of the underlying, in the

static hedge, is to unity. The spread in price also decreases because we are effectively

valuing the exercised option and we can hedge this very efficiently with the underlying

bond.

The spreads for the American option are therefore smaller than those for the

European option and the hedge quantities of the underlying are larger. This is because

the American option has more exercise opportunities and is consequently more likely

to be exercised. We note that if we were to immediately exercise the option (with
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exercise price 0.9, for instance), it would be worth,

0.9− 0.687 = 0.213,

which is contained within our spread for prices and is the optimally-hedged best-

case price. (In this best-case scenario, the optimal strategy is therefore to exercise

immediately).

If we were to price the American call option then we would find that it had the

same value as the European call option. This is because the underlying is a zero-

coupon bond. It is an equivalent result to the equality of American and European

call options on equities which do not pay a dividend [64]. If we were to price a call

option on a coupon bond (where the coupon was paid before expiry of the option)

then the American option would be worth more than the European, since the holder

of the option would not receive the coupon, whereas the holder of the bond would.

We remark that we can also use this approach to value Bermudan options (options

with exercise allowed only on or between specified dates). To value such an option,

we proceed as for the American option. However, when we come to solve our partial

differential equation for Π1, we only include the relevant constraint at (or between)

times when exercise is allowed.

5.1.5 Generalisation of the option pricing methodology

We have developed two different approaches to pricing options. The former is sim-

ple to implement but only appropriate for European options hedged with no more

than the underlying. The latter approach is more general and can be used to value

European and American options with no such constraint on the choice of hedging

instrument. Unfortunately, there is a drawback to this approach. For each instance

of either/or optionality, we must double the number of cases to be considered. This

means that to value a portfolio which includes n instances of optionality (n vanilla

options, for example), we must price 2n separate portfolios. This can quickly become

computationally intensive.

So far, we have only discussed the pricing of options on zero-coupon bonds. How-

ever, both methodologies are still valid for other underlying contracts. The former

approach is still appropriate for any underlying contract that we can price using our

model, as long as all of the cashflows of the contract are after the expiry date of the

option (since all we have to do is to find the spread in price for the underlying at this

date).
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However, if we want to hedge the option with anything but the underlying, or

with an underlying which has cashflows before expiry of the option, then we must

use the latter approach. This methodology is still valid for any underlying contract,

as long as the contract can be expressed as a set of cashflows which are either fixed

or only dependent on our short-term interest rate, r. We can then include them as

jump conditions when we solve the partial differential equation for the portfolio value

when we exercise the option, Π0.

Section 7.2.2 provides some details of a possible approach that could price more

exotic options and may also allow us to price hedged European and American options

in a more efficient and less computationally expensive fashion.

5.2 Multi-choice swaps (contracts with embedded

decisions)

The multi-choice swap requires the holder to make a series of decisions during the life

of the contract. The swap has M possible cashflow dates, on each of which, the holder

may choose to exchange a floating rate payment for a fixed rate payment. Moreover,

the holder must do so on exactly m occasions (where m ≤M).

The fixed rate payments are the interest that would be due on some principal due

to a predetermined fixed rate. The floating rate payments are the interest that would

be due on the principal due to some designated interest rate, the reference rate.

We solve the problem, in a worst-case scenario, by approximating this designated

interest rate using the short-term interest rate, r. This is because we must make a

decision on each cashflow date and we cannot do this without knowledge of the value

of the entire cashflow. We will then hedge the contract with vanilla swaps, and to be

consistent, we will also value these using the approximation approach. As we shall

note later, it is possible to value the contract using the swap decomposition approach,

but it can be impractical to do so.

We assume that the M cashflow dates are on the τ period interest rate and are τ

apart. We designate these dates by Tj for j = 1, 2, . . . ,M . If the holder chooses to

exchange interest payments on one of these dates, then he receives a cashflow of the

form,

P (r − rf )/τ,

where P is the principal and rf is the fixed rate.

To price the contract, we must consider separately the cases when there are i

cashflows still to be taken, for i = 0, 1, . . . ,m. We therefore introduce m+1 functions,
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V (r, t, i). The index i represents the number of cashflows that the holder has left to

take before maturity and V is the subsequent value of the contract.

We solve Equation (2.6) with suitable final, jump conditions and constraints, to

find the value of each of these functions today. The value of our contract in a worst-

case scenario is then V (r, t;m). (We can also find the best-case scenario value by

solving Equation (4.1) instead).

Clearly

V (r, t; 0) = 0,

since there are no cashflows left to be taken.

At each possible swaplet date, we must apply either a jump condition, if we are

forced to take the cashflow, or a constraint, if we are not obligated to take the cashflow

and only do so in the case that it is the optimal decision.

If there are i cashflows left to choose between, and we still have to take a total of

i cashflows, then we must take every cashflow left. Mathematically, we represent this

as,

V (r, T−M−i+1; i) = V (r, T+
M−i+1; i− 1) + P (r − rf )/τ,

for i = 1, 2, . . . ,m.

On the other hand, if we are at a cashflow date, and there are more cashflow dates

left than the number of cashflows that we are obligated to take, then we only take

the cashflow if it is optimal to do so. This is the case when the value of the contract

is less than the value of the contract with one less cashflow left to take plus the value

of the cashflow. We therefore have the constraint,

V (r, T−j ; i) ≥ V (r, T+
j ; i− 1) + P (r − rf)/τ,

for M − j + 1 > i.

To hedge the contract, we just include the appropriate jump conditions for the

hedging cashflows, price the overall portfolios Π(r, t; i), for i = 1, 2, . . . ,m and then

subtract the cost of the static hedge from Π(r, t;m) to find the marginal contract

value, V (r, t;m). We remark that in this case, Π(r, t; 0) no longer has zero value, but

represents the value of the hedging instruments when there is no swap contract.

Example: We price an eight-choice swap. The swap has a principal of $1,000,000

and a fixed rate of 7%. The holder must take four of the eight possible cashflows,

which are every six months, with the first cashflow in one year’s time.

The spot short-term interest rate is 7.4% and the parameters of our model are

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.
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We hedge the contract with the market-traded swaps from Table 5.10. They are

par swaps with a principal of $100,000 and payment dates bi-annually until their

maturity.

The results for the worst- and best-case valuations are shown in Tables 5.11 and

5.12. We remark that the time taken to price the contract will be approximately

m+ 1 times the size of that to price the vanilla swap.

Hedging Swap Maturity (yrs) Fixed Rate (%)
S1 2 7.10
S2 3 6.85
S3 4 6.69
S4 5 6.58
S5 6 6.49
S6 7 6.42
S7 8 6.39
S8 9 6.36
S9 10 6.34

Table 5.10: The par-value hedging swaps

Worst case Best case
No hedge -68784.4 108726.3

Optimal hedge on worst-case -26655.1 14545.1
Optimal hedge on best-case -22647.3 3774.1

Table 5.11: Value of an eight-choice swap

Hedging swap Worst case Best case
hedge quantity hedge quantity

S1 0.302 1.725
S2 0.859 4.968
S3 -6.215 -10.009
S4 0.000 0.000
S5 0.000 0.000
S6 0.000 0.000
S7 0.000 0.000
S8 0.000 0.000
S9 0.000 0.000

Table 5.12: The optimal static hedges for the eight-choice swap
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It is also possible to price this contract using the swap decomposition approach.

However, if we decompose the swap cash flows into sets of zero-coupon bonds, then

we will not be able to make the decision on whether or not to take a cashflow at the

cashflow date. This is because one of the bond cashflows will be before this date. To

price the swap, we must use the same approach to optionality as for the general bond

option problem. At each possible cashflow date, we consider the cases when we do

and do not choose to take the cashflow separately.

Fortunately, we will not have to consider the 2M separate possible cases, because

we are constrained to take exactlym cashflows. We therefore only have to consider the
MCm possible sets of cashflows and then pick the best of these. This latter approach

will take of the order of MCm times the length of time taken to price the vanilla swap.

Since we will, in general, have a large number of potential cashflow dates (M), and a

significant number of cashflows to take (m), the time taken to price the swap is likely

to be too high for the approach to be of practical value. The suggested approach

detailed in Section 7.2.2 may lead to a more applicable method of solution.

5.3 Index amortising rate swaps

The index amortising rate swap is an agreement between two parties to exchange

payments of interest, one at a fixed rate and one at a floating rate, on a principal

that decreases (amortises) at a rate dependent on some index, generally, the floating

rate. The principal only amortises on a payment date, at a rate determined by an

amortising schedule.

Given the multitude of possible amortising schedules, a particular contract will

generally be ‘over the counter’ and illiquid. In such a case, where it is difficult to

move in and out of a position, it is particularly important to have an idea of the

extreme possible outcomes and, especially, what the worst possible outcome could

be. A worst-case scenario valuation is therefore clearly an appropriate measure for

the contract value. We will hedge the contract with liquid, market-traded swaps.

This will provide us with the necessary information to set up an optimal static hedge

for the contract and also leads to an improved worst-case scenario valuation.

In practice, the swap will depend on some τ period interest rate, and not the

short-term interest rate. However, we must use the approximation approach and

substitute the short-term interest rate for our τ period rate because the problem is

path-dependent. At a cashflow date, we must amortise the principal. We will not

be able to do this if we do not know the floating rate at that time. Since the true τ
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period rate depends on the value of a cashflow at an earlier time, we cannot find its

value directly at the cashflow date.

As an alternative, we could try to keep track of the floating rate and adjust the

principal at an earlier time, when the relevant cashflow were known. However, to

accomplish this, we would have to value the cashflow separately from the swap. This

would lead to the same problem as we encountered when we tried to price a European

bond option hedged with an instrument that was not the underlying. We would again

be trying to perform two separate worst-case valuations, with no guarantee that the

two solutions would have the same interest rate path. The values calculated using

this approach would then not be optimal. A possible area for further research which

may allow us to perform this calculation, by keeping track of the relevant floating

rate in a consistent fashion, is described in Section 7.2.2.

The value of our swap depends on the current short-term interest rate, r, and the

current principal, P , i.e.

V = V (r, P, t).

However, our governing equation does not change. V still satisfies Equation (2.6).

The effect of P is only seen in the jump and final conditions.

Over a cash flow date, the value of the swap jumps by

P (r − rf )/τ,

where rf is the fixed rate, and the principal changes to

g(r)P,

where g(r) is the amortising schedule.

Over the payment date ti, we therefore find the jump condition

V (r, P, t−i ) = V (r, g(r)P, t+i ) + P (r − rf )/τ.

At maturity, the last exchange of payments occurs and we have the final condition

V (r, P, T ) = P (r − rf)/τ.

Although the problem is nonlinear, the amortisation is linear in P . We can there-

fore find a similarity reduction which reduces the problem from three independent

variables to two [63]. We set

V (r, P, t) = PH(r, t),
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to find that the problem for H is

Ht + c (r,Hr)Hr − rH = 0,

i.e. H also satisfies Equation (2.6), with the jump condition

H(r, t−i ) = g(r)H(r, t+i ) + (r − rf )/τ,

over a payment date, and the final condition

H(r, T ) = (r − rf)/τ.

Example: We value an index amortising rate swap with a maturity of 5 1
2
years,

fixed interest rate of 6.5% and initial principal $1,000,000. Payment dates occur once

a year until maturity, with the first payment 3 1
2
years from today. The amortising

schedule is shown in Figure 5.8.

The spot short-term interest rate is 7.40%. We set the parameters of our model

to be

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.
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Figure 5.8: The amortising schedule

We hedge the contract with the market-traded swaps from Table 5.10 (these were

the actual market prices on 14th May 1998). They are par swaps with a principal

of $100,000 and payment dates biannually until their maturity. The yield curve for

these swaps is shown in Figure 5.9.

121



0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9 10

Maturity (yrs)

Y
ie

ld

Figure 5.9: The swap yield curve

Worst case Best case
No hedge -30820.2 216336.6

Optimal hedge -11753.2 143129.6

Table 5.13: Value of the index amortising rate swap

Hedging swap Worst case
hedge quantity

S1 -0.008
S2 9.433
S3 -9.528
S4 -0.009
S5 0.001
S6 0.000
S7 -0.001
S8 0.001
S9 0.000

Table 5.14: The optimal static hedge for the index amortising rate swap

The results of the valuation for the index amortising rate swap, without hedging

and with the optimal static hedge for the worst-case scenario, are shown in Table

5.13. The optimal static hedge for this valuation is shown in Table 5.14.

The use of a static hedge has significantly improved the value of the index amor-

tising rate swap in a worst-case scenario. The optimal hedge does not consist of all

of the possible contracts, and is essentially composed of the few contracts that are
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most similar in form to the cashflows of our swap.

We can also price the index amortising rate swap directly from the yield curve

of Figure 5.9, using linear interpolation between points. In this case, we find that

the swap is worth -2440.3. We can then test the sensitivity of the valuation to shifts

in the yield curve. The results are shown in Table 5.15. We note that the hedged

worst-case scenario price is similar in value to the swap price with a -1% yield shift

(a comparable result to that found for the leasing portfolio in Section 4.9).

Yield Shift (%) Swap Value
+2 21552.8
+1 8297.5
0 -2440.3
-1 -10908.0
-2 -18786.6
-3 -28219.6

Table 5.15: Sensitivity of the index amortising rate swap value to parallel shifts in
the yield curve

5.4 Convertible bonds

The convertible bond contract is similar to the coupon-bearing bond in that the

holder receives coupon payments at specified payment dates. It also has equity char-

acteristics since the holder can, at specified times, exchange the bond for a quantity

of some underlying asset [17]. This exchange is called conversion. When the stock

price is low, there is little reason to convert the bond and so it behaves like a simple,

non-convertible, coupon-bearing bond. When the stock price is high, the option to

convert gives the bond a value closer to the value of the relevant quantity of the

underlying asset. In some cases, it is optimal to convert the bond before maturity.

Mathematically, the conversion problem is similar to the early exercise of an American

option, and can be thought of as a free boundary problem.

We use a lognormal random walk for the share price,

dS = µSdt+ σSdX,

and form a Black–Scholes hedged portfolio, Π = V −∆S, where V = V (r, S, t). Itô’s

Lemma gives us that

dΠ = Vtdt+ VSdS + Vrdr + 1
2
σ2S2VSSdt−∆dS −D∆Sdt.
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We choose ∆ = VS to eliminate the leading order randomness from the share price

movements and value the portfolio in a worst case scenario. Under this worst case

assumption, the change in the value of our portfolio is

min
dr

dΠ = min
dr

(
Vtdt+ Vrdr + 1

2
σ2S2VSSdt−DSVSdt

)

We require that, in the worst case, our portfolio always earns the risk-free rate. This

gives us that

min
dr

dΠ = rΠdt,

and so the pricing equation for the bond is

Vt + 1
2
σ2S2VSS + (r −D)SVS + c (r, Vr)Vr − rV = 0, (5.1)

where V (S, r, t) is the bond price,

c(r,X) =

{
c+ if X < 0
c− if X > 0,

(5.2)

and D is the dividend yield on the asset, here assumed constant and continuously

paid. This is the worst-case scenario value for the contract. The best value would be

given by the solution of Equation (5.1) with reversal of the inequalities in Equation

(5.2).

The derivation of the equation assumes that the random movements in the un-

derlying asset are delta hedged away by holding ∆ of the underlying asset where

∆ = VS.

In contrast, the interest rate risk is not hedged, we are assuming the worst outcome

are far as the short rate path is concerned.

Optimal conversion into n of the stock is assured by insisting that

V (S, r, t) ≥ nS,

at all times that conversion is permitted along with continuity of V and VS.

The final condition at maturity of the bond, T , is that the bond value is equal to

the principal, assumed to be 1, plus the last coupon

V (S, r, T ) = 1 + cT .

Across each coupon date, ti, the bond falls by the amount of the coupon, and,

V (S, r, t−i ) = V (S, r, t+i ) + ci.
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This completes the specification of the convertible bond model under the risk-

neutral measure for the asset and the worst-case scenario for the interest rate.

Example: We consider the pricing of a convertible bond using several popular

models for interest rates and examine the robustness of the prices to variations in

parameters. We then price the convertible bond using the non-probabilistic model.

The underlying asset has current value 100, the volatility is 15% and the dividend

yield is 4%. Note that we are not questioning the accuracy of these asset price

parameters.

We value a convertible bond with a maturity of 25th November 2001 (where today

is 14th May 1998). The bond has principal 1, can be converted into 0.01 of the asset

and pays a coupon of 3% every six months until expiry. The spot short-term interest

rate is 7%.

1. Constant interest rate of 7%

In the first example the interest rate is a constant, there are no dynamics either

deterministic or stochastic. Figure 5.10 shows the convertible bond value under

this assumption.

Convertible bond value: 1.131
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Figure 5.10: Convertible bond value with constant interest rate

2. Deterministic forward rate given by a linear interpolation of rates determined

from the zero-coupon bond yield curve shown in Table 5.16.

Convertible bond value 1.147

The sensitivity to parallel shifts in the yield curve is shown in Table 5.17.
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Maturity Yield
1 m 0.07000
6 m 0.07447
1 yr 0.07016
2 yr 0.06631
5 yr 0.06224
7 yr 0.06121
10 yr 0.06037
30 yr 0.05990

Table 5.16: The yields for the zero-coupon bonds used to price/hedge the convertible
bond

Yield curve shift Convertible bond value
+2% 1.118
+1% 1.132
0% 1.147
-1% 1.165
-2% 1.185

Table 5.17: Sensitivity of the convertible bond value to parallel shifts in the yield
curve

3. The Vasicek model of the form

dr = (a− br)dt+ νdX2

with a = 0.007, b = 0.1, ν = 0.02 and a correlation of 0.1.

Convertible bond value 1.137

The sensitivities to a, b and ν are shown in Tables 5.18, 5.19 and 5.20, respec-

tively.

a Convertible bond value
0.009 1.132
0.008 1.134
0.007 1.137
0.006 1.139
0.005 1.141

Table 5.18: Sensitivity of the Vasicek model to shifts in a
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b Convertible bond value
0.12 1.139
0.11 1.138
0.10 1.137
0.09 1.135
0.08 1.134

Table 5.19: Sensitivity of the Vasicek model to shifts in b

ν Convertible bond value
0.030 1.142
0.025 1.139
0.020 1.137
0.015 1.135
0.010 1.133

Table 5.20: Sensitivity of the Vasicek model to shifts in ν

4. The Extended Vasicek model fitted to the yield curve of Table 5.16, with b = 0.1,

ν = 0.02 and a correlation of 0.1.

Convertible bond value 1.161

The sensitivities to b and ν are shown in Tables 5.21 and 5.22 respectively.

b Convertible bond value
0.12 1.164
0.11 1.163
0.10 1.161
0.09 1.160
0.08 1.158

Table 5.21: Sensitivity of the Vasicek model to shifts in b

ν Convertible bond value
0.030 1.166
0.025 1.163
0.020 1.161
0.015 1.159
0.010 1.157

Table 5.22: Sensitivity of the Vasicek model to shifts in ν
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5. ACKW model

The Apabhai, Choe, Khennach, Wilmott (1995) one-factor model is based on a

statistical analysis of the US short-term interest rate and the yield curve slope

at the short end over 20 years. The model fits the average dynamics of the yield

curve.

Convertible bond value 1.130

6. Epstein-Wilmott model

We set the parameters of our model to be

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

We find that the worst price attainable is 1.072 and the best price is 1.191.

5.4.1 Optimal static hedging

To price the hedged convertible bond, we must use the same approach to optionality

as for the American bond option. This is because we must again keep track of two

separate quantities. This time, they are the value of the hedging instruments and the

overall value of the portfolio. To make sure that we find the true worst-case price for

each of these, with a consistent interest rate path valid for both, we must consider

the two cases when we choose to convert or not separately.

We consider two functions, Π0 and Π1. Π0(S, r, t) is the value of the hedging

instruments and Π1(S, r, t) is the value of the portfolio consisting of the hedging

instruments and the convertible bond.

To price Π0, we solve Equation (5.1) with the appropriate final and jump con-

ditions to represent all of the cashflows for the hedging instruments. Since there is

no S dependence in these hedging cashflows, we are effectively just solving our usual

worst-case problem for the hedging instruments, i.e. Equation (2.6).

To price Π1, we then solve Equation (5.1) with the appropriate final and jump

conditions to represent all of the cashflows for the hedging instruments and the con-

vertible bond (before conversion). Since we will only convert if it is optimal to do so,

we have the additional constraint that

Π1(S, r, t) ≥ nS + Π0(S, r, t),

i.e. we convert when the value of the portfolio including the convertible bond is less

than the value of the portfolio of hedging instruments plus the assets that we would

receive if we were to convert.

128



Example: We hedge the convertible with the 6 month and the 1, 2 and 5 year

zero-coupon bonds from Table 5.16. (These were the bonds that we used to calibrate

the classical models, where appropriate). The optimal worst-case hedge for these

bonds is shown in Table 5.23.

Bond Bond Worst-case
Maturity Yield hedge

6m 0.07447 0.283
1yr 0.07016 0.053
2yr 0.06631 -0.421
5yr 0.06224 -0.290

Table 5.23: Optimal static hedge for the convertible bond

With this static hedge in place, we find that the new worst-case price is 1.112

(unhedged was 1.072) and the best-case price is 1.193 (was 1.191).

The present value of all the coupons and the principal, valued off an interpolated

yield curve, is approximately 1.026. The added value due to the convertability in the

bond is thus the difference between the bond value and the present value of all the

coupons plus principal. The bond values and the added value according to each of

the models are summarised in Table 5.24.

Model CB Value Added Value due to Conversion
Constant interest rate 1.131 0.105
Deterministic yield curve 1.147 0.121
Vasicek, unfitted 1.137 0.111
Vasicek, fitted 1.161 0.135
ACKW 1.130 0.104
Worst-case, unhedged 1.072 0.046
Best-case, unhedged 1.191 0.165
Worst-case, optimally hedged 1.112 0.086
Best-case, optimally hedged 1.193 0.167

Table 5.24: Added value due to convertability

We have applied our nonlinear, non-probabilistic interest rate model to the pricing

of a convertible bond. The resulting worst-case scenario valuation produced results

which were far lower in price than those found using typical interest rate models.

However, unlike the worst-case scenario approach, these models were found to be

quite sensitive to their parameters, the values of which can often be uncertain.
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The theoretical prices and particularly the added value are significantly different

across different models. The optimally hedged worst-case added value is 0.086 which

can be seen as a benchmark against which to compare the other values. The histor-

ically accurate ACKW gives a value closest to this worst case (0.104) and the other

models can be considerably higher. It is particularly interesting to note that in this

example the more ‘fitting’ that is done, the higher the price, and the more empirically

justified the model, the lower the price. Of course, this would be reversed for a yield

curve sloping the other direction.

If we believe that the non-probabilistic model gives a conservative price range then

we would hope that other models give prices within this range. The ability to find

such definitive bounds for the value of the convertible bond may prove invaluable in

the task of validating some of the more complex stochastic models.

Through the process of static hedging, we were able to significantly increase the

worst-case scenario price for the convertible bond. In addition, the process found an

optimal static hedge. This hedge could be applied to a convertible bond portfolio to

reduce the inherent interest rate risk, regardless of which model were chosen to price

the resulting portfolio.
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Chapter 6

Extensions to the model

In this chapter we consider various extensions to our non-probabilistic model. First

of all, we introduce the uncertainty band. This allows us to more accurately model

real interest rate movements. We then examine past data to chooses a sensible width

for the band. We further generalise the model by allowing for the possibility of jumps

and crashes and re-examine the data under this new light. Finally, we consider the

impact of liquidity on our work.

6.1 Uncertainty bands

Real interest rates have a stochastic nature, with unbounded short term fluctuations,

a property not yet captured by our model. However, using the concept of the un-

certainty band, we can address this potential criticism. The uncertainty band allows

interest rate movements that are practically indistinguishable from the real short-term

interest rate behaviour.

We consider the quantity that we have modelled, r, to be some estimate of the

short-term interest rate that is always within a distance ε of the real short-term rate,

i.e.

|r − r′| ≤ ε, (6.1)

where r′ represents the real rate. Figure 6.1 shows possible paths for r and r′.

We re-derive our pricing equation under this new model to find the worst-case

value of a contract. This will still be a function of r and t. However, the risk-free rate

will now be r′. Since this is the actual short-term rate, all cashflows will also depend

on this quantity rather than r, as will the actual value of the contract today.

Let V (r, t) be the value of our contract, when the estimated short-term interest

rate is r at time t. We consider the movement in the value of the contract over a
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r′
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Interest rate
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Figure 6.1: A possible evolution of r and r′, the ‘real’ rate

time step dt. As in Section 2.3.1, we find that the minimum possible increase in

the contract value should be equivalent to the risk-free increase. This is now r′V dt.

Therefore, we have

min(dV ) = dVworst case = r′V dt.

We know that r′ lies within a certain distance of r. Since we are in a worst-case

scenario and are not investing in the risk-free rate, we assume that the risk-free

account grows at the highest possible rate. We can therefore expand dV and substitute

for r′ in terms of r, to find

min
dr

(Vrdr + Vtdt) = max
e(V )

((r + e(V ))V dt).

where dr is bounded by Equation (2.5), and e(V ) is bounded by

−ε ≤ e(V ) ≤ ε.

We can then take the optimisations inside the appropriate brackets, to give

Vt + c (r, Vr)Vr − (r + e(V ))V = 0, (6.2)

where

c(r,X) =

{
c+ if X < 0
c− if X > 0,

(6.3)

and

e(X) =

{
ε if X ≥ 0
−ε if X < 0.

(6.4)
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Since the cashflows depend on r′ rather than r, we minimise their value to the

holder (as we are in a worst-case scenario), when we write them in terms of r.

We apply the last cashflow as final data for the equation,

V (r, T ) = CN(r′),

which gives us that, in the worst-case,

V (r, T ) = min
−ε≤e≤ε

(CN(r + e)). (6.5)

Similarly, a cashflow of Ci(r
′) at time Ti gives the jump condition that, in the

worst-case,

V (r, T−i ) = V (r, T+
i ) + min

−ε≤e≤ε
(Ci(r + e)). (6.6)

The characteristics of the equation are still dr/dt = c. We can therefore solve

the pde, as before, to find V (r, t). The current value of the portfolio in a worst-case

scenario is then,

V (r′, t) = min
−ε≤e≤ε

(V (r + e, t)). (6.7)

We remark that to perform a best-case scenario valuation, we must reverse the

inequalities in Equations (6.3) and (6.4) and maximise where we had minimised in

Equations (6.5) - (6.7).

Example: We price and hedge a 4 year zero-coupon bond with principal 1. The

hedging instruments are the zero-coupon bonds from Table 4.1. The spot short-term

interest rate is 6% and the parameters of our model are

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

Table 6.1 shows the results for the zero-coupon bond value in a worst-case scenario

with various values for ε without hedging and with the optimal static hedge for the

worst-case scenario. Table 6.2 shows the hedge quantities for these static hedges.

Figure 6.2 shows the value of the zero-coupon bond with varying ε.

It is clear that the wider the uncertainty band, the lower the worst-case price.

As ε increases, we also see that the quantity of lower maturity hedging instruments

in the portfolio decreases and the quantity of higher maturity instruments increases.

The effect of this hedging strategy is that the worst-case price decreases less quickly

with increasing ε.
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ε 0.00 0.01 0.02 0.03
No hedge 0.575 0.534 0.497 0.463

Optimal hedge on worst-case 0.730 0.722 0.714 0.707

Table 6.1: Worst-case value of a 4 year zero-coupon bond

Hedging ε = 0.00 ε = 0.01 ε = 0.02 ε = 0.03
bond hedge quantity hedge quantity hedge quantity hedge quantity
Z1 0.000 0.002 0.002 0.002
Z2 -0.004 -0.004 -0.004 -0.001
Z3 0.169 0.091 0.091 0.010
Z4 -0.699 -0.569 -0.563 -0.439
Z5 -0.468 -0.511 -0.506 -0.527
Z6 0.020 0.018 0.018 0.000
Z7 0.000 0.000 0.000 0.000

Table 6.2: The optimal static hedges for a 4 year zero-coupon bond
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Figure 6.2: Value of a 4 year zero-coupon bond with varying ε

6.1.1 Estimating ε from past data

We can use past interest rate data to choose a sensible value for this parameter.

We use data for a longer period rate, the td period rate say, which is more readily

available, and relate this to our short-term interest rate. We can then examine the
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data and find the lowest value of ε for which the actual interest rate movements are

consistent with our model.

First of all, we must relate the level of the td period rate at some specified time

to the level of our estimated short-term rate, r, at that time. In absence of arbitrage,

the td period rate, rd(t), satisfies

rd(t) =
1

td

∫ t+td

t

r′(s)ds.

From Equation (6.1), we have bounds on the size of r′(t),

r(t)− ε ≤ r′(t) ≤ r(t) + ε,

and from Equation (2.3), we can find bounds for r(t+ τ), for τ > 0,

r(t) + c−τ ≤ r(t+ τ) ≤ r(t) + c+τ,

where we have assumed that c− and c+ are constants, and hence for r′(t+ τ),

r(t) + c−τ − ε ≤ r′(t+ τ) ≤ r(t) + c+τ + ε.

Using these bounds, we can bound the integral in question,

td
(
r(t)− ε+ 1

2
c−td

)
≤
∫ t+td

t

r′(s)ds ≤ td
(
r(t) + ε+ 1

2
c+td

)
.

We can therefore calculate bounds for the value of rd(t) in terms of r(t), and find

r(t)− ε+ 1
2
c−td ≤ rd(t) ≤ r(t) + ε+ 1

2
c+td.

Inverting these inequalities. we find the bounds on r in terms of rd at time t, are

rd(t)− ε− 1
2
c+td ≤ r(t) ≤ rd(t) + ε− 1

2
c−td.

Our model for r is then consistent with the data, if r can evolve such that these

inequalities always hold at each data point. This is effectively a set of uncertainty

bars for the estimated short-term interest rate and the model is consistent with the

data if we can fit an allowed evolution of the interest rate through them.

If we choose the parameters for our model (r−, r+, c− and c+), then we can use

the uncertainty bars to find the minimum value of ε for which the interest rate can

evolve, consistent with both Equations (2.3) and (2.4) and these bars. To illustrate

the methodology, we consider just two data points, as shown in Figure 6.3.
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c+τd
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Figure 6.3: Examining data to choose a sensible value for ε

We must calculate the minimum value of ε required so that r can evolve, consistent

with our bounds, such that r passes through both bars. To minimise the value of ε,

we use the ends of the two uncertainty bars that are nearest to each other and let r

grow as fast as possible in the required direction.

However, when we have further data points, we must find the value of ε that allows

us to move from one bar to the next, throughout the data set, in a consistent fashion.

If we believe that the real rate is at the bottom of the uncertainty bar for a particular

data point when we are considering the interest rate evolution between this and the

previous point, then the real rate must still be at the bottom when we consider the

evolution between this and the next point. This concept is demonstrated in Figure

6.4, where there is an inconsistency in the measurements performed in (a). When

we are consistent, the real rate is at the same point in the uncertainty bar for both

measurements, as shown in (b).

rd(ti)

rd(ti+1)

rd(ti−1) rd(ti−1)

rd(ti+1)

rd(ti)

(a) (b)

Figure 6.4: (a) An inconsistent use of the uncertainty bars, (b) The consistent picture
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Example: We choose our parameters to be

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

and examine daily, 1 month US interest rate data from 21st October 1986 to 25th

April 1995. This data is shown in Figure 6.5.
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Figure 6.5: 1 month US interest rate data

We find that the minimum value for ε for which our model is consistent with the

data is

ε = 0.005754.

If we use a value of ε slightly larger than this, then we can be fairly certain that

any interest rate movements seen in the market would be allowed under our model.

The spreads for prices predicted by our model, as well as all the other applications

that we have discussed, would then be realistic in practice.

6.2 Crash modelling

To further model the precise nature of actual interest rate movements, we may wish

to include the possibility of jumps or crashes in the interest rate. With these in place,

we would find an even smaller minimum value for ε when we examine interest rate

data.
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We present two different approaches to the modelling of a crash. Both are instan-

taneous changes in the interest rate. In the first approach, the interest rate can crash

on, at most, a specified number of occasions over the time horizon. In the second

approach, the interest rate can crash an unlimited number of times, but can only do

so when a specified length of time has passed since the previous crash. In both cases,

we assume that the crashes occur at the worst possible time, since we are pricing the

contract in a worst-case scenario. We remark that, under these circumstances, it may

be optimal for there to be no crash at all [41].

6.2.1 A maximum number of crashes

We first consider the situation when there can be at most one crash before the ma-

turity of our contract. We value the contract, V , in a worst-case scenario and model

the crash as an instantaneous movement of the short-term interest rate from r to

(1− k)r, for some specified k.

We introduce the subscript 0 to denote the value of the portfolio when there is

no crash allowed and 1 to denote the value when the interest rate is allowed to crash

once. Thus V0 is the usual worst-case value and is the solution of Equation (2.6) with

suitable final and jump conditions for the contract in question.

To value V1, we also solve Equation (2.6), with the same final and jump conditions

as before. However, the interest rate is now allowed to crash if that would lower the

value of the contract. If the interest rate does not crash, then the contract is worth

V1(r, t) since a crash is still allowed in the future. On the other hand, if the interest

rate does crash from r to (1 − k)r, then the contract is worth V0((1 − k)r, t), since

the interest rate cannot crash again. In a worst-case scenario, a crash will only occur

if that would give the contract a lower value. We therefore have the constraint,

V1(r, t) ≤ V0((1− k)r, t).

The value of the contract today is then V1(r, t).

We can generalise the model by allowing a range for the size of any possible crash.

We model the crash as an instantaneous movement from r to (1− k)r, where

k− ≤ k ≤ k+,

for some specified k− and k+. The effect of this generalisation is seen in the constraint.

In a worst-case scenario, the interest rate will always crash to the level that would

minimise the value of the contract. The constraint therefore becomes

V1(r, t) ≤ min
k−≤k≤k+

(V0((1− k)r, t)) .
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We can also generalise the model to allow a number of crashes to occur before

the maturity of the contract. We consider the situation where there are a maximum

number of crashes, N say, before maturity. To price the contract under these cir-

cumstances, we must introduce N + 1 functions, Vi, for i = 0, 1, . . . , N . Vi is the

value of the contract when the total number of crashes still allowed is i. As before,

each of the Vi satisfies Equation (2.6) with the appropriate final and jump conditions

for the contract in question. Rather than a single constraint, we now have a set of

constraints linking the N + 1 functions, of the form,

Vi(r, t) ≤ min
k−≤k≤k+

(Vi−1((1− k)r, t)) ,

for i = 1, 2, . . . , N . The value of the contract, today, in a worst-case scenario is then

VN (r, t).

We note that to value the contract in a best-case scenario, we would solve Equation

(4.1) for each of the Vi, rather than Equation (2.6). Crashes would now occur if they

were to raise the value of the contract, and so our constraints would become

Vi(r, t) ≥ max
k−≤k≤k+

(Vi−1((1− k)r, t)) .

Example: We price and hedge a 4 year zero-coupon bond with principal 1. The

hedging instruments are the zero-coupon bonds from Table 4.1. The spot short-term

interest rate is 6% and the parameters of our model are

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

Table 6.3 shows the results for the zero-coupon bond value in a worst-case scenario

with various numbers of crashes allowed. These crashes have a maximum magnitude

of 1% (i.e. k− = −1% and k+ = 1%). Results are shown for the unhedged bond

and for the bond optimally hedged in a worst-case scenario. Table 6.4 shows the

relevant hedge quantities for some of these scenarios. Figure 6.6 shows the value of

the zero-coupon bond when various numbers of crashes are allowed.

No of crashes 0 1 2 3 4
No hedge 0.575 0.558 0.542 0.528 0.516

Optimal hedge on worst-case 0.730 0.728 0.726 0.724 0.722

Table 6.3: Worst-case value of a 4 year zero-coupon bond with crashes allowed
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Hedging no crashes 1 crash 2 crashes
bond hedge quantity hedge quantity hedge quantity
Z1 0.000 0.000 -0.002
Z2 -0.004 -0.004 0.001
Z3 0.169 0.204 0.239
Z4 -0.699 -0.753 -0.816
Z5 -0.468 -0.453 -0.425
Z6 0.020 0.027 0.028
Z7 0.000 0.000 0.000

Table 6.4: The optimal static hedges for a 4 year zero-coupon bond with crashes
allowed
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Figure 6.6: Value of a 4 year zero-coupon bond with a crash allowed

The addition of crashes lowers the value of the unhedged zero-coupon bond in a

worst-case scenario. However, it has less effect on the value of the optimally-hedged

bond because almost the entire interest rate risk of the bond can be hedged away.

However, to hedge away this risk, increasing amounts of the hedging instruments are

required as the number of crashes allowed increases.

We remark that for the long zero-coupon bond, the worst-case scenario interest

rate path will always be as high as possible. Since there is an upper bound for the

short-term interest rate, given by Equation (2.3), the addition of a crash does not
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have any effect at high interest rates, as the rate cannot crash to a higher value than

the upper bound. This is illustrated in Figure 6.6 where the values converge at high

interest rates.

6.2.2 A maximum frequency of crashes

As an alternative, we can constrain the frequency of the crashes, instead of the total

number allowed. We model crashes from r to (1−k)r, as before. However, the interest

rate can only crash again when a specified time ω has passed since the previous crash.

To value a contract under this model, we must introduce another variable, τ , the

time since the last crash. We also introduce two functions. V0(r, t; τ) is the value of

the contract when the last crash was τ ago. V1(r, t) is the value of the contract when

a crash is allowed. The value of the contract today is then V1(r, t).

Since τ and t increase at the same rate when a crash is not allowed, the pricing

equation for V0 is

V0τ + V0t + c (r, V0r)V0r − rV0 = 0.

When τ = ω, another crash is allowed. We therefore have the final condition in τ ,

V0(r, t;ω) = V1(r, t).

The final condition in t, and any jump conditions are dependent on the cashflows of

the contract in question.

V1 satisfies Equation (2.6), with suitable final and jump conditions dependent on

the contract. In a worst-case scenario, a crash occurs if that would lower the value of

the contract, and so we have the constraint,

V1(r, t) ≤ min
k−≤k≤k+

(V0((1− k)r, t; 0)) .

With these two approaches to crash modelling, we can formulate a wide variety

of crash events. For instance, we could combine the two models to allow a limited

number of large crashes (1% say) plus a larger number of smaller jumps (0.1% say)

to which we could assign a frequency. We must examine interest rate data to choose

a sensible option for these parameters.

Example: We price and hedge a 4 year zero-coupon bond with principal 1. The

hedging instruments are the zero-coupon bonds from Table 4.1. The spot short-term

interest rate is 6% and the parameters of our model are

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.
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One crash of maximum size 1% is allowed over the time horizon. Smaller crashes

of at most 0.1% are also allowed, but can occur, at most, once a month.

The worst-case scenario value of the 4 year bond without hedging is 0.558. When

we optimally hedge the bond, the worst-case value increases to 0.728. The static

hedge for this valuation is shown in Table 6.5.

Hedging Worst case
bond hedge quantity
Z1 0.000
Z2 -0.001
Z3 0.202
Z4 -0.770
Z5 -0.415
Z6 0.004
Z7 0.000

Table 6.5: The optimal static hedges for a 4 year zero-coupon bond with crashes
allowed

6.2.3 Estimating ε from past data

When we performed the data analysis of Section 6.1.1, we effectively identified the

point at which the largest jump in the short-term interest rate occurred. We then

used this jump to find the smallest possible value for ε under our model. This is

because any smaller movement would also be allowed if this movement was allowed

by the model.

By including the possibility of a crash in our model, we can exclude this largest

jump (by making it the point where the crash occurred). We can then calculate the

lowest value of ε for the next largest jump. This should lead to a smaller value for ε.

We therefore examine the data to choose a sensible number and size for crashes and

then calculate the corresponding ε.

Example: We choose our parameters to be

r− = 3%, r+ = 20%, c− = −4% p.a. and c+ = 4% p.a.

and examine daily, 1 month US interest rate from 21st October 1986 to 25th April

1995, as before. The 8 largest changes in the 1 month rate are shown in Table 6.6.

When we exclude these points, we find that the new minimum value for ε, so that

the data is consistent with our model, is

ε = 0.001066.
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Date Size of crash
22 DEC 86 1.328%
30 DEC 86 -1.203%
27 NOV 87 1.047%
30 DEC 87 -0.813%
29 NOV 88 1.000%
29 NOV 90 1.125%
28 DEC 90 -1.500%
27 NOV 92 0.938%

Table 6.6: The largest changes in the 1 month daily interest rate data

We note that with this value for ε, the changes in question correspond to jumps

of between 0.953% and 0.266% in the short-term interest rate, r.

We remark that all of these crashes are at very similar dates during the year.

They are to some extent end-of-year effects and occur regularly. However, their exact

size and timing is not predetermined, so it is open to question whether or not the

data should be cleaned to remove them. This matter is further complicated by the

fact that we are using the data to examine a rate of a different period, rather than

the one month rate itself.

6.3 Liquidity

The liquidity of a market is a measure of the inherent difficulty encountered on enter-

ing or exiting the market. As a market becomes more illiquid, the spreads between

bid and offer prices increase. These spreads are likely to increase further for trades

of particularly large quantities. However, this feature is more often apparent on exit

rather than entry into a trade [59].

We can gauge the effect of liquidity on our model by including a bid-offer spread in

the price of a hedging instrument, as discussed in Section 4.4.2. We can increase this

spread, simulating illiquidity in the market, and examine how the worst-case price of

a hedged contract changes, as well as the effect of the spread on the make-up of the

optimal static hedge.

To try and gain some insight into the effects concerned, we shall only make one

particular instrument illiquid. All of the hedging instruments, however, will admit a

bid-offer spread. As the instrument becomes more illiquid, we would expect the static

hedge to adjust to include less of the illiquid instrument and larger quantities of more

liquid instruments. We shall increase the size of the bid-offer spread for the illiquid
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instrument. However, we will not make this spread dependent on the quantity of the

instrument being traded. In Section 7.2, we consider areas for further research and

suggest a more realistic model for liquidity.

Example: We include a bid-offer spread for the hedging bonds of Table 4.1. The

resulting prices are shown in Table 6.7.

Hedging bond Maturity (yrs) Bid price Offer price
Z1 0.5 0.966 0.974
Z2 1 0.929 0.937
Z3 2 0.864 0.872
Z4 3 0.801 0.809
Z5 5 0.683 0.691
Z6 7 0.575 0.583
Z7 10 0.445 0.453

Table 6.7: The hedging bonds with a bid-offer spread

We then consider different liquidities for the 5 year bond, Z5, increasing the bid-

offer spread from 0.683 - 0.691, to 0.647 - 0.727 and then to 0.607 - 0.767. The Yield

Envelopes for these liquidity levels, are shown, in close-up, in Figure 6.7. It is clear

that as the 5 year bond becomes less liquid, the yield spread increases near 5 years

maturity. There is still a maximum spread possible under the model (that of the

contract hedged with all but the 5 year bond) and the yield spread tends towards this

as the liquidity decreases.

To examine the effect of the liquidity changes on the optimal static hedge, we

consider the value of the 4 year zero-coupon bond. The results of this worst-case

scenario valuation are shown in Tables 6.8 and 6.9.

5 yr spread 0.683 - 0.691 0.647 - 0.727 0.607 - 0.767
No hedge 0.575 0.575 0.575

Optimal hedge on worst-case 0.725 0.711 0.708

Table 6.8: Worst-case value of the 4 year zero-coupon bond with an illiquid hedge
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Figure 6.7: Illiquid Yield Envelope

Hedging 0.683 - 0.691 0.647 - 0.727 0.607 - 0.767
bond hedge quantity hedge quantity hedge quantity
Z1 0.000 0.000 0.000
Z2 0.000 0.000 0.000
Z3 0.105 0.370 0.577
Z4 -0.612 -1.047 -1.437
Z5 -0.479 -0.301 0.000
Z6 0.002 0.000 -0.105
Z7 0.000 0.000 0.000

Table 6.9: The illiquid optimal static hedges for the 4 year zero-coupon bond

As we would expect, the value of the optimally-hedged 4 year bond decreases as

the liquidity of the hedging instrument decreases. The quantity of the 5 year bond

in the static hedge also decreases and the quantities of the bonds close in maturity

to the 5 year bond increase significantly to make up for this shortfall.
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Chapter 7

Conclusions

7.1 Summary of thesis

In Chapter 1, we reviewed common fixed-income contracts, and traditional approaches

to interest rate modelling. We described the contract specifications for the bond,

swap, cap, floor and bond option and demonstrated the processes by which we could

decompose the swap into a set of zero-coupon bonds and the cap or floor into a set of

bond options. We then summarised traditional approaches to interest rate modelling.

We discussed the concepts of arbitrage, present value and yield to maturity before

explaining how to price a contract off the yield curve. This motivated the concept

of the forward rate and we described how to generate forward rates from a set of

zero-coupon bond prices, by the process of bootstrapping, and how to price a contract

using this forward rate curve. We then moved on to stochastic models, discussing one-

factor and multi-factor models for the short-term interest rate. Particular attention

was paid to the Vasicek and ACKW one-factor models, which we would use later on in

the thesis. We concluded our review by describing the Heath, Jarrow & Morton model

for the movement of the forward rate curve. Finally, we summarised the uncertain

volatility model for equity derivatives, proposed by Avellaneda, Levy & Paras - in

some sense the inspiration for our uncertain interest rate model.

In Chapter 2, we discussed the concept of a worst-case scenario valuation and

illustrated the idea with a simple uncertain model for the short-term interest rate.

The worst-case scenario value was the lowest possible value for a contract under the

given model for the interest rate. We then described our general uncertain, non-

probabilistic model, in which we bounded both the short-term interest rate and its

growth rate. We formulated the pricing equation for the worst-case scenario value

of a contract under this model. This was a first-order, nonlinear, hyperbolic partial

differential equation with final data and jump conditions representing the contract
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cashflows. We examined the solution of this equation via the method of characteristics

and found that particular attention had to be paid to points where the derivative of

the contract value, with respect to the interest rate, was zero. This was because

the direction of the characteristics was ambiguous at these points. We examined

the effect of an internal maximum in the contract value and found that we had to

introduce a shock into the problem to find a unique solution. The maximum evolved

along the path of the shock which was positioned so that the contract value would be

continuous (to prevent arbitrage opportunities). We then examined the effect of an

internal minimum in the contract value and found that the minimum evolved along a

characteristic. Finally, we remarked on the possibility of multiple maxima or minima

in the contract value before discussing other possible occurrences of a zero interest

rate derivative and the behaviour at the interest rate boundaries.

We illustrated the solution by the method of characteristics in Chapter 3. We

first discussed the general methodology and then considered various keynote exam-

ples. These were final data with a solely positive gradient, final data with a solely

negative gradient, final data with an internal maximum and final data with an inter-

nal minimum. In each case, we considered all of the possible characteristic pictures

that could occur and found the solution of the equation for each of these situations.

In Chapter 4, we applied the model and the associated partial differential equation

to the pricing of simple fixed-income products. We discussed the consequences of the

nonlinearity of our pricing equation and considered the problem of the contract value

in a best-case scenario. We found that our model therefore predicted a spread for the

possible price of a contract. This spread could then be reduced by the process of static

hedging. Using the zero-coupon bond to illustrate the procedure, we considered in

detail the pricing and hedging of a contract. We found a spread for the possible price

of this contract and then hedged with first a single contract and then a number of

market-traded zero-coupon bonds to reduce the spread. We found that there was an

optimal static hedge for which the worst-case scenario value of the contract reached

a maximum level. Similarly, there was another optimal static hedge for which the

best-case scenario value of the contract reached a minimum level. The spread between

these two levels was significantly smaller than that between the unhedged worst- and

best-case prices. Associated with these results was the Yield Envelope. This was

similar in form to the yield curve, however, at a maturity where no traded contract

existed, we found a yield spread.

We then applied the model to the pricing and hedging of swaps, caps and floors,

describing the appropriate jump and final conditions for the pricing equation in each
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case. Finally, in the light of these results, we discussed possible applications for the

model and presented a real world problem. The model could be used to identify

arbitrage opportunities in the market, to establish prices for the market maker, to

find the optimal static hedge for a contract, thereby reducing the interest rate risk,

and as a risk management tool, to find an absolute measure of loss. To demonstrate

the latter of these applications, we priced and hedged a real-world leasing portfolio

and compared the results to the method of yield curve pricing. We found that the

optimally-hedged worst-case value was equivalent in magnitude to a 1% downwards

shift in the yield curve. However, the static hedge guaranteed that this was the

maximum possible loss, whilst still preserving some upside potential.

In Chapter 5, we applied our model to the pricing and hedging of more exotic fixed-

income contracts. We began with the European bond option. We found that if we

only hedged the option with the underlying, there was a simple valuation methodology

to follow. However, to price the American option, or either option hedged with other

market-traded instruments, we had to develop a new approach to ensure that we

found a consistent interest rate path. In this approach, we considered the various

choices available to us (i.e. to exercise or not to exercise) separately and then chose

the optimal exercise strategy. Second, we priced the multi-choice swap, a contract

with embedded decisions. This swap allowed the holder to choose on which m of the

M possible cashflow dates to exchange interest rate payments. To price this contract,

we introduced a set of m+1 functions for the contract value, dependent on how many

cashflows there were left to take. On a cashflow date, we found relationships between

these functions to ensure that we followed the optimal choice strategy.

We then considered the pricing problem of the index amortising rate swap. In

this contract, the principal amortised on cashflow dates, at a rate determined by an

amortising schedule. We found the pricing equation for the worst-case scenario value

of the contract and determined a similarity reduction to reduce the problem from

three independent variables to two, comparing the results to the value of the swap

off the yield curve. Again, we found that the optimally-hedged worst-case value was

equivalent in magnitude to a 1% downwards shift. Finally, we examined the case of

the convertible bond. This contract had coupon payments, of the same form as a

vanilla coupon bond, but had the additional property that the holder could choose to

exchange the bond for a specified number of an underlying asset. We described the

partial differential equation for the worst-case value of the bond and compared the

results of the pricing process to a number of more traditional approaches to interest

rate modelling. Motivated by the results, we hedged the contract. In order to preserve
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a consistent worst-case interest rate path, we used the same approach to optionality

as for the American bond option to price this hedged contract.

Finally, in Chapter 6, we presented extensions to our uncertain model. These

allowed for interest rate paths that were indistinguishable from those seen in prac-

tice. We considered the concept of an uncertainty band, in which our model for the

short-term interest rate became an estimate of the real short-term rate. We derived

the new partial differential equation for the worst-case value of a contract under this

assumption and illustrated with the example of the zero-coupon bond. We described

how to relate the short-term interest rate to rates of a longer period and used this

concept to examine past interest rate data. From this study, we were able to find

a sensible width for the uncertainty band. As a further extension, we included the

possibility for crashes in the short-term interest rate. These crashes could take one of

two forms. There could either be a maximum possible total number or a maximum

possible frequency for the crashes. We described the pricing equation framework for

both cases and again illustrated by considering the zero-coupon bond. We then re-

examined the data to find an adjusted uncertainty bandwidth, along with sensible

parameters for these events. Finally, we studied the effect of illiquidity of the hedg-

ing instruments on the worst-case scenario valuation of a contract and presented an

illiquid version of the Yield Envelope.

7.2 Areas for further research

There is considerable scope for further examination of the model and its applications

in the marketplace. We now highlight some possible avenues for further work in this

area.

• Market testing of the model applications

There were a number of possible applications of the model, discussed in Section

4.8. However, no detailed market testing has yet been carried out to determine

how viable these might be in practice. For example, the work of Section 4.9

on the hedging of the leasing portfolio could be extended significantly. We

could rehedge the portfolio daily and compare the results to the current hedging

strategy (which relies on the study of yield curve shifts) over a significant length

of time. Alternatively, we could examine past market price data, to determine

the feasibility of arbitrage spotting or predicting spreads for the market maker,

for example.
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• Parameter estimation

In Chapter 6, we studied 1 month US data and calculated the uncertainty

bandwidth for a given set of short-term interest rate bounds. Further work

could examine interest rate data of a different origin or period. We could also

consider the effect of altering the underlying bounds on the bandwidth. There

may be an optimal choice of these parameters for which we could minimise some

desirable spread in price, for instance.

• Liquidity modelling

We presented a simplistic model for the liquidity of a hedging instrument in the

previous chapter. There is significant room for improvement in this model. For

instance, the model could be adjusted to include an increase in the bid-offer

spread as the size of the trade increases. However, in the absence of arbitrage

opportunities, we would have to ensure that any liquidity model proposed did

not predict prices for the instrument that would lie outside of the spread of

values predicted by our uncertain interest rate model.

On a more esoteric level, we present some possible future directions for the devel-

opment of the uncertain interest rate model.

7.2.1 Economic cycles

The current model is, to some extent, ill-suited to long-term risk management. In this

field, we require a model which takes into account the long-term economic cycles un-

derlying interest rate movements. We would use such a model for pricing guaranteed

annuity options, for instance, or in the life insurance industry [20].

We propose an extension of our uncertain model which could model economic

cycles. To accomplish this, we think of an economic cycle (with a period of between

five and ten years, say) as a form of simple harmonic motion, i.e.

d2r

dt2
= a− ω2r,

for some a and ω. This motion has period π/ω and is centred on r = a/ω2.

This motivates the addition of a constraint on the second derivative of the short-

term interest rate in our model. We therefore propose a constraint of the form,

a−(r, s) ≤ d2r

dt2
≤ a+(r, s), (7.1)
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where

s =
dr

dt
.

We can rederive our worst-case scenario pricing equation under this new assump-

tion. We again consider the movement in the value of a contract, V (r, s, t), over a

time step dt. Using Taylor’s theorem to expand about a small time step dt and space

steps dr, ds:

V (r + dr, s+ ds, t + dt) = V (r, s, t) + Vrdr + Vsds+ Vtdt+O(dr2) +O(ds2) +O(dt2)

= V (r, t) + sVrdt + aVsdt+ Vtdt +O(dr2) +O(ds2) +O(dt2),

where

a−(r, s) ≤ a ≤ a+(r, s),

since ds is bounded from Equation 7.1.

Hence, we approximate (to O(dt))

dV = V (r + dr, s+ ds, t+ dt)− V (r, s, t) = sVrdt+ aVsdt+ Vtdt.

We want to investigate the value of this portfolio in a worst-case scenario. We require

that, in this worst case, our portfolio always earns the risk-free rate of interest. We

therefore have

min(dV ) = dVworst case = rV dt.

Otherwise, we could make an arbitrage profit on our belief that this is a worst-case

scenario. Hence, we have

min
a

(dV ) = min
a

(sVrdt+ aVsdt+ Vtdt) = rV dt.

Thus,

min
a

(sVr + aVs + Vt) = rV.

We can then take the minimisation inside the brackets, to find that the value of the

contract in a worst-case scenario is

Vt + sVr + a (r, s, Vs)Vs − rv = 0,

where

a(r, s,X) =

{
a−(r, s) if X > 0
a+(r, s) if X < 0.

This is again a first-order nonlinear hyperbolic partial differential equation for the

portfolio value, with characteristics given by

dt

1
=
dr

s
=

ds

a(r, s, Vs)
=
dV

rV
.
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7.2.2 A model for the forward rate curve

In Chapter 5, we often found that we were required to keep track of the worst-case

scenario values of two different quantities at the same time in a consistent manner.

For instance, the value of the underlying and the value of the hedging portfolio for

an option. We also found that keeping track of a reference rate of longer period than

the short-term rate was a complex, if not impossible, task (for the index amortising

rate swap, for example).

We now comment on a potential solution to these problems. We propose a method

that will automatically track the underlying bond price, leaving us with only one

quantity left to consider. Similarly, the method will track interest rates of non-

instantaneous period, allowing us to price contracts dependent on these rates more

effectively.

To accomplish these objectives, we suggest an uncertain model for the entire

forward rate curve. Where our previous model was the uncertain version of a short-

term interest rate model, this new approach can be seen as synonymous to HJM in

our uncertain world. We propose an uncertain model for the forward rate curve,

F (t, τ), where

F− ≤ F ≤ F+,

with constraints on the derivatives of the form,

c− ≤ Ft ≤ c+,

d− ≤ Fτ ≤ d+,

e− ≤ Fττ ≤ e+.

We have bounded the second derivative to ensure that points in the forward rate

curve remain ‘close’ to each other. We could then price a contract as a function of

this curve, V (F, t).

It may be more convenient to work with a discrete set of points, Fi(t), with

separately specified bounds for each point (possibly with an approach synonymous

to BGM in our uncertain world). In the extreme, it may even be possible to solely

model the point on the forward rate curve that we are interested in, the reference

rate for our contract for instance, as opposed to the entire curve.
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7.3 Discussion

In this thesis, we have presented an uncertain, but non-probabilistic, model for the

short-term interest rate and determined the pricing equation to find the value of a

contract in a worst- or best-case scenario under this model. We have demonstrated

how to price and hedge various fixed-income products using this approach and de-

veloped a number of extensions which allow for interest rate evolutions, that are

indistinguishable from those seen in practice. Motivated by the results, we have

proposed a number of plausible applications for the methodology. Since the model

produces robust bounds for market prices, it could be used to spot potential arbitrage

opportunities, by a market-maker to set bid-offer spreads or in risk management as

a measure of absolute loss. The theory also generates a systematic and optimal ap-

proach to static hedging for the reduction of interest rate risk. It is our hope that

through this work, we have laid the foundations for a new perspective in interest rate

theory with practical application in the marketplace.
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Appendix A

Numerical solution of the pde

In practice, the complexity of the characteristic picture requires us to solve the pde

numerically. In this appendix, we consider two different approaches to the numerical

solution of the problem. We first describe the explicit finite-difference scheme. This

is a method by which we discretise the derivatives of the pde directly. Second, we

construct a trinomial tree. This scheme is derived from the original worst-case as-

sumption and the bounds on the interest rate. The latter approach is computationally

faster, but less general in its application. In either case, we must first discretise the

region in which we wish to find the solution.

A.1 Discretisation of the solution space

We discretise the solution space

0 ≤ t ≤ T , r− ≤ r ≤ r+,

using a grid of m space steps, ∆r apart, and n time steps, ∆t apart, where

∆r =
(r+ − r−)

m
and ∆t = T/n.

A general point on the grid has position

(r, t) = (r− + i∆r, j∆t),

where

0 ≤ i ≤ m and 0 ≤ j ≤ n.

This grid is shown in Figure A.1.

We approximate the solution V at a gridpoint by U , where,

V (r− + i∆r, j∆t) ≈ U j
i .
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Figure A.1: The discretised solution space

We then solve backwards in time from expiry, using our chosen numerical scheme.

We place final data at expiry, from Equation (2.8), of

Un
i = CN(r− + i∆r).

At a cash flow date, Equation (2.9) tells us that

V (r, T−C ) = V (r, T+
C ) + C(r),

which we discretise by including

U jc
i = U jc

i + C(r− + i∆r),

in our scheme at the cashflow timestep, jc, where jc = TC/∆t.

A.2 Explicit finite difference scheme

In the explicit finite-difference scheme, we approximate the partial derivatives in

Equation (2.6), using Taylor series expansions near the points of interest [51].

We approximate Vt using a backwards difference,

Vt(r, t) ≈
U j
i − U j−1

i

∆t
.

We approximate Vr using an upwind scheme,

Vr(r, t) ≈
{

Uji+1−U
j
i

∆r
if c > 0

Uji −U
j
i−1

∆r
if c < 0.
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This gives us the numerical scheme:

U j
i − U j−1

i

∆t
+ c(r, Vr)

1

∆r

{
U j
i+1 − U j

i if c > 0

U j
i − U j

i−1 if c < 0

}
− (r− + i∆r)U j

i = 0.

Rearranging this equation, we have

U j−1
i = (1− (r− + i∆r)∆t)U j

i + c(r, Vr)
∆t

∆r

{
U j
i+1 − U j

i if c > 0

U j
i − U j

i−1 if c ≤ 0.
(A.1)

The scheme is shown in Figure A.2.

r

t

U j
i+1

U j
i−1

U j
iU j−1

i

Figure A.2: The explicit finite difference scheme

We must satisfy the CFL condition. This is a necessary condition for the conver-

gence of any finite difference scheme for a first-order hyperbolic pde [57]. It states

that for a convergent scheme, the domain of dependence of the pde must lie within

the domain of dependence of the numerical scheme. Otherwise, it would be possible

to alter the problem in such a way that the analytical solution would change, but

the numerical solution would remain the same. Our scheme satisfies this condition as

long as

|c(r, Vr)|∆t ≤ ∆r.

We have not yet described the discretisation of c(r, Vr) in our equation. There is

no obvious definition, since the term is dependent on Vr and there are a number of

possible discretised forms for this derivative. For instance, we could employ a for-

wards, backwards or central difference. Unfortunately, none of these options quite

captures the qualitative behaviour of our model near a maximum or minimum. In-

stead we must construct a ‘lower level’ definition of c, dependent on U j
i+1, U j

i and

U j
i−1, so that we minimise c(r, Vr)Vr at each point, given that we will use the upwind

scheme for the latter Vr term.
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If we are at a minimum, i.e.

U j
i ≤ U j

i−1 and U j
i ≤ U j

i+1,

then to minimise c(r, Vr)Vr, we choose c(r, Vr) = 0.

If we are at a maximum, i.e.

U j
i ≥ U j

i−1 and U j
i ≥ U j

i+1,

then to minimise cVr, we choose

c(r, Vr) =

{
c+(r− + i∆r) if c+(r− + i∆r)(U j

i+1 − U j
i ) ≤ c−(r− + i∆r)(U j

i − U j
i−1)

c−(r− + i∆r) if c+(r− + i∆r)(U j
i+1 − U j

i ) > c−(r− + i∆r)(U j
i − U j

i−1).

Otherwise we choose

c(r, Vr) =

{
c+(r− + i∆r) if U j

i+1 − U j
i−1 < 0

c−(r− + i∆r) if U j
i+1 − U j

i−1 > 0.

These last conditions mirror the choice of c+ if Vr < 0 and c− if Vr > 0 when we

use a central difference to approximate Vr in c(r, Vr).

At the boundaries we must use a one-sided scheme for the space derivative. At

the lower boundary, we approximate

Vr(r
−, t) ≈ U j

1 − U j
0

∆r
,

and choose

c(r−, Vr) =

{
c+(r−) if Vr(r

−, t) < 0
0 if Vr(r

−, t) ≥ 0.

At the upper boundary, we approximate

Vr(r
+, t) ≈ U j

m − U j
m−1

∆r
,

and choose

c(r+, Vr) =

{
0 if Vr(r

+, t) ≤ 0
c−(r+) if Vr(r

+, t) > 0.
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A.3 Trinomial scheme

A second approach to the numerical solution of the pde is to use a lattice (or tree)

method to solve the equation numerically. Here, we construct a trinomial tree scheme.

This is only valid when c+ = −c− is a constant, for all r. However, the lack of

generality in the scheme is made up for by the fact that it is significantly faster to

compute than the explicit finite difference scheme.

We construct a grid for the solution space such that

c+∆t = ∆r.

In this case, at each time-step, the interest rate, r, can evolve to one of three

possible values, r − ∆r, r, or r + ∆r. This gives us a tree-like structure for the

possible paths of the interest rate, as shown in Figure A.3.

r

t

U j−1
i U j

i

U j
i+1

U j
i−1

Figure A.3: The trinomial scheme

If we have found the solution for the value of the contract at time step j, then

we know U j
i for all i. The information for the point U j−1

i must come from one of the

points U j
i−1, U j

i and U j
i+1, as the interest rate can jump up or down one step at most,

over a time step.

We are interested in the worst-case scenario valuation, that is, the lowest possible

value that U j−1
i can have. We calculate the discounted value that we would find at

U j−1
i if we started at each of the three points, U j

i−1, U j
i and U j

i+1, at time step j,

where we discount at the average interest rate over the time step. We then set U j−1
i

to be equal to the lowest of these three values.

This gives us the scheme:
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U j−1
i = min




U j
i−1(1− (r− + (i− 0.5)∆r)∆t),

U j
i (1− (r− + i∆r)∆t),

U j
i+1(1− (r− + (i+ 0.5)∆r)∆t).




At the lower boundary, there is no ‘down’ step, and the scheme is

U j−1
0 = min

(
U j

0(1− r−∆t),

U j
1(1− (r− + 0.5∆r)∆t).

)

At the upper boundary, there is no ‘up’ step, and the scheme is

U j−1
m = min

(
U j
m−1(1− (r+ − 0.5∆r)∆t),

U j
m(1− r+∆t).

)

A.4 A note on the optimisation routine

We use Microsoft Excel Solver to perform the optimisation routines for our numerical

solutions (to find the optimal static hedges) [9]. Microsoft Excel Solver uses the Gen-

eralized Reduced Gradient (GRG2) nonlinear optimisation code developed by Leon

Lasdon, University of Texas at Austin, and Allan Waren, Cleveland State University.

159



Bibliography

[1] K.J. Adams and D.R. Van Deventer. Fitting yield curves and forward rate

curves with maximum smoothness. The Journal of Fixed Income, June:52–62,

1994.

[2] M.Z. Apabhai, K. Choe, K. Khennach, and P. Wilmott. Spot-on mod-

elling. Risk magazine, 8(11):59–63, 1995.

[3] M. Avellaneda and R. Buff. Combinatorial implications of nonlinear un-

certain volatility models: the case of barrier options. Courant Institute, NYU,

1997.

[4] M. Avellaneda, A. Levy, and A. Parás. Pricing and hedging derivative

securities in markets with uncertain volatilities. Applied Mathematical Finance,

2:73–88, 1995.

[5] M. Avellaneda and Pawel Lewicki. Pricing interest rate contingent claims

in markets with uncertain volatilities. Courant Institute, NYU, 1996.

[6] M. Avellaneda and A. Parás. Managing the volatility risk of portfolios of

derivative securities: the lagrangian uncertain volatility model. Applied Mathe-

matical Finance, 3:21–52, 1996.
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