Techski n. gxd

16/03/01 11:37 Page 18

The critical
parameters

Frank Skinner and Antonio Diaz examine how different binomial stochastic processes alter
the pricing of credit derivatives, and define which credit risk parameters are of critical interest

n recent years, we have learned much about modelling term struc-

tures subject to credit risk. However, there is little empirical work re-

garding such basic issues as the relative importance of different

parameters, describing credit risk and whether correlation between

credit risk and pure (default-free) interest rates really matters. Indeed,

we do not know if we should not parameterise credit risk at all and
instead apply pure interest rate modelling methods directly to interest rates
subject to credit risk.

We address these questions by implementing binomial stochastic process-
es for pure rates of interest and credit risk in an arbitrage-free framework.
The resulting models yield replicating portfolios of state prices (synthetic
corporate zeros) that can be used to price credit derivatives. Since the whole
point of modelling credit risk is to obtain accurate prices, we examine how
different stochastic processes change the distribution of state prices and
therefore credit derivatives prices.

Specifically, the idea is as follows. For each state security price, there
exists a corresponding corporate interest rate. Credit derivative prices can
be found as the present value of promised payoutsusing the distribution of
corporate interest rates. Precisely the same price can be found as the sum
of promised payments multiplied by the state security prices. Since all mod-
els force the structure of state prices at each point in time to replicate cor-
porate zero prices that underlie the corporate term structure, then different
parameterisation schemes force different distributions of state prices. Since
changes in the distribution of state prices imply different prices for deriva-
tives, then we can suggest which parameters seem critical. If by including,
say, correlation between credit risk and pure rates of interest, the distribu-
tion of state prices remains the same, then we can suggest that correlation
does not matter. On the other hand we may observe that adding negative
correlation changes the distribution of state prices such that at low corpo-
rate interest rate states, state prices are higher, but at high corporate inter-
est rates states, they are lower. This means that by neglecting negative
correlation, we would underprice credit-risky call options that payout in
low corporate interest rate states and overprice credit-risky put options that
payout in high corporate interest rate states.

The binomial model

Under the risk-neutral probability measure Q conditional upon information
available up to date t, Duffie & Singleton (1999) show that the price of a
one-period defaultable zero is written as:

Ve =Ef e + (1 -hi ) e Ve (1)

Note that hy is the conditional (upon no prior default) hazard probabil-
ity and ry is the pure interest rate at time t. Meanwhile, uy 4 1 is the recov-
ery rate and V; 4 1 is the promised payout of $1 at maturity t + 1. In other
words, a defaultable zero promises to pay V; 4 1 at maturity t + 1, but the
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promise may be broken at hazard rate h;. If default occurs with hazard rate
h; at time t, an amount wx 4 1 is paid at time t + 1, conditional upon no
prior default. Then, under the risk-neutral probability measure Q, these fu-
ture expected cashflows are discounted by the pure rate of interest.

The above is a general expression for the value of a one-period de-
faultable zero. To highlight the challenges confronted when modelling cred-
it risk, we rewrite (1) in state contingent format in the case of a two-period
corporate zero:

v = @1(‘1, j)(mHl)%0.5@(’&1,i+1)+r(t+1,i)BE

+0.5M(t+1,j+1)+h(t+1 i1 -h(t B oo
+B_—O.5{h(t+1,j+1)+h(t+1,j}H

E- _h (t, jEVt+2} e—{r(t,i)+ 0.5[(t+1,i+1) +r(t +1,iH> @

The above expression is a binomial implementation of (1). It says that
a corporate zero may default during the first period with hazard rate h(t, j)
and recover w; 4 1 at the end of the first period. The amount is reinvested
in a Treasury security to earn interest at a high rate (interest state i + 1) or
a low rate (interest state i) next period where either state may occur with
equal likelihood under the risk-neutral probability measure. If the corpo-
rate zero survives the first period with probability [1 — h(t, j)], it may de-
fault at maturity in a high credit risk (high hazard rate) state with hazard
rate h(t + 1, j + 1), or it may default at maturity in a low credit risk (low
hazard rate) state with hazard rate h(t + 1, j), where either credit risk state
may occur with equal likelihood under the risk-neutral probability measure.
If the corporate zero defaults during the second period, investors recover
W + 2 at maturity, which may be different from wy 4 1. The corporate zero
pays the promised $1 (V; 4 ) at maturity conditional upon survival for both
periods. All potential cashflows, both the terminal payout and recovery
amounts, are discounted back to the present using binomial stochastic pure
interest rates.

The above expression is an empty mathematical shell, as two critical
challenges evident in (2) remain unresolved. First, what is the relationship
between hazard probabilities h(t, j) that evolve in credit risk state j and pure
rates of interest r(t, i) that evolve in interest rate state i? Second, hazard
probabilities are conditional probabilities in that, to default at t,, the bond
must survive t1. This means that in all possible credit risky states j and in-
terest rate states i, one must measure expected conditional payouts in the
event of default under the equivalent martingale measure for not only the
current period, but also all possible prior periods.

It is tempting to solve these challenges by “brute force”, that is, by
calculating all possible hazard and pure interest rates for all time periods.
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1. Non-parameterised corporate interest
rate model compared to zero

correlation, constant recovery model
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However, this would be computationally expensive. The number of pure
interest rate states will equal t + 1, and the number of hazard states will
be t + 1 and all possible combinations will be (t + 1)2. Consequently, we
impose distributional assumptions regarding the relationship between haz-
ard and pure interest rates.

To obtain a binomial credit risk model from (2), we suggest the fol-
lowing binomial stochastic process for the pure rate of interest and the haz-

ard rate:
r(ti)=r(0.0)e (utAT +(2-1) O,JE) (3)

(t)=h () =h(0.0)e cyeaT + one 221 () Ty @

The first binomial stochastic process is the familiar constant volatility
version of Black, Derman & Toy (1990), where r(t, i) refers to the pure in-
terest rate that evolves in state i and time t, r(O, 0) is the current observ-
able short-term pure interest rate, u; is a time-dependent parameter that
calibrates the interest rate tree by forward induction through use of state
prices to the Treasury yield curve, AT is the time step and oy is the con-
stant pure interest volatility parameter. Note that when t = 0O, r(t, i) is de-
fined to be r(0, 0). This process was chosen since it prevents negative pure
interest rates, and it is of simple form.

The second binomial stochastic process describes the evolution of the
one-period hazard rate and the joint probability distribution between r(t,
i) and h(t, j). Through covariance between the pure rate of interest and the
hazard rate, correlation py,  between these parameters is included. This
covariance is scaled by the' pure interest rate variance, leading to a multi-
plicative term that models the volatility of hazard rates as the sensitivity of
hazard rates to the current pure rate of interest. Of course, this means (4)
generates a recombining hazard rate process, since (3) is a recombining
process. In (4), the time-dependent parameter v, calibrates the hazard rate
tree by forward induction through use of corporate state prices to the cor-
porate yield curve and oy, is the constant hazard rate volatility parameter.
Note that when t = 0, then h(t, j) is defined to be h(0, 0).

Together, the binomial processes (3) and (4) form a model similar to
Das & Tufano (1996) in that we assume a linear scaling of cashflows. By
applying the law of iterated expectations, the two binomial trees (3) and
(4) are combined to calculate corporate state prices, which forms a single
binomial tree. Procedurally, we first calibrate the pure interest rate process
at today’s date t = O to the sovereign yield curve by adjusting the calibra-
tion factor u; for all future dates. This obtains the pure interest binomial
tree, the values [r (t, i)] of which are included in the hazard rate process
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2. Bias in corporate state prices and
correlation with Treasury interest rates

(upward sloping term structure of June
30, 1988)
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(4). We then calibrate the hazard rate process, which is correlated with the
pure interest rate process generated by the first calibration, to a corporate
yield curve by adjusting the calibration factor v;. Simultaneously, this cali-
bration adjusts the structure of corporate state securities until the yield im-
plied by this replicating portfolio of corporate zeros agrees with our estimate
of the corporate yield curve.

Substituting (3) and (4) into (2) and rewriting slightly, we obtain our bi-
nomial credit risk model. The result is as follows:

i EOO)QQJ AT+0. 52 ert)a, JA_T%

Vo = e
k=1 1 [ g
X % -h(o, o)eé VAT + py, %o.sz r(ti) m%gjvz + 5% (5)
=0 roi=o 0
where:
leT+ph,,ﬁo.5ir(1,i)AT
3, =h(0,0)e x5

r(O,O)eEJlATJfO.Si @i-1) o,ﬁﬁ (5a)

w, (1 -h(0,0)) +h(0,0) wie

Equation (5) is our binomial model. This model allows for correlation
of any type and for time-varying recovery rates. Equation (5a) is the re-
covery assumption where, conditional upon no prior default in any prior
time and a pure interest rate state, an (possibly time-varying) amount w is
paid at the end of the current period. Should default occur at any prior time
period, the recovery amount is reinvested in a Treasury security until
promised maturity. The sum of these recovery amounts is then included in
(5) and therefore these recovery amounts are expressed as a fraction of the
value of a two-period Treasury zero.

Empirical procedures

We select all US Treasuries and double-A rated financial industry bonds that
were quoted rather than matrix priced on June 30, 1988, from the Univer-
sity of Houston’s fixed-income database. We choose bonds that have no
call or put features. We select Treasury and banker acceptance interest rates
as our shorter-term interest rates. Finally, we choose June 30, 1988, because
we know from Standard & Poor’s that the average recovery rate during the
subsequent recession in 1990 was approximately 32.5%. We use this figure
as our estimate of the recovery fraction.
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3. State price bias and increasing

recovery (upward sloping term structure

4. State price bias and decreasing
recovery (upward sloping term structure

of June 30, 1988)
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We then apply Vasicek & Fong (1982) to estimate the Treasury and dou-
ble-A financial yield curves up to 10 years’ maturity. To generate informa-
tion about how changes in the credit spread may affect the influence of
credit risk parameters, we estimate three sets of Treasury and double-A fi-
nancial yield curves, one each on June 30, 1988, January 31, 1989, and
April 30, 1990. On June 30, 1988, the credit spread is quite wide, 138 basis
points on average, and the credit spread is fairly constant. In contrast, the
January 31, 1989, credit spread widens with maturity but the average spread
is now much smaller, at 81bp. Finally, the April 30, 1990, credit spread nar-
rows to 42bp, and the credit spread is again fairly constant.

We then calibrate (5) to these yield curves using the procedures de-
scribed in the previous section. To correspond to our monthly data ob-
servations, we use a monthly time step for a total of 120 steps for each
10-year yield curve. The base case uses June 30, 1988, yield curves, a con-
stant recovery rate of 32.5%, a constant
pure interest rate volatility of 10% and
a constant hazard volatility of 1%.

First, we estimate (5) by setting the
correlation between pure interest and
hazard rates to zero. We then re-esti-
mate (5) four times, assuming a con-
stant recovery rate of 32.5%, but
correlation of +1, +0.5, -0.5 and -1. We
then re-estimate this set of correlated
models along with the zero correlation
case using two sets of time-varying re-
covery rates. Rather than keeping the recovery rate constant at 32.5%, the
first time-varying recovery rate set smoothly increases the recovery rate
from 11.5% to 70% by the 120th month, and the second set smoothly de-
creases the recovery rate from 70% to 11.5% by the 120th month.

Finally, we calibrate corporate interest rates to the corporate yield curve
using (3) as our corporate interest rate process. This obtains estimates of
corporate state prices in the same way we currently obtain pure interest
state prices and so we make no attempt to parameterise the credit risk
process.

Empirical results

Now we plot differences in the corporate state prices generated by the var-
ious models at month 120. These state prices are today’s value of hypo-
thetical securities that promise to pay $1 only if the corresponding corporate
interest rate state occurs at month 120. Hence, the y-axis reports the dif-
ferences in today’s cash price per dollar of promised future payout for this
hypothetical security. Adding up all corporate state prices at month 120
replicates the value of a corporate zero that promises to pay $1 at maturi-
ty, no matter which corporate interest rate state occurs. Hence, areas under
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Even the simplest
parameterised model
obtains large differences in
state prices, when
compared with a
non-parameterised model
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the curves represent differences in today’s cash price of a corporate zero
that promises to pay $1 in 10 years’ time. These corporate state prices are
used to price credit derivatives, so changes in the distribution of these cor-
porate state prices caused by, say, high correlation imply that correlation
may be important in modelling credit risk because adding correlation ob-
tains different credit derivative prices.

To aid comprehension of the following figures, we always plot corpo-
rate state price differences as the “Strawman” model (the more simple
model) minus the more complex model. This means that the distance from
the x-axis represents the price bias created by using the Strawman model
rather than the more complex model, assuming of course that the more
complex model is “better”. Furthermore, since call options pay out in low
corporate interest rate states, then graphs plotting above the x-axis at low
corporate interest rate states mean that calls are overpriced if we use the
Strawman model and it is incorrect.
Similarly, graphs plotting above the
x-axis at high interest rate states mean
that puts are overpriced.

Figure 1 shows that the non-para-
meterised corporate interest rate
model generates corporate state
prices that are substantially different
from the corresponding zero corre-
lation state prices. This suggests that
even under the restrictive assump-
tions of zero correlation between
credit risk and pure rates of interest and constant recovery rates, this pa-
rameterised credit risk model can achieve substantially more accurate de-
rivative prices than those derived by a non-parameterised model. We
observe that at low corporate interest rate states, the non-parameterised
model leads to higher state prices. The opposite occurs at high interest
rate states. In other words, if we believe that the zero correlation model
is “more correct” than the non-parameterised model, then use of the non-
parameterised model leads to overvalued call options and undervalued
put options.

Notice that the bias in figure 1 decreases as we move from January 31,
1988, when the credit spread averaged 138bp, to April 30, 1990, when the
credit spread averaged only 42bp. This suggests that the bias is related to
the size of the credit spread rather than the shape of the credit spread. Fur-
thermore, this suggests that if the credit spread is very narrow, there may
be little point in parameterising credit risk since parameterised and non-
parameterised credit risk models may yield similar prices.

Figure 2 compares zero correlation as the Strawman with a version that
has non-zero correlation but constant recovery rates. The bias is related to
the sign and size of correlation. For positive correlation, the Strawman
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5. State price bias and zero correlation,

time-varying recovery (upward sloping
term structure of June 30, 1988)
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generates higher corporate state prices at lower corporate interest rate states
and lower corporate state prices at higher corporate interest rate states. In
contrast, negative correlation will lead to the oppose result.

Note that the size of the bias in figure 2 is less than the size of the bias
reported in figure 1. However, the differences in figure 2 are still large. Imag-
ine we are pricing a vulnerable European-style put option when credit risk
and pure rates of interest rate have a negative 0.5 correlation.! Since the put
will pay out at high corporate interest rate states, the maximum size of the
price difference will be equal to the sum of price differences from corpo-
rate interest rate state 61 to state 120. This will be $0.0011 per dollar of fu-
ture payout or $0.11 per hundred. For perfect negative correlation, the
difference will be roughly double. Now imagine we are pricing a 10-year
vulnerable interest rate cap, which pays off twice a year. As the size of the
total difference will grow with more monthly time steps, we can roughly
approximate the total price discrepancy using a linear approximation. This
suggests that the cap may be overpriced by $1.10 per hundred. For invest-
ment banks that hold large positions, the absolute numbers will have a sub-
stantial impact.

Figures 3 and 4 compare a credit risk model with correlation but con-
stant recovery rates as the Strawman, with a model that has correlation and
time-varying recovery rates. Figure 3 uses a recovery rate that increases with
time and figure 4 uses a recovery rate that decreases with time. For the up-
ward sloping term structure of recovery rates, we observe the same pattern
to pricing bias that we observed in figure 2. That is, for positive correlation,
call options are overpriced and put options are underpriced, and for neg-
ative correlation, calls are underpriced and puts are overpriced. Figure 4
reports that for decreasing recovery rates, the opposite occurs. Figures 3
and 4 report biases that are roughly one-tenth the size of those in figure 2.
This suggests that the potential improvement in pricing accuracy obtained
by using a time-varying recovery rate is more modest than the potential im-
provement obtained by adding correlation and a constant recovery rate to
the zero correlation model.

Figure 5 compares the zero correlation case as the Strawman with a
binomial version that similarly assumes zero correlation, but with
time-varying recovery rates. The state price differences thereby
obtained are ftrivial. This finding supports the view that time-varying

1By vulnerable, we mean that the underlying asset is not subject to credit risk, but the
writer is

2Using the non-constant credit spreads of January 31, 1989, and the narrow credit
spread of April 30, 1990, we obtained basically the same result

3We replicated figures 3 and 4, which isolate the impact of time-varying recovery rates
but include non-zero correlation, for the widening credit spread of January 31, 1989,
and the narrow constant credit spread of April 30, 1990. We obtain the same pattern
of price biases as reported in figures 3 and 4, except that the size of these biases de-
crease with the size rather than the shape of the credit spread
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recovery rates are of secondary importance.?

Nevertheless, we note that this conclusion is based on changes in the
distribution of state prices. For some securities, such as credit default swaps,
a portion of the state price related to payments in the event of default forms
a disproportionate part of the value of the security. The remaining (and usu-
ally much larger) portion of the state price related to survival contingent
values have no direct influence on the value of default contingent payouts.
Furthermore, this survival contingent value is more influenced by the cor-
relation with pure rates of interest than the default contingent value simply
because it forms a larger portion of the full state price. Hence, it is possi-
ble that for default contingent credit derivatives, such as credit default swaps,
the recovery assumption may prove to be important, yet correlation with
pure rates of interest is less important. This is precisely the opposite con-
clusion we reach when examining the distribution of the full state security
price. This leads us to suggest that whether or not the correlation or re-
covery fraction is important for modelling credit derivatives depends upon
the task at hand.

Conclusions

By examining the behaviour of state prices obtained from a binomial cred-
it risk model, we are able to suggest which credit risk parameters are of
critical interest. It appears worthwhile to parameterise credit risk, since even
the simplest parameterised model obtains large differences in state prices
when compared with a non-parameterised model. While correlation be-
tween pure rates of interest and credit risk and time-varying recovery rates
both appear influential in determining state prices, correlation appears more
influential than time-varying recovery rates.

The latter conclusion is valid for all derivatives whose price is depen-
dent upon both the survival and default contingent portions of the state
price. However, unlike vulnerable options for example, credit default swap
values depend more upon the default contingent portion of the state price,
so we may reach precisely the opposite conclusion, namely that correla-
tion is less important than time-varying recovery rates. This suggests that
which of these parameters are the most important depends upon the task
at hand.

Finally, apparent differences in state prices obtained as we vary recov-
ery assumptions and parameter estimates appear related to the size rather
than the shape of the credit spread. This suggests that if there is little cred-
it risk when, say, examining US government agency yield curves, there is
little point to parameterising credit risk. But if credit risk is large when, say,
examining emerging market sovereign yield curves, how we parameterise
credit risk becomes a critical issue. m
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Comments on this article can be posted on the technical discussion forum on
the Risk website at http.//www.risk.net
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