Interest rate swap

S H Man 9/4/03

In this note, we shall give a formula for the value of a interest rate swap agreement. Let $n \ge 1$ be a natural number. Suppose party A in a interest rate agreement on notional principal Q

- pays floating rate $r_{f,t}$ % at time $t = 1, 2, 3, \ldots, n$,
- receives fixed rate r_x % at time $t = 1, 2, 3, \ldots, n$.

Let $0 \le t_0 \le n$ be given. We shall give a formula for the value of the swap agreement to party A at time t_0 , denoted by $V(t_0)$. Before we proceed any further, we need some more notation.

- Let C be the payment, at time t = 1, 2, ..., n, associated with r_x . Note that $C = Q \frac{r_x}{100}$.
- Let C^* be the payment, at $t = [t_0] + 1^{-1}$, associated with $r_{f,[t_0]+1}$. Note that $C^* = Q \frac{r_{f,[t_0]+1}}{100}$.
- For $i = 1, 2, ..., n [t_0]$, let $t_i = [t_0] + i t_0$ and r_i be the continuously compounded interest rate from $t = t_0$ to $t = t_i$.
- Let BX(t) be the value of the fixed rate bond underlying the swap at time t.
- Let BF(t) be the value of the floating rate bond underlying the swap at time t.

It can be shown that (see [1, Chapter 14])

$$BX(t_0) = \sum_{i=1}^{n-[t_0]} C \cdot e^{\frac{-r_i t_i}{100}} + Q \cdot e^{\frac{-r_{n-[t_0]} t_{n-[t_0]}}{100}}$$
(1)

$$BF(t_0) = (Q+C^*)e^{\frac{-r_1t_1}{100}}$$
(2)

It is clear that

$$V(t_0) = BX(t_0) - BF(t_0)$$
(3)

Without out loss of generality we may assume $0 \le t_0 < 1$.

Example ([1, Table 14.3], [2, Example 5.1]) Suppose that a financial institution has agreed to pay six-month LIBOR and receive 8% per annum (with semi-annual compounding) on a notional principal of \$100m. The swap has a remaining life of 1.25 years . LIBOR rates with continuous compounding for 3-month, 9-month, and 15-month maturities are 10%, 10.5%, and 11%, respectively. The 6-month LIBOR rate at the last payment date was 10.2% (with semi-annual compounding).

In the notation defined earlier, we have the following.

 $^{^{1}[}t]$ is the smallest integer not exceeding t.

- 1 unit of time t = 0.5 year
- We may assume without loss of generality that n=3 and $t_0=0.5$.
- $r_x = \frac{8}{2} = 4$ • $r_{f,[t_0]+1} = \frac{10.2}{2} = 5.1$
- $Q = 10^8$

•
$$C = Q \frac{r_x}{100} = 10^8 \frac{4}{100} = 4 \cdot 10^6$$

•
$$C^* = Q \frac{{}^{T_{f, \lfloor t_0 \rfloor} + 1}}{100} = 10^8 \frac{5.1}{100} = 5.1 \cdot 10^6$$

Also after rescaling,

$$t_1 = 0.5, t_2 = 1.5, t_3 = 2.5$$

and

$$r_1 = 10/2 = 5, r_2 = 10.5/2 = 5.25, r_3 = 11/2 = 5.5$$

$$= \sum_{i=1}^{3} C e^{\frac{-r_i t_i}{100}} + Q e^{\frac{-r_3 t_3}{100}}$$
(5)

(4)

(8)

$$= 9.824 \cdot 10^7 \tag{6}$$

$$BF(t_0) = BF(0.5) = (Q + C^*)e^{\frac{-r_1t_1}{100}} = 1.0251 \cdot 10^8$$
 (7)
Value of swap at $t = t_0 = 0.5$

$$V(t_0) = V(0.5) = BX(0.5) - BF(0.5) = -4.27 \cdot 10^6$$

(End of Example)

References

- [1] K Cuthbertson and D Nitzsche, Financial Engineering- Derivatives and Risk Management, Wiley
- [2] J Hull, Options, Futures and other Derivatives, Prentice-Hall International