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Abstract. The aim of this paper is twofold. In the first part I review some of the main

theories of the term structure dynamics. These represent the starting point for the pricing of

widely used derivatives. In the second part the focus of the article is shifted on a generation

of new models introduced in the recent literature in order to reconcile the theory with real

financial data. In the end an extension of the CIR model is proposed as a basis for pricing

derivatives on the term structure as a possible direction for further research.

1. Introduction

Since the seminal paper of Black and Scholes, (1973), there has been a flourishing of

works on the pricing of derivative instruments. The academic world has begun to work

intensively on stochastic models of derivative products in the attempt to provide a robust,

scientific approach to deal in a more consistent way with the uncertainty of business and

trade. Pricing derivatives has indeed mainly practical purposes, and I can not deny that

in recent years the intense use of derivatives has just confirmed the practical relevance of

the mathematical models of Finance. On top of that, as recent models are becoming more

and more technical, many traditionally trained economists leave this field to researchers

with a different background, implicitly assessing that this way of doing finance is no more

economics. In my opinion this a big misunderstanding of the issue. Financial Mathematics,

in fact, is not to be considered merely a technical device to help practitioners. It is a

new technical approach to deal with uncertainty, borrowed mainly from Mathematics and

Physics. Economics is a relatively new Science, and it is not the first time it uses the

instruments of other disciplines. It is true that up to now Finance has remained the main

field of application of stochastic processes, but things could change as the recent use of these

instruments in other economic fields 1 might suggest. It is my view that the use of these

1see, e.g., Aoki, (2002) modeling of industry dynamics
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instruments will be more widespread in the economic profession in the next years because

of their flexibility. This is only a point of view but a overwhelming fact still remains true:

the theory of stochastic processes has proved very fruitful in finance, and one of the main

reasons is that, especially in the recent characterizations of interest rate dynamics, stochastic

explanations are becoming steadily more effective in taking into account what the real world

data say. This should be indeed one of the main goals of economics.

Starting from this consideration, in this paper I review some of the main developments

of the stochastic theories of term structures dynamics together with the classical arbitrage

approach which so pervasively underlies the pricing of the most common contingent claims.

The term structure of interest rates is defined as the relationship between default free

bonds of all maturities. The literature on the term structure can be traced back to Hicks,

(1939) Modigliani Sutch (1966), but these approach were radically different from today’s

approach as they didn’t take into account the stochastic dynamics of the short rate, which

is indeed one of the main determinants of the term structure evolution over time, usually

called term structure dynamics. After Black and Scholes (1976) model for options on stocks

practitioners began to use the Black (1976) model to price derivatives on interest rates. The

main assumption underlying this model is that the probability distribution of an interest

rate, a bond price or another variable is lognormal at a well defined point in time. This

implies that this model don’t take into account the stochastic behavior of the variable as

time elapses. This could undermine the consistency of the model every time one wants to

price american style instruments, callable or puttable bonds, and other instruments in which

price may be history dependent. This has been one of the main reasons of the development

of the more recent literature on interest rate dynamics. The first explicit characterization

of the short rate as a stochastic process has been made by Vasicek (1977) only twenty five

years ago, but the recent years have seen a rapid development of this branch of economics.

The outline of the paper is as follows. In section 2 I introduce in a very intuitive way

the most common derivatives on interest rates, as they are the objects the theory wants to

price. Section 3 is devoted to the explanation of two models, Vasicek (1977), CIR (1985), 2

belonging to the first generation of stochastic approaches to the term structure, known as

2still used used by and large by practitioners
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equilibrium models. 3 Section 4 presents the Hull and White model which actually represent

a change of perspective in the attempt to look more closely at what the real market data

say. In section 5 I summarize the recent advances in the attempt to look at real world data

in a more effective way (1992): HJM focus on forward rates, the analytical conditions on

volatility structures proposed by Jeffrey (1995) to retain markovness of the spot rate process

in the HJM approach, and a recent attempt to extend the CIR model to allow for arbitrary

initial term structures without changing the volatility structure in order to preserve the affine

structure, which guarantees analytical tractability. (Mari, 2001). Section 6 is a summing

up of these theories and contains a research proposal: pricing derivatives according to the

Extended CIR model and confronting these prices with the actual theoretical prices given by

other methods to assess the relevance and usefulness of this extension from a practitioner’s

point of view.

2. Derivatives on Interest rates: main features

This section is a brief review of the main contingent claims whose final payoff depends

on the movements of the term structure. This section might seem a bit boring, but it allows

me to make clearer the purposes of this work.

2.1. European Bond Options. A European-type Call Option on a bond B(t, T ) is the

right to buy the bond at a preset strike price K. This may be exercised only at the expiration

date s of the option. The call option can be purchased for a price of Ct euros at time t < s < T

This is the standard and simplest example of interest rate contingent claim. In general, we

have a formula for the value of the option at the expiration date s. In fact, under the

hypothesis of absence of fees, commissions and bid ask spreads, the value of the option is

given by

(2.1) Cs = max[P (s, T ) − K, 0]

This is the main information we have we in advance; the determination of the price of the

option at times t < s, is the aim of the theories we are going to present, and the previous

expression is usually used as a boundary condition of some Cauchy problem.

3They are so called because they usually start with assumptions on some underlying variables to derive

the equilibrium dynamics of the short rate
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2.2. Embedded Bond Options. These are options which are embedded in Bonds to make

them more attractive. A bond with an embedded call option is called Callable Bond: this

allows the issuing firm to buy back it at a certain date at an ex ante fixed strike price;

it is called callable because the holder of the bond has sold a call option to the issuer.

Conversely, the case in which the holder is allowed to demand early redemption of a bond,

at a predetermined prices at fixed date in the future, is an istance of puttable bond, because

it is as if the issuer had sold a put option to the holder.

2.3. Interest Rate Caps, (Strip of Caplets). Imagine that you are borrowing money at

an interest rate which is periodically reset equal to the Libor rate, and you want to avoid

the risk of paying more than a certain amount of interests on your borrowing. The time

elapsing between two close resets is called tenor and it lasts three months. It is clear that,

for the first three months, you pay an interest rate on the capital you borrowed equal to the

initial Libor rate, which is known. Unfortunately, for the next three months no one will tell

you how much you’ll have to pay. The cap is designed to insure against the rise of interest

rate above a certain level. This level is known as Cap rate. The Cap is a derivative whose

payoff is given by the following expression:

(2.2) Mδk max[rk − rx, 0]

where M is the capital on which the interest is calculated, δk = tk−1 − tk, the time elapsing,

rx is the interest rate cap, and rk is the interest rate prevailing in the period of time under

consideration. So, if the interest rate goes over the threshold of the cap, the buyer of the cap

will get the difference between interest rate payment actually due and the cap interest rate

payment from the issuer of the bond. This is indeed an insurance, whose fee is given by the

option price, and the holder is insured every time there is a resetting; this motivates indeed

the other two other alternative ways in which we may describe Caps: they can be seen as

a portfolio of interest rate call options, each of which is called Caplet 4, and as a portfolio

of put options on bonds. This can be easily seen with a slight modification of the previous

4This can be seen directly seen from the formula above; a Cap is indeed a strip of Caplets!
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expression for the cap evaluated 5 at time tk:

(2.3)
Mδk

1 + rkδk

max[rk − rx, 0]

with a few calculations this becomes:

(2.4) max[M −
M(1 + rxδk)

1 + δkrk

, 0]

The expression which is subtracted to M in previous formula is the value at tk of a zero

coupon bond that pays off M(1 + rxδk) at time tk+1. It is straightforward to see that the

previous formula is the expression of a put option on that bond. A cap is simply a strip of

such options.

2.4. Interest Rate Floors, (strip of Floorlets). Interest rate floors are the equivalent

to caps except for the direction of the interest rate movements they want to cover. A floor

provides a payoff to the holder when the interest rate on a loan falls below a certain threshold.

In this case is the lender who wants an insurance for the case of too low remuneration of his

capital. A floor provides a payoff at the generic time tk+1:

(2.5) Mδ max[rx − rk, 0]

With a reasoning similar to that for the caps, mutatis mutandis, we can define an interest

rate floor as a portfolio of put options on interest rates or a portfolio of call options on zero

coupon bonds.Each of these options forming this portfolio is called floorlet.

2.5. a Useful Parity Relation. As in the case of stock derivatives there exists a call put

parity relationship between the prices of caps and floors

(2.6) PC = PF + VS

where PC denotes the price of the Cap, PF the price of the floor, and VS is the value of the

swap. This relationship is very useful as one needs only to find the price of a side and then

gets the other from this relationship. As for the validity we have to require that cap and floor

have the same strike price, 6 and all the tree instruments have same life and same frequency

of payments. This relation is quite intuitive, as a long position in a cap and a short position

5we discount using rk

6which is also the fixed rate involved in the swap.
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in a floor provides the same cash flows of a swap with no exchange of payments on the first

reset date. This last observation has to be made because swaps are usually structured with

an exchange of payments at the first reset date, while caps and floor usually do not.

2.6. Collars. A collar is a combination of a long position in a cap and a short position in

a floor; usually it is formed in a way such that the price of a the cap is initially equal to the

price of the floor, so that the entering cost is zero. The aim of that instrument is to guarantee

that the interest rate on the underlying loan lies always between two predetermined levels.

2.7. FRA, (Forward Rate Agreements). Forward rate agreements are one of the most

diffused derivative instruments to hedge interest rate risks. In this contract the two sub-

scribers agree to exchange the cash flow generated by a predetermined interest rate Ft on

a certain amount of capital against the cash flow generated by the Libor rate Lti quoted

during the same period and on the same amount of capital. There are two types of FRA:

standard and paid in Arrears. The buyer of the FRA paid in arrears receives at time ti+1

the sum

(2.7) M(Ft − Lti)δ

if the difference Ft − Lti is bigger than zero, and pays

(2.8) M(Ft − Lti)δ

if that difference is negative. If the cash flow of the FRA is paid at the same time the Libor

is observed, the payoff has clearly to be discounted by (1 + Ltiδ) The Fra rate is selected in

such a way that the time t price of the FRA contract is zero.

2.8. Interest Rate Swaps. In this type of contracts the two subscribers exchange mutually

the cash flows generated by a fixed predetermined rate on a notional amount of capital against

cash flows generated by a floating rate7on the same amount of capital during a predetermined

period of time, in which rates are reset one or more time. It easy to realize that a Swap is

a more complex form of a sequence of FRAs.

7usually the Libor rate
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2.9. Accrual Swaps. This is a special kind of Swap in which interest on one side accrues

only when the floating reference rate lies within a certain range, which can be held fixed or

varied during the entire life of the Swap.

2.10. Spread Options. These are particular instruments whose payoffs depend on the

spread between two interest rates, which can or cannot be calculated from the same yield

curve.

2.11. Interest Rate Swap Options(Swaptions). As we mentioned before an option gives

the right, but not the obligation, to buy or sell an underlying asset at a certain price at 8

a given strike price. Options on Swaps are designed to allow the holder to enter in a Swap

contract at a certain date. In a sense, we can say that they bring into Swaps and FRAs

the option feature of allowing but not forcing subscribers to do something at a certain date.

Indeed in this sense they are different from forward, or deferred swaps, which involve no no

up front costs but tie the hands of subscribers.

3. Stochastic Approaches to the Term Structure part 1 : The Classics

The earliest generation of stochastic models of the term structure is distinguished by

the fact that the discount curve is derived starting from the law of motion of the short rate

and arbitrage arguments. The first step, in fact, consists in postulating a law of motion of

the instantaneous interest rate; in the case of diffusions, this is given by the following SDE:

(3.1) dr(t) = µ(t, r(t))dt + σ(t, r(t))dw(t)

where µ can be seen as the infinitesimal mean, and σ the infinitesimal variance. This char-

acterization implies that the diffusion processes can be seen as the extension in continuous

time of the uniperiodal mean variance models (De Felice Moriconi, p.202). Bond Prices are

functions of (r(t), t, T ); we assume them enough smooth for our purposes, in the sense of

being once differentiable with respect to t and twice differentiable with respect to r. Thus,

the bond dynamics is given by

(3.2) dP = µp(r(t), t; T )Pdt + σp(r(t), t; T )Pdw(t)

8Or before in case of American Options
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At first sight this might seem a geometric brownian motion, but in reality it is not, as drift

and diffusion parameters depend also on the P, and are not constant as in the geometric

case. Now let us write

(3.3) µp =
1

P

(

∂tP + µ(r(t), t)∂rP +
1

2
σ2(r(t), t)∂rrP

)

and

(3.4) σp = σ(r(t), t)∂rP

This follows from Ito’s lemma. If one wanted a risk free portfolio, she could get it simply

selecting an ad hoc combination of bond differing only for maturity. To be more specific

assume that ε1 units of a first bond are purchased and ε2 units of another bond with different

maturity are shorted, for a total portfolio value of

(3.5) V = ε1P1 − ε2P2

After straightforward calculations is possible to prove that choosing the following portfolio

weights

(3.6) ε1 =
σ2

P1(σ2 − σ1)
V

and

(3.7) ε2 =
σ1

P2(σ2 − σ1)
V

and replacing them in the bonds SDEs one can get the following instantaneous risk free

portfolio dynamics:

(3.8) dV = (ε1µ1P1 − ε2µ2P2)dt

This increment does not have any stochastic component and consequently is perfectly pre-

dictable. Now with a further manipulation we can get the following:

(3.9) dV =
σ2µ1 − σ1µ2

σ2 − σ1

V dt

At this point the crucial argument comes in: if the market is arbitrage free, then the instan-

taneous return of the new portfolio should be equal to

(3.10) r(t)dt
8



Imposing the equality, and rearranging we get a well known condition:

(3.11)
µ1 − r

σ1

=
µ2 − r

σ2

= λ(r, t)

This condition holds for n maturities and his economic meaning is straightforward: the

excess return of bonds, (or risk premia of bonds) of different maturities must be the same,

once normalized by the correspondent volatility parameters. Another way of expressing this

is saying that risk premia per unit volatilities must be the same across bonds of different

maturities driven by the same source of uncertainty. As pointed out by De Felice Moriconi,

(1992) notice that that nothing is said on the sign of the risk premia, as they can be even

negative. The fact of not imposing restrictions on the sign of risk premia allows the model

to be very easy to reconcile with most of the theoretical explanations of the term structure.

If we want to consider the case of the pure expectation hypothesis, we have to put λ = 0; if

on the other hand we believe in the liquidity preference framework by Hicks,(1939), then we

simply have to insert a non negativity constraint on the sign of λ. The model without any

constraint on λ is consistent with Modigliani, Sutch (1966) theory of the preferred habitat:

risk premia are not constrained neither by the sign, not by the monotoncity with respect

to the maturity. There is a compelling economic reason for this: the risk premium can be

seen as a differential in the returns determined by different time preferences of the agents:

as a rule, in fact, it is not always the case that investors prefer the same time horizon for

their investments. Indeed, it is a well known fact that in the real world the composition of

assets and liabilities is often determined by institutional features: for instance, a pension

fund will have a different time preference for investments with respect to a single consumer.

The implication is quite straightforward: if one wants to shift the investment of the agents

from their optimal one, she will have to compensate them with the risk premium. The

preferred strategy, which determines the choice of the financial instruments, depends on the

time horizon preferred by the investors; it is now clear that putting constraint on the sign of

the market price of risk is equivalent to assess the preferences of the investors for a certain

instrument with respect to another. Thus, the model without any constraint on the sign of

λ, besides being consistent with the theories of the preferred habitat, it also avoids to make

any a priori assumptions on the preferences of investors. These will have to be made by the

user of the model in the specific applications.
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Now if we use the market price of risk equation in the expression for µ and impose

the equivalence of the drift and diffusion components, which must hold in an arbitrage free

market, after some algebraic manipulation we get the relevant PDE:

(3.12) Pr

(

µ(rt, t) − σ(rt, t)λ) + Pt +
1

2
Prrσ(rt, t)

2 − rtP = 0

The Boundary condition to this problem is given by

(3.13) P (T, T ) = 1

The solution to this problem gives us a stochastic process which represents the discount 9

function of the model, function of r and t. This is indeed the term structure we were looking

for.

Now a remark is due: in this setting, the reasoning of Black and Scholes (1973), can not

be applied sic et simpliciter, as we need to specify an additional parameter: the market

price of risk. In the Black and Scholes setting, after the formation of a riskless portfolio, we

usually replace the drift coefficient with the constant spot rate, and after straightforward

manipulation we get the famous PDE. In this case,unfortunately, on one hand the spot rate

is not constant, and, on the other, the driving process is no more the price of a traded asset,

but a pure number, r(t). As a result, replacing µ with r(t),would force us to switch the

interest rate drift to his risk neutral equivalent; to do this we need the exact specification of

the market price of risk. For the sake of interpretation, the solution to this problem gives

us a stochastic process which represents the discount 10 function of the model, function of

r and t. This is indeed the term structure we were looking for. Before closing this section,

notice a striking difference with the Black and Scholes (1973) work: in the case of stock as

underlying assets by means of arbitrage arguments we succeeded completely in eliminating

the need to model the drift component; the only objects to specify were the volatilities. In

the case of the spot rate dynamics, we need to specify both the drift and the market price

of risk parameter. As we will see later, the HJM approach will overcome this difficulty. The

next step consists now in extending this reasoning to the final goal of these models: the

pricing of contingent claims.

9equilibrium

10equilibrium
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3.1. The Pricing of Derivatives. In the classical approach to the term structure, Bonds

can be viewed as the simplest case of contingent claims, as they are deterministic at the

expiry date; as a result the term term structure equation can be seen as the first example of

derivative pricing11. As far as the general case is concerned, in which the expiry outcome is

no more deterministic, we have to provide a general frame. Let us call

(3.14) C = C(t, r(t))

the price at time t of a contingent claim with

(3.15) C(T, r(T )) = Ψ(T, r(T )

as the correspondent expiry condition, with Ψ(.) real valued function. It can be proved that

the following lemma holds:

Proposition 1. If the Market is arbitrage free, then C(t,r(t)) is the solution of the following

PDE:

(3.16) ∂tC + (µ − λσ)∂rC +
1

2
σ2∂rrC − rC = 0

with C(T, r) = Ψ(T, r) as boundary condition

As a result the solution of this PDE will resolve the most general pricing problem.

The story does not end here: in fact, it is also possible to prove that the solution of this

Cauchy problem admits a stochastic representation known in literature as the Feymann- Kac

solution given by the following:

(3.17) C(t, r(t)) = E
Q
t

[

e−
∫

T

t
r(u)duΨ(T, r(T ))

]

This representation is very useful as it expresses the price of a general contingent claim as

the expected value of the discounted expiry payoff of the contingent claim itself. It must be

stressed that this result holds under the martingale measure Q which also governs the short

rate dynamics given by:

(3.18) dr(t) = (µ − λσ)dt + σdw?(t)

11this is true only in the classical approach

11



where

(3.19) w?(t) = w(t) +

∫ t

0

λ(u)du

from Girsanov theorem. On top of that it can be also shown that the discounted prices of the

contingent claim are martingales under the risk neutral probability measure. Now the best

way to give an intuitive idea of how this machinery actually works, is to provide a simple

example. In case of the Price of the bond as an interest rate derivative the feymann-Kac

representation gives us the following

(3.20) P (t, r(t); T ) = E
Q
t

[

e−
∫

T

t
r(u)du

]

We can interpret this simply as the expected value (under the martingale measure!) of an

euro paid in T, discounted at time t. If instead we suppose you want to price an european

call option written on a zero coupon bond with maturity T and expiry date s < T , and strike

price K. According to the Feyman-Kac representation the price at time t of this option is

given by:

(3.21) C(t, r(t)) = E
Q
t

[

e−
∫

s

t
r(u)du max{(P (s, r(s); T )− K, 0)}

]

The striking difference with respect to the Bond as an interest sensitive instrument lies in

the expiry payoff: the expression max{(P (s, r(s); T ) − K, 0)} is a deterministic function of

r(s) which is stochastic; as a result it is itself stochastic.

3.2. The Mean Reversion Property. The next step now, is to specify a functional form

for the short rate movements; as a result, in the following, we will analyze two classical one

factor models which admit closed form solution. In literature there are several character-

ization of the short rate process, but there is a widespread unifying feature that is worth

mentioning: the mean reversion property. Interest rate models, in fact, differ radically from

the Black and Scholes (1973) frame because of the departure from the geometric SDE. In

fact, if we postulate a geometric brownian motion for the short rate, as t converges to in-

finity, the spot rate converges to plus or minus infinity, depending on the sign of the drift

parameter. In the real world, interest rate seem not to have trends. Last, but not least, the

percentage volatility of the rt will be constant, but in the real world interest rate volatility

seems to be a complicated non linear function of the short rate. As a result, this behaviour
12



is not consistent with actual interest rate movements and is surely not sensible from an

economic perspective. To avoid this inconsistency most of term structure models use a mean

reverting specification for the short rate. There is also an economic argument in favor of

mean reversion: when rates are high, the economy tends to slow down and borrowers require

less funds: this leads to a decline in interest rates. On the other hand, if interest rate are

low12 the demands for funds tends to grow, and this pushes rates higher. As for the volatil-

ity behaviour we will talk later of the device used to account for the stochastic volatility

characterizations presented in the literature. Now we are almost ready to analyze specific

models of the short rate. Before that, however, I need to present a class of models which

contains the above mentioned ones as subcases. This class is very used because of his the

analytical tractability.

3.3. Affine Models. This class of term structures was introduced by Duffie e Kan, (1996).

Let us start with the following definition:

Definition 1. If the term structure {P (t, T ), 0 6 t 6 T, T > 0} has the form

(3.22) P (t, T ) = F (t, r(t); T )

and F is of the following form:

(3.23) F (t, r(t); T ) = eA(t,T )−B(t,T )r

with A(., .) and B(., .) deterministic functions, then the model is said to possess an Affine

Term Structure.

The functions A(., .) and B(., .) will have a great role in the following, so at least

a remark is due. They are deterministic functions of the two real variables t and T. If we

assume the generic dynamic form for the instantaneous interest rate, and we impose that this

model actually has an affine term structure, we can substitute A(., .) and B(., .) , together

12notice that the argument is not completely symmetric: if interest rate has been lowered by the monetary

authorities in the attempt to boost the economy, no one can assure that the economy will grow, nevertheless,

it is still true that borrowers have an incentive to raise funds if they are cheaper
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with their derivatives, in the PDE holding in an arbitrage free setting. This gives us the

following result:

(3.24) At(t, T ) − {1 + Bt(t, T )}r − µ(t, r)B(t, T ) +
1

2
σ2(t, r)B2(t, T ) = 0

it is easy to notice that the boundary condition

(3.25) F (T, r; T ) = 1

implies

A(T, T ) = 0(3.26)

B(T, T ) = 0(3.27)

It is clear that we need to find conditions on the drift and diffusion terms to guarantee the

existence of solutions to the affine PDE term structure. This is a very complicated task, but

we can observe that if µ and σ are affine in r(t), then the PDE becomes a separable differential

equation for A(., .) and B(., .) I report an approach which, far from being complete from the

mathematical point of view, 13 will nevertheless allow me to derive closed form solutions for

the following models. Let us see the specific example reported in Bjork (1998). Assume that

the drift and diffusion coefficients have the following form:

(3.28) µ(t, r) = α(t)r + β(t)

and

(3.29) σ(t, r) =
√

γ(t)r(t) + δ(t)

After some algebraic trick, the PDE assumes the following form,

(3.30)

At(t, T ) − β(t)B((t, T ) +
1

2
δ(t)B(t, T )2 − {1 + Bt(t, T ) + α(t)B(t, T ) −

1

2
γ(t)B(t, T )2}r = 0

This equation is very general and holds for all t,Tr. To simplify matters further, let us fix

our choice of t and T. At this point, given that it must hold for all values of r, his coefficient

must be equal to zero.Hence we have the following equation:

(3.31) Bt(t, T ) + α(t)B(t, T ) −
1

2
γ(t)B(t, T )2 = −1

13incomplete in the sense that doesn’t take in account all the possible cases of the issue
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Moreover, as the PDE must be zero on the whole, also the remaining term must be zero.

Hence, also the following equation must hold:

(3.32) At(t, T ) = β(t)B((t, T ) −
1

2
δ(t)B(t, T )2

If we add the previous boundary conditions for A and B, we have a well defined Cauchy

problem: we solve the first equation, which is a Riccati equation and can be solved in closed

form and then we plug the solution into the second one and integrate to get A.14. This frame

contains most of the particular specifications of interest rate models, and we will use it in

the next sections to derive closed formula of the classic models of interest rate.

3.4. Vasicek, 1977. The main hypothesis of the model is that the instantaneous interest

rate is stochastic and his dynamics are given by the following expression:

(3.33) dr(t) = (b − ar)dt + σdw?(t)

The main feature of this specification is the property of mean reversion to the level b
a
. The

drawback of this specification is that with this kind of volatility structure the model can

exhibit negative values of the interest rate, which is not a good feature for an interest rate

model. The main advantage of this specification, however, is that it can be easily solved

using the affine structure property. In fact the two equations of the affine term structure

become:

(3.34) Bt(t, T ) − a(t, T ) = −1

with B(T, T ) = 0 as boundary condition, and

(3.35) At(t, T ) = bB(t, T ) −
1

2
σ2B2(t, T )

with A(t, T ) = 0 as boundary condition. For every maturity T the first equation is a simply

ODE in t and it has the following solution:

(3.36) B(t, T ) =
1

a
{1 − e−a(T−t)}

14It is a proved result that if we suppose the drift and the diffusion parameters to be time independent,

then affine µ and σ became a necessary condition for the existence of an affine term structure; for a more

detailed discussion on the affine structures, see Duffie Kan (1996)
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Then integrate the second equation and plug in it the expression for b to get the final result:

(3.37) A(t, T ) =
{B(t, T ) − T + t}(ab − 1

2
σ2)

a2
−

σ2B2(t, T )

4a

Now that we have specified A and B in terms of the Vasicek model parameters, we can use

the affine term structure definition given before to get:

(3.38) P (t, T ) = eA(t,T )−B(t,T )r(t)

On the basis of this expression there exists a closed form solution of the price of bond options

priced consistently with this term structure. This is given by the following:

(3.39) C(t, T, K, S) = B(t, s)N(d) − B(t, T )KN(d − σp)

with

(3.40) d =
1

σp

log{
B(t, S)

B(t, T )K
} +

1

2
σp

and

σp =
1

a
{1 − e−a(s−T )}

√

σ2

2a
{1−e−2a(T−t)}(3.41)

3.5. CIR, 1985. The model proposed by Cox, Ingersoll and Ross is characterized by means

of the following SDE for the instantaneous interest rate:

(3.42) dr(t) = (b − ar)dt +
√

r(t)σdw?(t)

as is easy to notice, the only difference with the Vasicek (1977) model lies in the diffusion

parameter which contains a function of r(t). This slight modification indeed embeds several

advantages: first of all the short rate cannot have negative values. In fact, the closer the

interest rate is to zero, the lesser is the magnitude of the diffusion component, due to the

square root specification which allows the mean reverting component to be bigger than the

stochastic one. On top of that this characterization of the diffusion component is consistent

with the stochastic volatility feature, which is much more satisfactory in accounting for

empirical evidence. The next step, then, is to derive the term structure behaviour implied

by this law of motion of the short rate. CIR (1985) prove that their model admits a closed

form representation of the following form:

(3.43) P (t, T ) = eA(t,T )−rB(t,T )

16



with

(3.44) A(t, T ) =
2ab

σ2
ln

[ 2γe(α+γ) T−t

2

(α + γ)(eγ(T−t) − 1) + 2γ
]

and

(3.45) B(t, T ) =
2(eγ(T−t) − 1)

(γ + α)(eγ(T−t) − 1) + 2γ

On the basis of this term structure it is possible to obtain closed form expressions for call

options on zero coupon bonds priced consistently with this model. The price of the European

Call Option is thus given by the following:

(3.46) C(r, t, s; T, K) = P (r, t, T )χ2(d1; ι, ν) − KP (r, t, T )χ2(d1; ι, ν2)

with

(3.47) d1, ι, ν, ν1

parameters consistent with the original model of CIR (1985). For details see the Bibliography.

Despite his rather unpleasant shape, this formula resembles the Vasicek (1977) one, except

for the fact that we substitute the χ2 for the Normal distribution. On top of that if we give

a closer look at it, it might recall the Black and Scholes (1973) one, and this should not be

puzzling.

4. Stochastic Approaches to the Term Structure part 2: A change of

Perspective : Hull and White (1992)

The main drawback of the first generation of interest rate models is that they involve

several unobservable parameters and do not provide a perfect fit to any arbitrary initial term

structure. This represents a very harmful drawback of these models, in so far a slight devi-

ation from the actual rates might cause a big distortion in the resulting price of derivatives

because they are much more sensitive; it goes without saying that derivative pricing might

be inconsistent with the prices of the zero coupon bond. In order to comply with the real

world data, Hull e White (1992), suggested a procedure to change the standard models of

the short rate, and provided a closed form extension of the Vasicek (1977) model. In order

to understand their intuition, suppose one obtains a reasonably accurate observation of the
17



discount curve which one can assume to be arbitrage free P (t, u), t < u ≤ T . The following

equation,

(4.1) P (t, T ) = Ep[e−
∫

T

t
r(s)ds]

then implies that the same spot rate process must satisfy the following set of equations:

(4.2) P ?(t, T0) = E
Q
t [e−

∫ T0
t

r(s)ds]

(4.3) P ?(t, T1) = E
Q
t [e−

∫ T1
t

r(s)ds]

(4.4) . . . = . . .

(4.5) P ?(t, Tn) = E
Q
t [e−

∫

Tn

t
r(s)ds]

where t0, ...tn are the n+1 maturities at which we have reasonably accurate and arbitrage free

bond prices. The problem is now to find a short rate process which allows for the solution of

such a system of equations. How can we select drift and volatility parameters such that all

the equations of the system are solved? We have n+1 equations with known left hand sides

and only two free parameters to choose. The solution of such a system is not possible unless

we admit a so strong interdependence among observed bond prices, that n−1 equations are,

in fact, redundant. Needless to say, such a model wouldn’t capture the information contained

in market prices, and would be, therefore, useless for pricing purposes. As a result, the main

issue now is to postulate a SDE with more than two parameters in the above system. Hull

and White resolved this problem15 just adding in the mean reverting specification a time

dependent parameter θt. Doing this allows the model for more flexibility in fitting the process

to the real data as we now actually have n + 3 parameters. In their extended version of the

Vasicek (1977) model Hull and White (1992) worked with the following specification of the

short rate:

(4.6) dr = (θ(t) − ar)dt + σdw?(t)

15in the simpler version of their model
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with a and σ constants and θ a deterministic function of time. The time dependent parameter

is chosen in order to fit the theoretical bond prices.This structure is affine, so bond prices

are given by the following expression

(4.7) P (t, T ) = eA(T,t)−B(t,T )r(t)

with A(., .) and B(., .) satisfying the following conditions:

Bt(t, T ) = aB(t, T ) − 1(4.8)

B(T, T ) = 0(4.9)

and

(4.10) At(t, T ) = θ(t)B(t, T ) −
1

2
σ2B2(t, T ); A(T, T ) = 0

The solutions to these equations are given by:

(4.11) B(t, T ) =
1

a
{1 − e−a(T−t)}

(4.12) A(t, T ) =

∫ T

t

{
1

2
σ2B2(s, T ) − θ(s)B(s, T )}ds

The next step is to fit the theoretical prices of the expression above to the observed one

in order to get the parameters of the market. To accomplish this is convenient to use the

forward rates. In fact, given the relationship:

(4.13) P (t, T ) = e−
∫

T

s
f(t,s)ds

we can fit the theoretical forward rate curve, {f(0, T ); T > 0} w with the market forward

rate curve {f ?(0, T ); T > 0}, with f ? defined as

(4.14) f ?(0, T ) = −
∂P ?(0, T )

∂T

Keeping into account the following expression, which gives us the forward rates for the class

of affine models:

(4.15) f(0, T ) = BT (0, T )r(0)− AT (0, T )
19



and inserting the correspondent expression for A and B given by the solution of the previous

differential equations, we get an expression for f(0,T). Fitting this theoretical expression to

the empirical one, we finally get:

f ?(0, T ) = eaT r{0} +

∫ T

0

e−a(T−s)θ(s)ds− σ
2

2a2 (1−e−aT )2(4.16)

Taking the derivative of both sides w.r.t. T, one can in fact show that

(4.17) θ(t) = f ?(0, T ) − G·(T ) + a{f ?(0, T ) − G(T )}

with

(4.18) G(T ) =
σ2

2a2
(1 − e−aT )2 =

σ2

2
B2(0, t)

At this point is quite straightforward to realize that we have found an expression such that,

for a fixed choice of a and the volatility parameter, gives us a term structure with the very

desirable property that

(4.19) P (0, T ) = P ?(0, T ),

for all T bigger than zero. The only requirement we have to impose on this model structure

is that P ? is twice differentiable with respect to T. Notice that we have found a martingale

measure for the short rate which is consistent with the market data. The next step is to

price bonds under this martingale measure; to do this is sufficient to plug the expression for

θ in the expression for A and plug it, in his turn in the expression of bond prices. After

some boring calculations one can get the following expression for the Hull and White Term

Structure:

(4.20) P (t, T ) =
P (0, T )

P (0, t)
exp{B(t, T )f ?(0, t) −

σ2

4a
B2(t, T )(1 − e−2at) − B(t, T )r(t)}

where B(.,.) is given by (4.11). To understand the usefulness of this result I report the Hull

and White (1992) Bond option price formula.

(4.21) C(t, T, K, S) = B(t, s)N(d) − B(t, T )KN(d − σp)

with

(4.22) d =
1

σp

log{
B(t, S)

B(t, T )K
} +

1

2
σp
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and

σp =
1

a
{1 − e−a(s−T )}

√

σ2

2a
{1−e−2a(T−t)}(4.23)

As it is easy to notice it coincides with the Vasicek one; notwithstanding that, this formula

contains the term B(t, s) which is now made consistent with arbitrary initial term structure.

4.1. The Inversion of the yield curve. As the exposition of the Hull and White (1992)

model should have suggested, we want to obtain the parameters of the martingale measure

directly from the market; the methodology used to achieve this goal is known as inversion

of the yield curve an consists of the following steps:

• Chose a particular model involving the parameter η we want to recover from the

market and write the r-dynamics under the martingale measure as dependent on the

parameter

(4.24) dr(t) = µ(t, r(t); ω)dt + σ(t, r(t); η)dw(t)

• Solve, for every conceivable maturity date T , the term structure equation

• Now we have computed the theoretical term structure {P (0, T ); T ≥ 0}

• Collect data from the Bond market and get the empirical term structure. Denote

this by {P ?(0, T ); T ≥ 0}

• Select the parameter such that the theoretical curve {P (0, T ); T ≥ 0} fits the empir-

ical one {P ?(0, T ); T ≥ 0} in the best way possible according to a chosen objective

function chosen to represent the goodness of fitness. This will give us the parameter

we may think chosen by the market η?

• insert this empirical parameter vector into the expression for dr, the dynamics of the

short rate. In this way we have chosen the martingale measure we can think of as

reasonably chosen by the market

• Use this martingale measure to price interest rate derivatives. This can be done using

the Feyman-Kac representation.
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5. Stochastic Approaches to the Term Structure part 3: The State of the

Art

After the Hull and White (1992) change of perspective, there has been a huge effort

from the academic world in order to extend this new market oriented methodology to the

widest possible range of characterizations of short rate dynamics in order to comply with the

complexities of the real markets. In recent years an innovative approach has been developed

to overcame the computational difficulties connected with the inversion of the yield curve

necessary to determine the martingale measure chosen by the market. In fact, current works

on interest rates share nowadays a common methodology in solving this problem of extending

interest rate models to fit any initial term structure: 16 they use forward rates. This can

be done thanks to the HJM methodology so called after the two seminal papers by Heath,

Jarrow, and Morton, (1990), (1992), who for the first derived the result. HJM is not to be

considered a model in itself, but, instead, a general methodology consisting in a thorough

exploitation of the informations contained in the forward rate. This is not the whole story.

Short rate models use only this one state variable to explain the term structure. From an

economic point of view it would be more realistic to consider not only the short rate but also

some long rate an possibly some intermediate one. The HJM methodology uses the entire

forward rate curve as an infinite dimensional and observable state variable, (Bjork,1998).

The next subsection is so devoted to the exposition, in a very heuristic fashion, of this

methodology, as I will rely on it for the rest of this survey.

5.1. HJM Methodology. The main result of the HJM approach consists in providing the

extension of the Black and Scholes (1973) reasoning to the fixed income sector using forward

rates. This can be done as there exists a one to one correspondence between instantaneous

forward rates and bond prices. Bonds are traded assets, so we can apply the procedure of

replacing the drift coefficient with the short rate under a risk neutral probability measure.

Passing from spot rates to forward rates, thus, allows us to incorporate directly arbitrage

restrictions without specifying in advance the market price of risk. In order to derive heuris-

tically the main result, we will switch to the following relations which exploits the definition

16given ad hoc volatility specification
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of the instantaneous forward rate.

(5.1) f(t, s) = −
∂

∂s
ln P (t, s)

The first thing to notice in this expression is that here doesn’t appear any expectation

operator, because the forward rate curve is observable at time t. Now let us write the

forward rate dynamics as follows:

(5.2) df = α(t, T )dt + σ(t, T )dw?(t)

It is possible to demonstrate that the following bond dynamics are implied by the previous

expression:

(5.3) dP (t, T ) = P (t, T ){r(t) + D(t, T ) +
1

2
S(t, T )2}dt + P (t, T )S(t, T )dw(t)

with

(5.4) D(t, T ) = −

∫ T

t

α(t, s)ds

(5.5) S(t, T ) = −

∫ T

t

σ(t, s)ds

The outline of the proof is the following, borrowed from Bjork (1998), and presented in a

very euristic fashion. Let me define

(5.6) Y (t, T ) = −

∫ T

t

f(t, s)ds

Applying Ito’s rule to the bond expression in terms of the forward rate we get

(5.7) dP (t, T ) = P (t, T )dY (t, T ) +
1

2
P (t, T ){dY (t, T )}2

The following step consists in computing dY (t, T ). We know that

(5.8) dY (t, T ) = −d(

∫ T

t

f(t, s)ds)

It can be easily shown by means of standard integral calculus that the following holds:

(5.9) dY (t, T ) = r(t)dt −

∫ T

t

df(t, s)ds

23



Recalling the expression for the dynamics of the forward rate we get

(5.10) dY (t, T ) = r(t)dt −

[
∫ T

t

α(t, s)dt

]

ds −

[
∫ T

t

σ(t, s)dw(t)

]

ds

Exchange dt and dw(t) with ds, 17 put r(t) instead of f(t,t)and get

(5.11) dY (t, T ) = r(t)dt + D(t, T )dt + S(t, T )dw(t)

As for the second order terms note that is a result of ordinary and stochastic calculus that

(dt)2 vanishes and (dw)2 can be approximated as dt. This implies

(5.12) {dY (t, T )}2 = S(t, T )2dt

Substituting this in the general expression for Bond dynamics gives us that formula. Now

I can demonstrate the HJM drift condition. In fact, under a martingale measure, the local

rate of return of a bond must be equal to the short rate, i.e.

(5.13) r(t) + D(t, T ) +
1

2
S(t, T )2 = r(t)

The last step is now simply to notice that −D(t, T ) = 1
2
S(t, T )2 implies

(5.14)

∫ T

t

α(t, s)ds =
1

2
{

∫ T

t

σ(t, s)ds}2

Expressing the last expression in terms of α, and deriving both members with respect to

T we get the following characterization of the drift of the forward rate dynamics under the

martingale measure for every t and T.

(5.15) α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds

The noticeable fact is that here the drift, determined by arbitrage arguments, depends only

on the volatility parameters, and this resembles the Black and Scholes (1973) results. In

this sense it can be said that the HJM can be considered the the true extension of their

methodology to the fixed income sector. Up to now it might seem that HJM comes in at

no cost, but this is not the case. Switching to forward rates and relying only on volatility

calibration, has two main drawbacks: firstly, under the risk free measure, the forward rates

are biased estimators of the future spot rates; secondly there may be cases in which the spot

17It is possible for the linearity property
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rate doesn’t follow a Markov process. This is a somewhat unpleasant feature of the HJM

approach because of the heavy computational difficulties arising in non Markovian contexts.

To have an idea of how this can happen consider that we can derive an equation for the spot

rate starting from the SDEs for forward rates just relying on the consideration that the spot

rate corresponds to the nearest infinitesimal forward loan:

(5.16) r(t) = f(t, t)

The integral equation for the forward rate at T = t 18 is given by:

(5.17) r(t) = f(0, t) +

∫ t

0

σ(s, t)[

∫ t

s

σ(s, u)du]ds +

∫ t

0

σ(s, t)dws

. Now take the conditional expectation of some future spot rate rτ at t < τ

(5.18) E
Q
T {rτ} = E

Q
t {f(t, τ} + E

Q
t {

∫ τ

t

σ(s, τ){

∫ τ

s

σ(s, u)du}ds}+ E
Q
t {

∫ τ

t

σ(s, τ)dws}

The first component of the right side is known at time t ; hence can be carried out of the

expectation operator; the third expectation is zero because it is taken with respect to a

Wiener process. The problem is that the second term in general doesn’t vanish, and this is

indeed the main reason why in general forward rates are biased estimators of the future spot

rates under the risk neutral measure. As for the non markovness of the spot rate arising in

the HJM framework, consider that rt depends also on the term

(5.19)

∫ t

0

σ(s, t)[

∫ t

s

σ(s, u)du]ds

which in general is a complex function of all past forward rate volatilities; it can be

demonstrated that in general, the trasition densities of this expression depend on he whole

story of the process.

Before closing this subsection, let me give an idea of how this machinery works. Suppose

that the process σ is a constant, i.e. σ(t, T ) = σ. The drift process according to the HJM

result is then given by

(5.20) α(t, T ) = σ

∫ T

t

σds = σ2(T − t)

18to allow for the representation of the spot rate
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The integral equation for the forward rates then becomes

(5.21) f(t, T ) = f ?(0, T ) +

∫ t

0

σ2(T − s)ds +

∫ t

0

σdw(s)

which, for this particular case of diffusion component constant can be written as

(5.22) f(t, T ) = f ?(0, T ) + σ2t(T −
t

2
) + σdw(t)

The integral equation for forward rates in T= t, which is also the one for the spot rate is

thus given by

(5.23) rt = f(t, t) = f ?(0, t) + σ2t
t2

2
+ σw(t)

It is straightforward to write the short rate dynamics

(5.24) dr(t) = {fT (0, t) + σ2t}dt + σdw(t)

As it is clear from this specification, we have fitted the short rate dynamics to the initial

term structure without too many complications for the Ho-Lee model. This is due to the

specification of the model; if we want to apply this procedure to other models like CIR(1985),

we have to use other analytical devices, as we will see in the following; nevertheless this

example shows the effectiveness of this procedure in bringing observable market data to the

forefront of arbitrage reasoning.

5.2. After HJM Change of Perspective. As mentioned before the non Markovness of

the spot rate in the HJM approach can give heavy computational problems. Jeffrey in a 1995

article derived general conditions on the volatility structures in HJM under which markovness

is still retained. To be more specific, he provides necessary and sufficient conditions such

that one can determine which volatility structures are allowable in a markovian spot interest

rate context 19, and the set of allowable initial term structures corresponding to a given

volatility structure.20

Condition 1 A Volatility structure is allowable in a markovian spot interest rate based

paradigm if there exists a pair of functions θ(r, t) and h(t, T ) that satisfy the following

19condition 1 in the paper

20condition 2 in the paper
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equation:

σ(r, t, T )

∫ T

r

σ(r, t, v)dv =
σ(r, t, T )

σ(r, t, t)
θ(r, t) +

∂

∂t

[
∫ r

0

σ(m, t, T )

σ(m, t, t)
dm

]

+

+h(t, T ) +
1

2
σ(r, t, t)2 ∂

∂r

[

σ(r, t, T )

σ(r, t, t)

]
(5.25)

The second condition states that given a volatility structure that satisfies condition 1, the

correspondent initial forward rate curve must be of the following form

(5.26) f(r, 0, T ) =

∫ r

0

σ(m, 0, T )

σ(m, 0, 0)
dm + J(T )

where

(5.27) J(T ) = −

∫ T

0

h((s, T )ds

for any admitted h(t,T) in condition 1.

In the following Jeffrey proves a Theorem which allows us to distinguish two main

cases. In fact theorem 1 states that:

(i)if σ(r, t, T ) is not of the form ξ(t, Tσ(r, t, t), then there is only a valid pair of func-

tions θ(r, T ) and h(t,T) which satisfy condition 1, hence the volatility structure uniquely

determines the initial term structure because of condition 1.

(ii) if σ(r, t, T ) is of the form ξ(t, Tσ(r, t, t), then the set of valid pairs of func tions

θ(r, t) and h(t, T ) in condition 1 is given by:

(5.28) θ(r, T ) = −{
∂

∂t

∫ r

0

σ(m, t, T )

σ(m, t, t)
dm}T=t − C(t)

and

(5.29) h(t, T ) = ξ(t, T )(C(t) − hp(t, t)) + hp(t, T )

where hp indicates any particular valid function h(., .) in condition 1. In this second case

J(T) can be chosen to fit any observable initial term structure satisfying the condition of

being differentiable at least once in maturity. To put it in a straightforward way this is

the only case in which the model has enough elasticity to fit any observable term structure.

Starting from the insights of this work, Mari(2003) has proposed a perturbative extension of

a model for Bond Prices within the the affine class. This model is set up with the property

of consistency with arbitrary initial term structures; as a result, only the case (ii) of Jeffrey
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is considered. Besides, as the author wants the model to account for the stochastic volatility

feature, only the case of K(t) 6= 0 is considered. 21 Affine structures posses very interesting

properties: first of all they are mathematically very tractable; as a consequence they allow

for risk analysis and estimation via closed form solutions of PDE or via solutions of ODE

of the first order; moreover they can be estimated using maximum likelihood techniques. In

the model it is assumed that the discount factor is a smooth function of the spot rate and of

maturity T. Under the risk neutral measure, the stochastic dynamics of the term structure

is given by

(5.30)
dP(r(T ), t; T )

P
= r(t)dt + σP (r(t), t, T )dw?(t)

with

(5.31) P (r(0), 0, T ) = P ?(0, T )

Mari (2003) proved that the model can be fitted consistently with arbitrary initial term

structures and the implied spot rate follows a Markov process iff the following condition,

which is a particular instance of the Jeffrey (1995) results, holds:

(5.32) σP (r(t), t, T ) =
√

h(t) + k(t)r(t)B(t, T )

with

(5.33) B(t, T ) = 2
C ′(t) − A(t)

k1(t)

[ 1

C(t)
−

1
∫ T

t
A(u)du + C(t)

]

and

A(t) =
1

2
(C ′(t) + −

√

C ′2(t) − 2k(t)C2(t)(5.34)

where h(t), k(t), and C(t) are functions of time that can be arbitrarily chosen which must

satisfy the condition C ′(t)2 ≥ 2k(t)C2(t). Under this condition Mari (2003) shows that the

solution of the Cauchy problem (5.30, 5.31) for the determination of the term structure is

21case 2, p.631 Jeffrey,1995
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given by:

P (r(t), t, T ) =
P ∗(0, T )

P ∗(0, t)
exp

[

f ∗(0, t)B(t, T ) −

∫ t

0

H(u)B(u, T )du+

+
1

2

∫ t

0

σ2(f ∗(0, u), u)B2(u, T )du

]

e−r(t)B(t,T )

(5.35)

where H(t) is the solution of the Volterra integral equation of the first kind:

(5.36)

∫ t

0

H(u)B(u, t)du = G(t)

with

(5.37) G(t) = −
1

2

∫ t

0

σ2(f ∗(0, u), u)B2(u, t)du

and f ∗ as usual is the initial forward rate curve. As a Corollary, Mari (2003) proves that

the dynamics of the spot rate is described by

(5.38) dr(t) =
[

a(t) − b(t)r(t)
]

dt +
√

h(t) + k(t)r(t)dw(t)

where

a(t) =
∂f ∗(0, t)

∂t
+ b(t)f ∗(0, t) − H(t),(5.39)

b(t) = −
∂2B(t, T )

∂T 2
|T=t(5.40)

The innovation of the paper consists in the explicit determination of the function a(t) which

is the term accounting for the initial term structure, and in bringing to the forefront the

Volterra equation, as a device to overcame the obstacle met by Hull and White (1992)

and Jeffrey (1995). In the following, Mari (2003), goes on considering some applications:

Gaussian Models, the CIR volatility structure and the generalized CIR volatility structure, in

which h 6= 0. The problem is that, in general, Volterra equation does not admit closed form

solution, except for simple case, as the Vasicek one. In fact for the extended Vasicek model,

this method give the same solution of the Hull and White (1992). As for the generalized

CIR model, a perturbative solution of the Volterra equation is proposed.

To sum up, a relevant contribution of this work consists in providing a solution to the

very general bond price equation, characterized as a Cauchy problem; moreover, within the

class of models characterized by a generalized CIR term structure, a solution of the Volterra
29



equation is provided via perturbation methods. This represent a very general frame by means

of which most of affine models can be made consistent with arbitrary initial conditions, and

can account for the stochastic volatility feature. This represents a big achievement in the

theory of interest rate dynamics and can be considered the state of the art of this specialized,

but still continually evolving branch of Finance.

6. Concluding Comments and a Proposal

The modern approach to interest rate dynamics and the pricing of contingent claims is

certainly one of the youngest branch of economic theory; nevertheless research in this field

has made considerable advances in the last twenty five years. The first generation of models

has been replaced by more advanced frame works which have become more effective in taking

into account what the real data say in a more consistent way; the Hull and White (1992)

insight and the HJM switch to forward rates are considered success stories, but a lot of work

remains to be done in the attempt to overcame heavy computational difficulties arising from

the simultaneous attempt to use stochastic volatility structures, which are closer to reality,

and the need to allow the models to be consistent with arbitrary initial term structures. The

Extended CIR has recently been characterized from an analytical point of view and there is

ample room for further research in this direction: first of all it would be very interesting to

price the most common contingent claims according to that paradigm; secondly one could

confront the price obtained with the actual prices in the market, and see if there are big

discrepancies. On the basis of this comparison it would then be possible to asses the practical

relevance of this new characterization of the term structure. The model is quite general so,

in principle, it is possible to obtain a lot of different characterizations of the term structure

dynamics as a basis for pricing contingent claim.
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