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1. Introduction
The purpose of this report is to describe the question of the convexity
adjustment needed to convert a forward rate to its corresponding fu-
tures rate. Because of the marking to market of any profit and loss on
a futures position, strictly speaking futures and forward contracts do
not provide equal payoffs. It is therefore not surprising that futures
and forward rates should be different.

The theoretical results presented in this report are due to Paul
Doust [1]. However, we shall resort to a slightly different approach,
making use of martingales as opposed to PDE’s, and making small
adjustments to distributional assumptions. It is reassuring to see
that whichever way one looks at it, the same convexity adjustment is
obtained.

This report can be divided in two parts. We shall first derive a
theoretical formula for the convexity adjustment. A second part will
show how to approximate such formula, and provide comments on the
results obtained, after a simple spreadsheet implementation.
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2. Theoretical derivation

2.1. The underlying principle

Let T and T + ∆T be the starting and end dates of a forward period.
We denote Lt the forward rate between T and T + ∆T at time t,
and Ft the futures rate at time t corresponding to the same period.
Note that both rates Lt and Ft will converge at time T to the then
prevailing money market rate with maturity ∆T , so that LT = FT .

Let Vt denote the T + ∆T discount factor at time t. A forward
contract struck at a rate K is a contingent claim with final payoff at
time T equal to:

ΠT = αVT (LT −K) (1)

where α denotes the day count fraction between T and T + ∆T .
The value today (t = 0) of such a forward contract is given by:

Π0 = αV0(L0 −K) (2)

and as we can see, this value is a function of the current discount
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factor V0 and forward rate L0. However, since LT = FT , the final
payoff ΠT could also have been written as:

ΠT = αVT (FT −K) (3)

This important point, together with the fact that futures contracts
can actually be traded, will enable to show that the current value Π0

of our forward contract is also a function of V0 and the current futures
rate F0, i.e.

Π0 = f(V0, F0) (4)

for some appropriate function f . It can therefore be seen from (2)
and (4) that the current forward rate L0 and its corresponding futures
rate F0 are linked together by:

αV0(L0 −K) = f(V0, F0) (5)

In general, the function f is not given by αV0(F0 − K), and L0 is
not equal to F0. Determining the explicit form of the function f will
enable us through (5), to determine the exact link between F0 and
L0, which is the so called convexity adjustment.
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2.2. Valuing a FRA using futures

Determining f(V0, F0) amounts to valuing a forward contract viewed
as a contingent claim with final payoff (3). In order to do that, we
shall call v0 = f(V0, F0) the unknown premium to be determined. We
consider an investor receiving an initial (t = 0) amount of cash equal
to v0, and engaging in a continuous trading strategy θ = (θt) in the
futures contract,1 where all cash is reinvested in the discount bond Vt.
If we call πt the value of the investor’s portfolio at time t, then the
process π = (πt) is given by π0 = v0, and the stochastic differential
equation: 2

dπt = θtdFt +
πt
Vt
dVt (6)

1At time t, the investor has a long position θt in the rate Ft, which actually
corresponds to a short position in terms of contracts.

2 Note that by writing (6), we have neglected the effect of minimum margin
requirements. In real life, an investor entering a futures contract could not reinvest
the totality of his profits in the discount bond, since some of his cash has to be
left on his margin account.
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In other words, a variation dπt in the portfolio’s value arises due to
variations dFt and dVt, and the two long positions θt and πt/Vt in Ft
and Vt respectively. The solution to (6), given the initial condition
π0 = v0 , can be expressed as:3

πt = Vt

(
v0

V0
+
∫ t

0

θ̂tdF̂t

)
(7)

where:
F̂t
4
= Ft/Ct (8)

θ̂t
4
= θtCt/Vt (9)

and the process C = (Ct) has been defined as:

Ct
4
= exp

(∫ t

0

1
FsVs

d〈F, V 〉s
)

(10)

3See appendix A.
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In particular, our investor will have a final wealth at time T equal to:

πT = πT (v0, θ) = VT

(
v0

V0
+
∫ T

0

θ̂tdF̂t

)
(11)

This final wealth is obviously a function of the initial premium v0 and
trading strategy θ. Now, suppose for a moment that we could find v0

and θ such that:
πT (v0, θ) = αVT (FT −K) (12)

Then, an investor receiving an initial cash payment of v0 and entering
the strategy θ, will exactly generate a final wealth equal to the final
payoff of our forward contract. In other words, an initial investment
together with adequate trading, enables the exact replication of a
forward contract payoff. To avoid any possibility of arbitrage, the
value of this forward contract has to be the initial investment v0.
Hence, if we can find v0 and θ satisfying (12), then we know that v0

is exactly the premium that we are looking for.
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Our problem of finding v0 can now be rephrased in terms of the
following questions:

1. Do there exist v0 and θ such that (12) holds?

2. If so, how do we calculate v0?

Of course, the answer to these questions will very much depend on the
particular assumptions made on the processes V = (Vt) and F = (Ft).
In general, it is not true that v0 and θ always exist, and if they do, ac-
tually computing v0 can be quite tedious. However, without (for now)
being more specific on V and F , we can indicate the general procedure
enabling to get answers to the above questions: firstly, comparing (12)
with (11) shows that v0 and θ should satisfy the equation:

v0

V0
+
∫ T

0

θ̂tdF̂t = α(FT −K) (13)

Now, let us assume that there exists a probability measure Q, un-
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der which the process F̂ = (F̂t) (as defined in (8) ) is a martingale,4

and furthermore, that the martingale representation theorem can ac-
tually be applied:5 this theorem states the existence of a constant x0

together with a process φ = (φt) such that:

x0 +
∫ T

0

φtdF̂t = α(FT −K) (14)

Of course, we do not know explicitly what x0 and φ are. But we are
only interested in their existence: for once we know that x0 and φ do
exist, then defining v0

4
= x0V0 and θt

4
= Vtφt/Ct, equation (14) can

be rewritten as (13), which shows the existence of a premium v0 and
a strategy θ satisfying equation (12). This is the answer to the above
first question.

4See appendix C for the proof of such existence, (provided we make the right
assumptions). Do not be put off by the terminology here: everything you need to
know is recalled below.

5See appendix D for the proof of that.
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Having answered question 1, we are now left with the task of
actually computing v0. As we shall see, there is very little to it:
indeed, the nice thing about F̂ = (F̂t) being a martingale under Q, is
that we can always write:6

EQ

[∫ T

0

θ̂tdF̂t

]
= 0 (15)

and taking Q-expectation on both sides of (13), we therefore obtain:

v0 = αV0(EQ[FT ]−K) (16)

which shows that computing v0 amounts to the computation of the
Q-expectation EQ[FT ]. In general, this expectation can be quite dif-
ficult to obtain explicitly. However, if the assumptions made on the
processes F and V are such that the process C = (Ct) as defined

6We are being slightly over optimistic here. In reality, some integrability con-
dition has to be met by θ̂. See appendix D.



Section 2: Theoretical derivation 12

in (10) is actually deterministic,7 then we have the following:8

EQ[FT ] = EQ[F̂TCT ] = CTEQ[F̂T ] = CTF0 (17)

which can be substituted into (16) in order to obtain:

f(V0, F0)
4
= v0 = αV0(CTF0 −K) (18)

This completes our task of answering questions 1 and 2. It should be
remembered however, that before deriving anything like (18), some
assumptions had to be made. In other words, taking just any kind
of diffusion for the processes F and V will inevitably lead to the
collapse of the previous developments. When confronted with the

7 This looks like we have an additional requirement on F and V . In fact, the
assumption of C being deterministic is also needed to ensure that the martingale
representation theorem can be applied. See appendix D

8 F̂ being a martingale under Q, (and F0 being constant), EQ[F̂T ] = EQ[F̂0] =
F0.
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task of designing our financial model, three fundamental points have
to be kept in mind:9

1. We need a probability measure Q, under which F̂ is a martin-
gale.

2. The martingale representation theorem must be applicable.

3. The process C = (Ct) should be deterministic.

2.3. The convexity adjustment

In the previous section, we were able to explicitly determine f(V0, F0)
by equation (18). Looking back at (5), it appears that the forward
rate L0 and futures rate F0 satisfy the equation:

αV0(L0 −K) = αV0(CTF0 −K) (19)

9As already mentioned, point 3 is in fact a prerequisite to point 2.
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from which we conclude that:

L0 = CTF0 (20)

In other words, the forward rate L0 is equal to the futures rate F0

times a convexity adjustment CT given by:10

CT = exp

(∫ T

0

1
FtVt

d〈F, V 〉t

)
(21)

In order to give a more explicit formulation of CT , it is now time
to be more specific about the processes F = (Ft) and V = (Vt). As
detailed in appendix B, the chosen diffusion for F and V are:

dFt = µ(t)Ftdt+ σF (t)FtdWt (22)

Vt
4
= exp(−(T + ∆T − t)Rt) (23)

10 There is no particular reason to call CT a convexity adjustment, apart from
current practice.
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dRt = γ(R∞ −Rt)dt+ σR(t)R∞dW ′′t (24)

with F0, R0 > 0, where γ,R∞ are strictly positive constants, and all
processes µ, σF , σR are deterministic. It is of course understood that
W and W ′′ in (22) and (24) are standard brownian motions. Fur-
thermore, we assume that W and W ′′ have deterministic correlation
ρ(t).

In appendix B, we show that given (22), (23) and (24), the con-
vexity adjustment CT can be expressed as:11

CT = exp

(
−R∞

∫ T

0

(T + ∆T − t)σR(t)σF (t)ρ(t)dt

)
(25)

11 Paul Doust [1] assumes log-normal diffusion for both F and V , with deter-
ministic correlation ρF,V . In this case we obtain:

CT = exp

�Z T

0
σV (t)σF (t)ρF,V (t)dt

�
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3. Practical Results

3.1. Approximating the convexity adjustment

In the previous section, we obtained formula (25), giving the convex-
ity adjustment needed to convert a futures rate to its corresponding
forward rate. As we can see, some additional assumptions have to
be made on σR(t) ,σF (t) and ρ(t) in order to compute the integral
in (25) explicitly. Following Paul Doust in [2], we shall put:

∀t ∈ R+ , σR(t) = σF (t) = σ (26)

where σ is meant to represent some sort of average volatility for rates.
This approximation could obviously be improved: it is widely ac-
knowledged that volatilities for long rates are usually lower than short
term volatilities. Hence, σR(t) could be chosen to be an increasing
function of time. As we shall see, given (26), the sensitivity of the
convexity adjustment (25) with respect to the parameter σ (and in-
deed w.r. to R∞), will not appear to be significant compared to the
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sensitivity with respect to our correlation input. The latter will be
chosen to be of the form:

ρ(t) = exp
(
−δ (T − t)

∆T

)
(27)

There is of course no true answer to the question of estimating the
correlation ρ.12 However, we believe that formula (27) displays some
interesting features, which may be worth pointing out:

Firstly, assumption (27) has the simplicity of having only one pa-
rameter, the decorrelation factor δ, to describe the whole structure of
correlation ρ(t). Also, as t tends to the maturity T , ρ(t) is increas-
ing to 1, which is exactly what we should expect.13 Furthermore,
formula (27) ensures that the two rates Ft and Rt are always posi-
tively correlated. Finally, as the forward interval ∆T goes to infinity,
the relative weight of the period T − t compared to (T + ∆T − t) is

12 Paul Doust in [2] assumes ρ(t) = 1− δ(T − t).
13 As t tends to T , the spot rate Rt is getting more and more in line with the

futures rate Ft. In the limit, we have: e−RT∆T = (1 + αFT )−1
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t T+∆TT

: Continuously compounded spot rateR t

F t : Futures rates

T-t ∆T

Figure 1: ρ(t) = e−δ(T−t)/∆T is assumed to be the correlation between
the futures rate Ft and continuously compounded spot rate Rt.
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getting smaller and smaller. Hence, one would expect the correspond-
ing correlation to increase to the value 1, as is indeed the case with
formula (27).

Having made assumptions (26) and (27), the computation of the
convexity adjustment (25) is just a simple exercise. We obtain:

CT = exp
[
−σ

2R∞(∆T )2

δ2

(
(δ + 1)

(
1− e−δT/∆T

)
−
(
δT

∆T

)
e−δT/∆T

)]
(28)

Note that in the limit case where Ft and Rt are perfectly correlated,
i.e. where the decorrelation factor δ is zero, we have:

CT = exp

[
−σ2R∞(∆T )2

(
T

∆T
+

1
2

(
T

∆T

)2
)]

(29)

Formulas (28)and (29) can easily be implemented on any spreadsheet.
In the next section, we discuss the results following such implementa-
tion.
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3.2. Spreadsheet implementation for Eurodollars

We have applied formula (28) to the Eurodollars market. There are
currently 40 futures contracts being traded, which gives 40 forward
periods, as figure 2 indicates.

Each forward period is chosen to be an interval between two points
of the IMM grid, the first point corresponding to the maturity of the
futures contract. Note however that strictly speaking, a futures quote
implies a futures rate corresponding to a period between the maturity
of the contract, and this maturity +3 months. This period may not be
exactly the one between two IMM points.14 This problem is referred
to as the gap effect, which hopefully should not be significant.

For each forward period, the convexity adjustment can be calcu-
lated using formula (28). A possible set of inputs to this formula is
shown in figure 4. As expected, Rate, Vol and Decorr refer to R∞, σ
and the decorrelation δ respectively. However, the latter is not a very

14 In other words, we want to know about forwards between IMM points, but
we only know about futures between IMM and IMM+3m.
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Jun95 Sep95 Dec95 Mar96 Sep96 Mar05Spot

1

2

3

4

40

Figure 2: Each of the 40 forward periods is between two points of the
IMM grid.
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Futures rate vs maturity
on 20 Apr 1995
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Figure 3: The futures rates of all 40 contracts as a function of their
maturity, on spot 24 Apr 1995
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INPUT

Spot 24-Apr-95

Rate 7.00

Vol 18.00

Correl 0.86

Decorr 0.15

Figure 4: These are the inputs needed by the spreadsheet. Note that
decorr and correl are redundant information. It is however easier to
get a feel for a correlation than it is for a decorrelation
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t T T+∆T

T-t= ∆T T-t= ∆T

Futures Rate

Spot rate

Figure 5: When T − t = ∆T , the correlation between the spot rate
and futures rate is ρ = e−δ. Inputting ρ is equivalent to inputting δ,
but is a lot more intuitive.
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intuitive notion. It is easy to guess sensible values for R∞ (e.g. 7%)
or σ (e.g. 18%), but the same cannot be said for the decorrelation
δ. Therefore, we have chosen to specify δ indirectly by the use of
another input correl, more appealing to intuition: looking at (27), it
appears that if the forward period is equal (in length) to the time left
to maturity (see figure 5), then the corresponding correlation is given
by:

ρ = exp(−δ) (30)

The corresponding ρ is exactly the correl factor of figure 4. It is the
correlation between a spot and a forward15 with same maturity, where
the forward period is half the length of the period spanned by the spot
rate.

In figure 6, we show the results obtained for the inputs of figure 4.
As we can see, the difference between a futures and its corresponding
forward is limited to a few basis points. However, this is true for a

15 Strictly speaking futures rate.
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correlation factor equal to 0.86.16 As figure 7 shows, the effect of the
correlation factor can be quite dramatic. As ρ tends to 1, the last
contract of Mar 05 can have an adjustment of up to 100 basis points.
In comparison, the effect of the volatility σ and rate R∞ (see figure 8
and 9) is far less significant.

3.3. Conclusion

Using formula (28), we are theoretically able to explicitly determine
the convexity adjustment between a forward and futures rate. How-
ever, it is extremely unfortunate that this adjustment should be par-
ticularly sensitive to the correlation input. If we estimate a rate
volatility to be 14%, whether it is actually 16% or 12%, will not have
a significant impact on the final result. In any case, the consequence
for getting a wrong volatility estimate will be very little, compared
with the consequence of assuming ρ = .85 when the true correlation

16 The value of 0.86 is implied by an adjustment of 5 basis points on the Mar
00 contract, given σ = 18% and R∞ = 7%.
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(Futures-Forward) vs Maturity
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Figure 6: A futures rate is always larger than a forward rate. For a
correlation factor equal to 0.86, the difference is of the order of a few
basis points. Note that the blip on Mar 00 is due to the fact that the
forward period is 5 weeks instead of 4.



Section 3: Practical Results 28

(Futures-Forward) vs Correlation
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Figure 7: Unfortunately, the convexity adjustment is extremely sen-
sitive to the correlation input, as it goes to 1. In practice,this means
that the true Mar 05 adjustment could be anywhere between 10 and
100 basis points...
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(Futures-Forward) vs Volatility
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Figure 8: Estimating a true volatility for rates may be difficult. How-
ever, the consequence of getting it wrong is less dramatic than before.
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(Futures-Forward) vs Rate
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Figure 9: The effect of the R∞ factor.
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is .95. It appears therefore that formula (28) is not sufficient in itself,
to obtain both reliable and accurate estimate of the convexity adjust-
ment. More information is needed on the correlation factor. One way
forward could be to regard the SWAP market as a benchmark provid-
ing implied estimates. Another could be the use of historical data.17

As we can see, further research appears to be necessary.
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A. appendix
In this appendix, we solve the stochastic differential equation:

dπt = θtdFt +
πt
Vt
dVt (31)

given the initial condition π0 = v0.
We are given a complete probability space (Ω,F , P ) together with

a filtration (Ft)t∈R+ satisfying the usual conditions. We assume that
F and V are two strictly positive continuous semi-martingales, and
that the process θ = (θt) is integrable with respect to F : by this we
mean that θ is a real valued progressive process satisfying:

∀t ∈ R+ ,

∫ t

0

|θs|d|B|s < +∞ , P-a.s.

∀t ∈ R+ ,

∫ t

0

θ2
sd〈M〉s < +∞ , P-a.s.
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where B and M are respectively the finite variations and local mar-
tingale parts of F .18 Note that the integrability condition imposed on
θ, together with the fact that all paths of π/V (when π is continuous)
are bounded on any compact interval (i.e. π/V is integrable w.r. to
V ), ensures that the r.h.s. of (31) does make sense for any continuous
semi-martingale π.

We are now in a position to state:

Proposition 1 There is a unique (up to indistinguishability) contin-
uous semi-martingale π satisfying equation (31) with π0 = v0, and it
is given by equation (7), where F̂ , θ̂ and C are defined as in (8), (9)
and (10) respectively.

Proof
Before we check that π as defined in (7) is indeed a solution of (31),
it may be worth pointing that all processes defined in (7), (8), (9)

18 Note that the quadratic variation process 〈M〉 will often be denoted 〈F 〉, just
as we have used the notation 〈F, V 〉 in (10) , where strictly speaking we meant
〈M,N〉 where N is the local martingale part of the V .
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and (10) (including π itself) do actually make sense: having as-
sumed F and V continuous and strictly positive, all paths of 1/FV
are bounded on compact intervals, and the process C is therefore a
well-defined strictly positive continuous process of finite variations.
Furthermore, applying Ito’s lemma19

dCt
Ct

=
1

FtVt
d〈F, V 〉t (32)

which shows that F̂ is a continuous semi-martingale satisfying:

dF̂t =
1
Ct
dFt −

1
CtVt

d〈F, V 〉t (33)

Consequently, if B and M are respectively the finite variations and
local martingale parts of F , then the finite variations and local mar-

19 See e.g. [3], p. 149, Th. 3.3. Although there is no need to apply Ito’s lemma
here (everything is of finite variations), it is a good reference opportunity. See
also p. 153, Th. 3.6 and p. 155, Pb. 3.12



Section A: appendix 36

tingale parts of F̂ , are given by:

P-a.s. , ∀t ∈ R+ , B̂t =
∫ t

0

1
Cs
dBs −

∫ t

0

1
CsVs

d〈F, V 〉s (34)

P-a.s. , ∀t ∈ R+ , M̂t =
∫ t

0

1
Cs
dMs (35)

and from the integrability of θ with respect to F , we deduce the
integrability of θ̂ with respect to F̂ , the only may-be-delicate point
being to show that:

∀t ∈ R+ ,

∫ t

0

|θ̂s|
CsVs

d|〈F, V 〉|s < +∞ , P-a.s.

which is a consequence of the Kunita-Watanabe inequality.20 Hence,
the process π as defined in (7) is a well-defined continuous semi-
martingale.

20 See e.g. [3], p. 142, prop. 2.14. Strictly speaking the result in [3] is not as
general as the one used now, but extending it from square integrable martingales,
to local martingales is not such a big step.
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Checking that π is indeed solution of (31) is now straightforward:
applying Ito’s lemma to (7), we obtain:

dπt = Vtθ̂tdF̂t +
πt
Vt
dVt + θ̂td〈F̂ , V 〉t (36)

However, from (35), we have:

d〈F̂ , V 〉t =
1
Ct
d〈F, V 〉t (37)

and substituting (33) and (37) into (36), we obtain equation (31).
We are now left with proving the uniqueness of π: suppose there

are two continuous semi-martingales with v0 as initial value and sat-
isfying equation (31). Let X be their difference and define Y = X/V .
Then X0 = 0 and X satisfies the equation:

dXt =
Xt

Vt
dVt (38)
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In particular, we have:

P-a.s. , ∀t ∈ R+ , 〈X,V 〉t =
∫ t

0

Xs

Vs
d〈V 〉s (39)

Furthermore, by Ito’s lemma:

d

(
1
Vt

)
= − 1

V 2
t

dVt +
1
V 3
t

d〈V 〉t (40)

from which it is seen that:

dYt =
1
Vt
dXt −

Xt

V 2
t

dVt +
Xt

V 3
t

d〈V 〉t −
1
V 2
t

d〈X,V 〉t (41)

Substituting (38) and (39) into (41) shows that Y is indistinguishable
from zero (Y0 = 0). This completes the proof of the uniqueness prop-
erty. QED
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B. appendix
In this appendix, we explicitly determine the process C as defined
in (10) , and describe the assumptions made on F and V . We are
given a complete probability space (Ω,F , P ) together with a two-
dimensional standard Brownian motion (W,W ′) and the correspond-
ing augmented Brownian filtration (Ft)t∈R+ . Given a borel map
ρ : R+ → [−1, 1], we define the Brownian motion: 21

W ′′t
4
=
∫ t

0

ρ(s)dWs +
∫ t

0

√
1− ρ2(s)dW ′s (42)

We assume that the processes F and V are given by F0, V0 > 0 and
the following:

dFt = µ(t)Ftdt+ σF (t)FtdWt (43)

Vt = exp(−(T + ∆T − t)Rt) (44)

21 W ′′ is a continuous (local) martingale with quadratic variation 〈W ′′〉t = t,
hence it is a standard Brownian motion. See [3],p. 157,Th. 3.16
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dRt = γ(R∞ −Rt)dt+ σR(t)R∞dW ′′t (45)

where γ,R∞ > 0 are constant, and µ, σF , σR are locally square inte-
grable Borel maps on R+. We further assume that |σF | is bounded
away from zero, by a strictly positive constant. Note that F and R
are explicitly given by:22

Ft = F0 exp
(∫ t

0

σF (s)dWs −
1
2

∫ t

0

σ2
F (s)ds+

∫ t

0

µ(s)ds
)

(46)

Rt = R0e
−γt +R∞(1− e−γt) +R∞e

−γt
∫ t

0

eγsσR(s)dW ′′s (47)

Moreover, F and V are two strictly positive continuous semi-martin-
gales, which shows that appendix A can legitimately be applied to
them.

22 The assumptions made on µ, σF and σR ensures that all integrals in (46)
and (47) are meaningful. The reason for assuming |σF | bounded away from zero,
and µ locally square integrable (as opposed to just locally integrable) will appear
in appendix C.
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It follows from (42) that the cross-variation process between W
and W ′′ is equal to:

P-a.s. , ∀t ∈ R+ , 〈W,W ′′〉t =
∫ t

0

ρ(s)ds (48)

from which we see, using (43) and (45):

P-a.s. , ∀t ∈ R+ , 〈F,R〉t = R∞

∫ t

0

FsσR(s)σF (s)ρ(s)ds (49)

However, applying Ito’s lemma to (44):

dVt
Vt

= Rtdt− (T + ∆T − t)dRt +
1
2

(T + ∆T − t)2d〈R〉t (50)

and therefore, using (49):

〈F, V 〉t = −R∞
∫ t

0

FsVs(T + ∆T − s)σR(s)σF (s)ρ(s)ds (51)
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We finally obtain from (10):

Ct = exp
(
−R∞

∫ t

0

(T + ∆T − s)σR(s)σF (s)ρ(s)ds
)

(52)

C. appendix
In this appendix, we show the existence of a probability measure Q,
such that F̂ is a martingale under Q.23 This will prove possible by
Girsanov Theorem24 and the assumptions described in appendix B.
Looking at (8), (46) and (52), we have:

F̂t = F0 exp
(∫ t

0

σF (s)β(s)ds +
∫ t

0

σF (s)dWs −
1
2

∫ t

0

σ2
F (s)ds

)
(53)

23 Strictly speaking, if F̂ is viewed as a process indexed by the whole of R+,
then it will not be a martingale under Q, but the stopped process F̂T = (Ft∧T )
will.

24See e.g. [3] , p. 191, Th. 5.1
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where the map β : R+ → R is defined as:

β(t)
4
=

µ(t)
σF (t)

+R∞(T + ∆T − t)σR(t)ρ(t) (54)

Let Q be defined as the probability measure on (Ω,F) with density
ZT with respect to P , where:25

ZT
4
= exp

(
−
∫ T

0

β(s)dWs −
1
2

∫ T

0

β2(s)ds

)
(55)

By Girsanov theorem, the two-dimensional process (W̃ , W̃ ′) defined
by:26

W̃t
4
= Wt +

∫ t∧T

0

β(s)ds (56)

W̃ ′t
4
= W ′t (57)

25 Note that the assumptions made on µ, σF , σR and ρ in appendix B, ensure
that β is a locally square integrable Borel map on R+. So ZT is well-defined.

26Do not forget to stop your integral at T in (56).
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is a standard two-dimensional Brownian motion on (Ω,F , Q) endowed
with the filtration (Ft). Looking back at (53), it appears that:27

F̂t∧T = F0 exp

(∫ t∧T

0

σF (s)dW̃s −
1
2

∫ t∧T

0

σ2
F (s)ds

)
(58)

from which we conclude that the stopped process F̂T is a continuous
martingale under Q.

27Beware, the following is NOT true for t greater than T :

F̂t = F0 exp

�Z t

0
σF (s)dW̃s −

1

2

Z t

0
σ2
F (s)ds

�
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D. appendix
In this appendix, we show that the martingale representation theo-
rem28 can actually be applied, to prove the existence of a constant x0

together with a process φ such that:

x0 +
∫ T

0

φtdF̂t = α(FT −K) (59)

We shall also give a justification for formula (15).
We first consider the complete probability space (Ω,F , Q), to-

gether with the augmented filtration (Gt)t∈R+ generated by the one-
dimensional Brownian motion W̃ .29 From equation (58), we have in

28 See e.g. [3], p.182, Th.4.15. However, we shall more specifically use one of
its corollaries: p.184, Pb. 4.17

29 Working on the right filtered probability space is of crucial importance here.
Refer to appendix C for unexplained notations.
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particular:

F̂T = F0 exp

(∫ T

0

σF (s)dW̃s −
1
2

∫ T

0

σ2
F (s)ds

)
(60)

which shows that the random variable F̂T is Q-square integrable, and
measurable with respect to GT . If we assume that the process C is
deterministic, then FT = F̂TCT (and therefore α(FT − K)) is itself
Q-square integrable and measurable with respect to GT .30

According to the martingale representation theorem, there exist a
constant x0 together with a (Gt)-progressive process y satisfying:

EQ

[∫ T

0

y2
t dt

]
< +∞ (61)

30 This is extremely important: if CT is random, we may still have the square
integrability, but the measurability with respect to GT is lost for good. Note that
we could relax slightly the assumption of C being deterministic, by just assuming
CT non-random.
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such that:

P-a.s. , x0 +
∫ T

0

ytdW̃t = α(FT −K) (62)

Applying Ito’s lemma to (58), we have:

dF̂Tt = σF (t)F̂Tt dW̃
T (63)

from which we obtain (59), provided φ is defined as φt = yt/σF (t).
Finally, if we put v0 = x0V0 and θt = Vtφt/Ct

31, then φt = θ̂t
and therefore:

v0

V0
+
∫ T

0

θ̂tdF̂t = α(FT −K)

and by (61), we see that t →
∫ t∧T

0 ysdW̃s is a Q-square integrable
martingale, from which we conclude:

EQ

[∫ T

0

θ̂tdF̂t

]
= EQ

[∫ T

0

ytdW̃t

]
= 0

31 Exercise: show that θ is integrable w.r. to F .
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