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This article develops restrictions that arbitrage-constrained bond prices impose on

the short-term rate process in order to be consistent with given dynamic properties of

the term structure of interest rates. The central focus is the relationship between bond

prices and the short-term rate volatility. In both scalar and multidimensional diffu-

sion settings, typical relationships between bond prices and volatility are generated by

joint restrictions on the risk-neutralized drift functions of the state variables and

convexity of bond prices with respect to the short-term rate. The theory is illustrated

by several examples and is partially extended to accommodate the occurrence of

jumps and default.

A standard approach to modeling the term structure of interest rates is to
derive sets of arbitrage-free bond prices using as an input an exogenously
given short-term rate process [see, e.g., Vasicek (1977) and Cox, Ingersoll,
and Ross (1985)]. While this approach is widely used, there is no theore-
tically sound work establishing systematic answers to such fundamental
questions as: When are bond prices a decreasing function of the short-
term rate? When are bond prices a convex function of the short-term rate?
Are bond prices a decreasing function of the short-term rate volatility?
This article demonstrates that it is possible to develop results addressing
these questions in relation to all sets of economically admissible (i.e., no-
arbitrage) bond prices.

The key characteristic of the theory developed in this article is its
generality. As in the seminal contributions of Merton (1973), Cox and
Ross (1976) and Jagannathan (1984) in the option literature, I derive
general properties of bond prices while imposing as few assumptions as
possible on the state processes driving the economy. Related articles that
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also derive general properties of bond prices while imposing minimal
assumptions on the primitive state process dynamics are Dybvig, Ingersoll
and Ross (1996) and Dunn and Spatt (1999), but the results of the present
article in the term structure domain are totally new.

The class of stochastic processes typically used to analyze general
properties of option prices is the one of diffusion processes [see, e.g.,
Bajeux-Besnainou and Rochet (1996, sect. 5), Bergman, Grandy, and
Wiener (1996), Romano and Touzi (1997), and El Karoui, Jeanblanc-
Picqu�e and Shreve (1998)]. As is well-known, diffusion processes are also
the workhorse in the term-structure field. Especially in the last decade,
many new diffusion models of the short-term rate have been proposed.
These models aim to achieve two related objectives. First, they aim to
provide increasingly accurate empirical explanations of the short-term
rate dynamics [see, e.g., Chan et al. (1992), AõÈt-Sahalia (1996b), Andersen
and Lund (1997), Conley et al. (1997)]. Second, they aim to explore the
term structure implications of empirically interesting short-term rate
dynamics [see, e.g., Longstaff and Schwartz (1992), AõÈt-Sahalia (1996a),
Andersen and Lund (1997), Stanton (1997), Boudoukh et al. (1998), Jiang
(1998), Dai and Singleton (2000)]. Because the data-generating process is
inherently difficult to detect empirically, an additional useful approach is
to classify theoretical properties of bond prices according to the general
qualitative features of the primitive state process dynamics. This is exactly
the approach I develop here.

In the present article, the only assumption made is that the primitive
state processes are diffusion processes satisfying some basic regularity
conditions. Precisely, in the framework analyzed here, the short-term
rate and its instantaneous stochastic volatility form a joint Markov pro-
cess.1 As the title suggests, the main concern is to develop ``fundamental''
results relating arbitrage-free bond price movements to changes in the
short-term rate and its instantaneous volatility. This article does not
consider non-Markovian settings [e.g., Heath, Jarrow, and Morton
(1992)]. However, extending the approach followed here to more general
situations is a promising area for future research. A step in that direction is
made in Section 4, where it is shown how easily this article's approach may
be extended to treat multidimensional models including unobserved
factors with no immediate economic interpretation.

A major insight derived in this article is that the bond price reaction to
random changes of the state variables can be represented through a series
of joint restrictions on both the risk-neutralized drift function of the state

1 Surveys on continuous-time stochastic volatility option pricing models can be found in Lewis (2000) or
Fouque, Papanicolaou, and Sircar (2000). Recent work on specification, estimation, and filtering meth-
ods applied to stochastic volatility models for the short-term rate include Dai and Singleton (2000) and
Mele and Fornari (2000).
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variables and convexity of bond prices with respect to the short-term rate.
The simplest illustration of this phenomenon is provided by Proposition 1,
which shows that bond prices are convex in the short-term rate under
a bound on convexity of the short-term rate risk-neutralized drift [see
Section 3 and Equations (8) and (9)). Another important illustration
regards the relationship between stochastic volatility and bond prices:2

(A) If the drift function of the short-term rate process under the risk-
neutral measure is strictly decreasing in volatility, and bond prices
are decreasing and convex in the short-term rate, then bond prices
are positively related to random volatility changes [see Section 3,
Equation (12)];

(B) At short maturity dates, bond prices are negatively (positively)
related to random volatility changes if the drift function of the
short-term rate process under the risk-neutral measure is strictly
increasing (decreasing) in volatility (see Section 3, Proposition 3).

While property (B) is intuitive, properties (A) and (B) taken together are
rather different from properties known in the option pricing field. In the
stochastic volatility option pricing domain, for instance, convexity of
option prices with respect to the underlying asset price is a sufficient
condition for option prices to be increasing in volatility [see Romano
and Touzi (1997)]. Section 2 then provides a heuristic explanation of
property (B), and Sections 3 and 4 contain conditions and examples for
bond prices and volatility to be negatively related at any arbitrary matur-
ity date, thus strengthening property (B).

The relationship between bond prices and volatility also helps to
explain the origins of given relationships between bond prices and the
short-term rate. Even in a two-factor setting, bond prices may not be
negatively related to short-term rate movements. Propositions 1 and 2
show that such a classical inverse relationship holds when the risk-
neutralized drift and the diffusion functions of volatility are independent
of the short-term rate (and/or in the very intuitive case of short-term
maturity dates). If this is not the case, the relationship between medium-
long-term bond prices and the short-term rate is further qualified accord-
ing to the relationship between bond prices and volatility (see Section 3).

In a three-factor framework, the bond price behavior is essentially of the
same nature as the one described above (see Section 4, Propositions
4 and 5). Within such a more general setup, however, given relationships
between factors and bond prices are described by means of more complex

2 For previous numerical exercises aiming at unveiling the relationship between bond prices and volatility,
see Litterman, Scheinkman and Weiss (1991), Chen (1996), Andersen and Lund (1997), and Mele and
Fornari (2000, chap. 5).
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conditions on the joint factor dynamics. Finally, the previous analysis is
robust to the introduction of jumps phenomena and the possibility of
default as long as the parameters of the jump size distribution and the
various hazard rates are `̀ sufficiently independent'' of the level of the state
variables (see Section 5, Proposition 6).

Throughout the article, a number of models are examined to illustrate
specific aspects of the theory. For instance, the affine Longstaff and
Schwartz (1992) (two-factor) model and two of the affine (three-factor)
models of Dai and Singleton (2000) display in an exemplary way the main
properties of bond prices deduced by the theory. In the setting of these
models, the main features of the theory can be described by means of
algebraic formulae and analytical theoretical test conditions. In turn, such
a description sheds new light on these affine models. Affine models such as
the familiar model examples of this article, are certainly not entirely
exhaustive. Yet similar to the models that Lewis (2000, p. 4) suggested
to be relevant in the option pricing area, affine models appear to be
economically important in the term-structure domain. Not only are
these models easy to solve, but as shown in this article, their solution is
also `̀ typical'', that is it displays many interesting qualitative properties
that we expect in more general (nonlinear) settings.

The article is organized as follows. The next section introduces the
model's primitives. Section 2 provides a selected heuristic overview of
the article's results. Section 3 contains the central analysis of the article.
Section 4 contains extensions pertaining to three-factor models. Section 5
deals with cases in which the state variables exhibit discontinuities.
Section 6 concludes. Four appendices gather proofs, examples, and results
omitted in the main text.

1� The Model

I consider a model in which the short-term rate and its instantaneous
volatility form together a sufficient statistic for the state variables gener-
ating uncertainty in the economy. Such a model is important to study
because it displays in a transparent way many interesting qualitative
properties of more complex three-factor models. The reader may refer to
Section 4 to learn additional properties that are specific to three-factor
models.

I begin by describing the risk-neutral measure space under which the
discounted bond prices are Q-martingales. This is (
, F , F, Q), where F�
fF (�)g� 2 [t,T ] is taken to be the Q-augmentation of the natural filtration
�((W, B)(u), u� �) generated by two independent Q-Brownian motions
W, B (with F �F (T ) and T<1 ). I suppose that the short-term rate r
and volatility y are diffusion processes, that is, Markov processes with
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continuous sample paths [see, e.g., Karlin and Taylor (1981, p. 157)]. They
form a strong solution to the following stochastic differential system:

dr���
dy���

� �
� b�r���, y����

'�r���, y����
� �

d�

� ��1��r���, y���� ��2��r���, y����
 �1��r���, y����  �2��r���, y����

 !
dW ���
dB���

� �
, �1�

for � 2 (t, T ], where (r, y) take values in R�� and R, �r�t�, y�t��� �x, s�,
and b, �( j), ' and  ( j) are functions satisfying regularity conditions ensur-
ing the existence of a strong solution [e.g., definition 2.1, Karatzas and
Shreve (1991, p. 285)] to the preceding system. Let ��r, y�� P2

j� 1 �
�j�

�r, y�2=2 and  �r, y�� P2
j� 1  

�j��r, y�2=2. I suppose that @�/@y� 0 and
@�/@r� 0.

To relate the drift functions in Equation (1) to the corresponding drift
functions defined under the physical measure space, recall the well-known
result stating that in the absence of arbitrage opportunities, there exist
functions �1 and �2 such that the drift functions in Equation (1) can be
written as

b�r, y�� b̂�r, y��
X2

j�1

�� j��r, y� ��j�r, y�

'�r, y�� '̂�r, y��
X2

j�1

 � j��r, y� ��j�r, y�,

8>>>>><>>>>>:
�2�

where b̂(�, �) and '̂ (�, �) denote the drift functions under the physical
measure space, and �� (�(�)� (�1(r(�),y(�)),�2(r(�),y(�)))� 2 [t,T] is
a F (�)-adapted process that satisfies standard regularity conditions.3

Under a boundedness condition given in note 3 on �, and the condition
that for all (r, y)2R� � �R: �(1)(r, y)� �(2)(r, y)�  �1��r, y��
 �2��r, y�� 0,

P2
j� 1�

� j��r, y�L� j��r, y��P2
j� 1 

� j��r, y�L� j��r, y�� 0, any
otherwise arbitrary functional form of �i will prevent arbitrage opportu-
nities similar to those first discussed by Cox, Ingeroll and Ross (1985,
sect. 5; henceforth CIR).

Naturally the fact that the technical starting point in Equation (1) is the
risk-neutral measure does not imply that only a risk-neutral world is being
considered here. As is well known, the economic interpretation of �1 and
�2 is the one of risk premia demanded by agents to be compensated for the
stochastic fluctuations of the two Brownian motions under the physical

3 Formally, physical measure P (say) and measure Q are equivalent measures with Radon--Nikodym
derivative of Q with respect to P on F (T) given by dQ=dP� exp�R T

t
��r���, y����dU���ÿR T

t k��r���, y����k2d�=2�, where U � (W,B)T and � (r(�),y(�))� 2 [t,T] is F (�) adapted and satisfies
the Novikov's condition [Karatzas and Shreve (1991, corollary 5.13, p. 199)]:
Efexp�R T

t
k��r���, y����k2d�=2�g<1, where E� denotes expectation under measure P.
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measure, and �i are both nil when agents are risk neutral. Equations (2)
thus summarize the mapping between the fundamentals (law of motion of
the state variables and models of risk aversion) and the risk-neutral drifts in
Equation (1). Consequently all results in this article impose joint restric-
tions on both the law of motion of the state variables under the physical
measureandmodelsofriskaversion[see,e.g.,Equations(13), (18),and(19)].4

Let u(x, s, t, T ) denote the rational price of a pure discount bond
expiring at T� t when the short-term rate and its instantaneous volatility
are (x, s) at time t. (Only pure discount bonds are considered in this
article.) In a frictionless economy without arbitrage opportunities, u is
the solution to the following partial differential equation:

0� @

@�
�Lÿ r

� �
u�r, y, � , T�, 8�r, y, �� 2R�� �R� �t, T�

u�r, y, T , T�� 1, 8�r, y� 2R�� �R,

8<: �3�

where @�/@� �L� is the infinitesimal generator of Equation (1), with

Lu� bu1�'u2� �u11� u22����1� �1� � ��2� �2��u12,

where u1� @u=@r, u11� @2u=@r2, u2� @u=@y, and so on. No transversality
conditions are imposed here.5 Throughout this article, it will also be
assumed that the coefficients of the infinitesimal generator of Equation (1)
are such that the bond price and its partial derivatives can be computed
via the celebrated Feynman±Kac representation theorem [e.g., Karatzas
and Shreve (1991, p. 366)]. Regularity conditions ensuring the feasibility
of such a representation as well as related regularity conditions are spelled
out in Mele (2002, appendices A, B, and C).

Let #(�)�#(� , z; !), � 2 [t, T ] denote the solution flow of the first
stochastic differential in Equation (1) at � starting at z� (x, s) at the
point !2
. Under the regularity conditions mentioned before, there is a
unique C2,1(R���R, [0, T ]) solution to Equation (3) that admits the
following Feynman±Kac stochastic representation:

u�x, s, t, T��E exp ÿ
Z T

t

#���d�
� �� �

, �4�

where E is the expectation operator taken under measure Q.
By differentiating the bond price function in Equation (4),

u1�x, s, t, T�� ÿ E
Z T

t

@#

@x
���d�

� �
exp ÿ

Z T

t

#���d�
� �� �

, �5�

4 Recent empirical studies focusing on the estimation of objects defined under the physical measure as well
as the risk-neutral measure include Dai and Singleton (2000) and Mele and Fornari (2000, chap. 5) in the
term-structure domain; and Chernov and Ghysles (2000) and Mele and Fornari (2001) in the option
pricing field.

5 If 0 and1 (respectively ÿ1 and1) are inaccessible in finite expected time for r (y), the behavior of u as r
and/or y approach their inaccessible boundaries is implicitly determined by Equation (3).
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and

u11�x, s, t, T��E
Z T

t

@#

@x
���d�

� �2

ÿ
Z T

t

@2#

@x2
���d�

" #(

� exp ÿ
Z T

t

#���d�
� ��

, �6�

where the `̀ sensitivity processes'' @#/@x, @#/@s, etc., are taken to share the
same `̀ diffusion'' properties as Equation (1) and in particular are such
that 'T� > t : EfsupT j

R T

t �@#=@x����d� jg<1 for all T<T� (the same
condition being satisfied by the other sensitivity processes). These last
conditions are very mild and will be used to study the local properties of
Equation (4).6

Equations (5) and (6) are convenient ways to represent partials of
the bond price with respect to the short-term rate. Together with
Equations (3) and (4), these basic equations form the starting point of
the analysis in this article.

2� How do Bond Prices React to Random Volatility Changes?

A binomial example may illustrate very simply some aspects of the rela-
tionship between bond prices and volatility. Consider a risk-neutral tree in
which the next period interest rate is either i� � i� d or i� � iÿd
with equal probability, where i is the current interest rate level and d> 0.
The price of a two-period bond is u(i, d )�m(i, d )/(1� i ), where m(i, d)�
Ef1/(1� i� )g is the expected discount factor of the next period. By
Jensen's inequality, m(i, d )> 1/(1�Efi�g)� 1/(1� i )�m(i, 0). Therefore
two-period bond prices increase upon activation of randomness. More
generally, two-period bond prices are always increasing in the `̀ volatility''
parameter d in this example (see Figure 1).

This phenomenon can be connected with an important result derived by
Jagannathan (1984, pp. 429±430) in the option pricing area. The
Jagannathan's insight was that in a two-period economy with identical
initial underlying asset prices, a terminal underlying asset price ~y is a
mean-preserving spread of another terminal underlying asset price ~x [in
the Rothschild and Stiglitz (1970) sense] if and only if the price of a call

6 Additional technical conditions that do not have an immediate economic interpretation are that
8(x,s)2R�� � R, 'T� > t : EfsupT 2 ��, T� �j�@#�T�=@x� ÿ #�T�R T

� �@#�u�=@x�dujg, EfsupT 2 ��;T� �j
b�3�, 11����@#�T�=@x�j,EfsupT 2 ��;T��jb�3�;11���

R T

� �@#�u�=@x�dujg,EfsupT2 ��;T��j'�2�;1�����
R T

� �@#�u�=@s�dujg;
EfsupT2 ��;T��j �2�;1�����

R T

� �@#�u�=@s�du�2ÿR T

� �@2#�u�=@s2�du�jg,EfsupT2 ��;T� �j��1�;2�����
R T

� �@#�u�=@x�
du�2ÿR T

� �@2#�u�=@x2�du�jg;EfsupT2 ��;T� �j��1�;2����@#�T�=@x�R T

� �@#�u�=@x�dujg,EfsupT2 ��;T� �j��1�;2���
�@2 #�T�=@x2�jg exist for all � 2 [t,T� ] (with b(1),2 and �(1),2 also satisfying the same conditions satisfied
by b(3),11) (see Appendix A for the notation). These conditions are also very mild and are required to use
both the Fubini--Tonelli and the Lebesgue's dominated convergence theorems to study the local behavior
of the pricing function (4) [see, for instance, Equation (B4) in Appendix B].

Fundamental Properties of Bond Prices

685



option on ~y is higher than the price of a call option on ~x. This is so because
if ~y is a mean-preserving spread of ~x, then E� f �~y��>E� f �~x�� for f
increasing and convex.7

An argument such as the one illustrated in Figure 1 is thus theoretically
appealing, yet it depends too much on the assumption that the expected
short-term rate is independent of d. Consider indeed a multiplicative
setting in which either i� � i(1� d) or i� � i/(1� d) with equal proba-
bility. Litterman, Scheinkman, and Weiss (1991) showed that in such a
setting, bond prices are decreasing in volatility at short maturity dates and
increasing in volatility at long maturity dates. This is so because expected
future interest rates increase over time at a strength positively related to d.
At short maturity dates, such an effect dominates the convexity effect

Figure 1
A connection with the Rothschild--Stiglitz--Jagannathan theory: the simple case in which convexity of the
discount factor induces bond prices to be increasing in volatility
If the risk-neutralized interest rate of the next period is either i� � i� d or i� � iÿd with equal
probability, the random discount factor 1/(1� i� ) is either B or b with equal probability. Hence
m(i, d)�E{1/(1� i� )} is the midpoint of bB. Similarly if volatility is d 0 > d, m(i, d 0) is the midpoint
of aA. Since ab>BA, it follows that m�i, dt0�>m�i, d�. Therefore the two-period bond price
u�i, v��m�i, v�=�1� i� satisfies u(i, d 0)> u(i, d) for d 0 > d.

7 To make such a connection more transparent in terms of the Rothschild and Stiglitz (1970) theory, let
~md �i��� 1=�1� i�) denote the random discount factor when i� � i � d. Clearly x!ÿ~md �x� is increas-
ing and concave, and so we must have E(ÿ~md 00 �x))<E(ÿ~md 0(x)), d 0 < d 00, which is what demonstrated
in Figure 1. In Jagannathan (1984), f is increasing and convex, and so we must have E(f(Ä y))>E(f(~x))) ~y
is riskier than (or a mean-preserving spread of) ~x.
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illustrated in Figure 1. At longer maturity dates, the convexity effect
dominates.

This article provides a theoretically sound explanation of the previous
and related phenomena. Consider for example the two-factor stochastic
volatility model of the previous section, and differentiate Equation (3)
with respect to volatility (y). The result is that the first partial of the bond
price with respect to volatility, u2(r, y, � , T), is the solution to the following
partial differential equation:

0� @
@� �L1 ÿ k1
ÿ �

u2�r, y, � , T�� fb2�r, y�u1�r, y, � , T�
� �2�r, y�u11�r, y, � , T�g, 8�r, y, �� 2R�� �R� �t, T�

u2�r, y, T , T�� 0, 8�r, y� 2R�� �R

8><>: �7�

where L1 and k1 play the same role as L and r in Equation (3) (see
Appendix A for the precise definitions of L1 and k1). By an application
of the maximum principle [e.g., Friedman (1975)],8 u2 is then always
positive under the assumption that b2u1� �2u11 is positive for each
(r, y, �)2R���R� [t, T ), thus confirming property (A) stated in the
introduction.

Arguably, assuming that b2u1� �2u11> 0 is restrictive. For example,
Proposition 2 shows that u1< 0 at short maturity dates. When u11> 0, u2

is then positive only with b2< 0 at short-maturity dates. This conclusion is
correct even if u11< 0. Indeed, the sign of b2u1� �2u11 is the result of a
conflict between slope (u1) and convexity (u11) effects, but as maturity
shrinks to zero, u11 tends to zero more rapidly than u1 (see Lemma A3 in
Appendix A). Proposition 3 then establishes that bond prices are decreasing
(increasing) in volatility at short maturity dates when b2> 0 (b2< 0). This
clarifies property (B) stated in the introduction and illustrates the previous
multiplicative tree model where (1) expected future rates increase with d,
and (2) the expected discount factor is decreasing in these rates. These two
conditions correspond here to the conditions that (1) b2> 0, and (2) u1< 0.

As is clear, volatility changes do not generally represent a mean-
preserving spread for the risk-neutral distribution in the term structure
framework considered here. The seminal contribution of Jagannathan
(1984) suggests that this is generally the case in the option pricing domain
and in a diffusion environment [as in the celebrated Black and Scholes
(1973) model]. In a stochastic volatility diffusion setting (with no
dividends), for example, Romano and Touzi (1997, Theorem 3.1, p. 406)

8 As regards the type of problems studied here, the maximum principle can be stated informally as follows:
given a function h with a constant sign for all (r, y, �) 2 R���R� [t, T ], if another function f satisfies
(@/@� �L ÿ k)f � h� 0 for all � 2 [t,T ) and f� 0 at T [as in Equation (7) above], then f has the same
sign as h (see, also, Lemma A1 in Appendix A).
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found that if an option price is strictly convex in the underlying stock
price, then it is strictly increasing with respect to stock price volatility. In
the framework this article analyzes, the short-term rate is not a traded
asset. Therefore the risk-neutral drift function b is generally constrained to
depend on volatility, and as Equation (7) reveals, such a phenomenon
generates slope effects. As shown in Sections 3 and 4, in the presence of a
sufficiently high level of the market risk premium, slope effects may even
dominate at any finite maturity date, thus making bond prices decrease
with volatility at any arbitrary maturity date.

3� Theory

This section develops the central results of the article. Its objective is to
examine how random volatility changes affect bond prices dynamics.
Section 3.1 provides results relating bond prices to short-term rate move-
ments. Section 3.2 analyzes the relationship between bond prices and
volatility.

3.1 Bond prices and short-term rate movements

The main objective of this subsection is to develop conditions under which
bond prices are strictly decreasing and convex in the short-term rate. The
following result reveals that these properties hold when (stochastic) vola-
tility is sufficiently independent of the short-term rate and/or when b does
not exhibit too many nonlinearities:

Proposition 1. If'1�r, y�� 1�r, y�� 0 for every r, y2R�� �R, then bond
prices are strictly decreasing in the short-term rate. Suppose further
that @2P2

j�1 �
� j� � j��r, y�=@r2� 0; then bond prices are strictly convex

(concave) in the short-term rate if maxr,y2R���Rb11(r,y)< 2
(minr, y2R���Rb11(r, y)> 2). Finally, relax all the previous assumptions;
then 8 (x, s)2 R���R such that ÿ1< b11(x, s)< 2 �2< b11�x, s�<1�;
there exists a maturity date T̂ depending on x, s such that bond prices are
strictly convex (concave) in the short-term rate at maturity dates less than T̂ .

The previous proposition can be used to examine a number of well-
known models. Consider, for example, the scalar diffusion case. This case
is obtained by setting b(r, y)� b(r) and ��1��r, y�� �����������

2a�r�p
, �(2)(r, y)� 0

in Equation (1), b̂�r, y�� b̂�r� and �1(r)��1(r, y) in Equation (2), and
letting the price function in Equation (3) be simply of the form u(x, t, T ).
Proposition 1 then predicts that in the scalar diffusion case, bond prices
are always strictly decreasing in the short-term rate. Furthermore, bond
prices are strictly convex (concave) in the short-term rate if

max
r2R��

b00�r�< 2 � min
r2R��

b00�r�> 2�; �8�
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and for each current short-term rate level r(t)� x such that

ÿ1< b00�x�< 2 �2< b00�x�<1�, �9�

there exists a maturity date T̂ depending on x such that bond prices
are strictly convex (concave) in the short-term rate at maturity dates
less than T̂ .

As is well known, bond prices are by construction a convex function of
the short-term rate in affine models (i.e., models in which b and a are
affine functions). Equations (8) and (9) clearly confirm this fact in the
scalar diffusion setting. Equations (8) and (9) can be used to check bond
price convexity in nonlinear models. Consider, for example, the model
proposed by Ahn and Gao (1999). The authors take b̂�r�� �0��1 ÿ r�r
and

�����������
2a�r�p � �r3=2, and specify the risk premium function as �1(r)�

ÿ(�1rÿ1/2��2r1/2)/�. This implies that for all r2R��, b00(r)�ÿ2(�0

��2). It can be shown that a stationarity condition for this model imposes
that �0��2� 0. Such a condition is satisfied by the estimates reported by
the authors (see their Tables 3 and 5). Equation (8) then predicts that in
this model, bond prices are strictly convex in the short-term rate. More
generally we should expect that global concavity of bond prices does not
occur in many other models, since stationarity of r under the risk-neutral
measure typically rules out global convexity of b.

In contrast, a nonlinear model not displaying the (global) convexity
property is the one considered by Chapman, Long, and Pearson
(1999, pp. 779±780). The authors take b̂�r�� �0� �1r� �2r2� �3rÿ1,�����������

2a�r�p � �r3=2, and
�����������
2a�r�p

�1�r��ÿ��0r3=2��1r5=2��2r7=2�. The drift
specification is the one used by AõÈt-Sahalia (1996b) and Conley et al.
(1997). The diffusion specification is the one considered by Chan et al.
(1992) and Conley et al. (1997), and is a special case of the diffusion
function examined by AõÈt-Sahalia (1996b). For this model I use the
coefficient values reported by Chapman, Long, and Pearson (1999), and
apply the theoretical test condition of Equation (9) to find that for all
r(t)� x< 5.04% and for all r(t)� x> 27.23%, there exist maturity dates
for which bond prices are strictly concave in the short-term rate.

The last scalar diffusion example considered here is the `̀ double square-
root'' model of Longstaff (1989). For technical reasons developed in
Appendix B, I consider a variant of this model that sets b̂�r���ÿ � ��

r
p

,�����������
2a�r�p � � ��

r
p

, and �� 0, with �>�2/2. Again applying Equation (9),
I find that for all r(t)� x<�2/3/4, there exist maturity dates for which
bond prices are strictly concave in the short-term rate.

As regards stochastic volatility models, the condition of Proposition 1
which states that '1(�, �)� 1(�, �)� 0 is important. Consider, for
example, the affine Longstaff and Schwartz (henceforth LS) (1992)
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model. This model imposes that the process (y(�)/r(�))��0 be in (�, �),
and that

dr���� �b0 ÿ b1r���� b2y����d� ��
��������������������������
�r��� ÿ y���
��� ÿ ��

s
�dW ���

� �
��������������������������
y��� ÿ �r���
��� ÿ ��

s
�dB���

dy���� �'0�'1r��� ÿ '2y����d� ��2

��������������������������
�r��� ÿ y���
��� ÿ ��

s
�dW ���

� �2

��������������������������
y��� ÿ �r���
��� ÿ ��

s
�dB���

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�10�

where �> 0, � > 0, and bj and 'j are constants (see Appendix B). To fix
ideas, assume that '1< 0 (see Table 1 for the case '1> 0). When '1< 0,
future expected volatility drops after an increase in r. Now suppose that
bond prices are decreasing in volatility. Can it be the case that the effect on
the term structure induced by an increase in r is offset by the negative
feedback effect that r has on the drift function of volatility? May bond
prices increase following an increase in the short-term rate?

The next result [stated in the general case of Equation (1)] shows the
intuitive property that even in less-favorable cases, bond prices still behave
as in the scalar diffusion setting at short maturity dates:

Proposition 2. There always exists a maturity date T� depending on the
current short-term rate and volatility level (r(t), y(t))� (x, s) such that bond
prices are strictly decreasing in the short-term rate for each T�T�.

The impossibility to exclude that bond prices are never increasing in the
short-term rate in Equation (1) arises exactly because of the short-term
rate feedbacks on the drift and volatility of the short-term rate volatility.
As regards volatility drift feedbacks, for instance, the proof reveals that
the negative feedbacks in the LS model are negligible at short maturity

Table 1
Cases (b) and (d) identify necessary conditions for bond prices to be positively
related to the short-term rate at medium-long maturity dates when the volatility of
volatility is decreasing in r and bond prices are convex in volatility

Risk-neutral drift of volatility

Increasing in the
short-term rate

Decreasing in the
short-term rate

@u/@y> 0 (b) (a)
@u/@y< 0 (c) (d)
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dates because volatility has a negligible impact on bond prices at
short maturity dates. At longer maturity dates, such feedbacks may be
important. To illustrate this phenomenon in the context of the LS model,
let $� @�/@x denote the first partial of the stochastic volatility flow
�(� ; x, s)� y(�) with respect to the initial condition of the short-term
rate r(t)� x. It can be shown that

E�$����� '1

�
fexp�ÿ�ÿ�� ÿ t�� ÿ exp�ÿ�� �� ÿ t��g, � 2 �t, T �, �11�

where ��
��������������������������������������
�b1 ÿ '2�2� 4'1b2

q
, �� � (b1�'2� �)/2. Next, suppose that

�ÿ> 0 (a stability condition ensured by the condition that b1'2> b2'1).
Equation (11) then reveals that an increase in the short-term rate has no
effect at � � t, yet as time unfolds, it has on average a progressively higher
(negative) impact on volatility until time � � t� log(�� /�ÿ)1/�, where
function E($(�)) attains its minimum. Now suppose that @u/@y< 0 (see
Appendix B for numerical examples ensuring this). Because discounted
bond prices are Q-martingales, they might then be positively related to
short-term rate movements at medium-long maturity dates. This possibi-
lity is illustrated by entry (d) of Table 1.9 LS (1992) noticed that their
model predicts that bond prices may react positively to short-term rate
movements at medium-long maturity dates. In Appendix B, I provide
further technical details on how to use the theory of this section to clarify
the origins of this property.

3.2 Bond prices and volatility
The objective of this subsection is to examine the mechanism generating
given relationships between bond prices and volatility. As indicated in
Section 2, a sufficient condition under which bond prices are increasing in
volatility at any finite maturity date is that

For all �r, y, �� 2 R�� �R� �t, T�,
b2�r, y�u1�r, y, � , T�� �2�r, y�u11�r, y, � , T�> 0: �12�

As an example, LS (1992, Table II, p. 1278) reported parameter esti-
mates of their model [Equation (10)] guaranteeing that u1< 0. The authors
also reported a negative estimate of b2. Similar findings were reported by
Chapman, Long, and Pearson (1999, pp. 800±801). Since Equation (10)
is an affine model, u11> 0. Because �(r, y)� y/2 in Equation (10),
Equation (12) then implies that given this kind of parameter estimates,
bond prices can never be decreasing in volatility in the LS model.

9 Since the LS model [Equation (10)] is affine, the bond pricing function is always convex in the state
variables. Furthermore, in Equation (10) the volatility of volatility is  1r� 2y, where  1�ÿ��(�� �)/2
(see Appendix B). Therefore case (d) in Table 1 is the relevant case to refer to.
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When b2> 0, the situation is radically different. Such a situation may
arise within the LS model [Equation (10)] under a set of alternative
parameter values. In general, it arises whenever the interest rate risk
premium

P2
j� 1 �

�j��r, y� ��j�r, y� is positively valued and increases suffi-
ciently rapidly with volatility [see Equation (2)]. If b̂2� 0, the condition
that b2> 0 is automatically satisfied whenever the interest rate risk pre-
mium is increasing in volatility. Table 2 describes three models that have
b̂2� 0 [FV: Fong and Vasicek (1991); AL: Andersen and Lund (1997);
MF: Mele and Fornari (2000)]. In these models, �1 and �2 are risk-premia
coefficients; �, �, 
, �, w, '2,  0 are constants; and �2 [1, 1), �2 (0, 1),
�2 (ÿ1, � 1). The constant �1 is typically found to be positive to accom-
modate main stylized features of the entire term structure of interest rates,
at least in the context of models with zero correlation. In the context of
three-factor models with nonzero correlations, Dai and Singleton (2000)
provided mixed empirical evidence on the sign of such coefficients. Such
pieces of evidence are discussed and used to illustrate the multifactor
theory of the next section.

The following proposition provides a theory on how bond prices react
to random volatility changes in models that may make b2> 0, indepen-
dently of the sign of �2.

Proposition 3. (Weak term structure augmenting (decreasing) volatility
property). For each current short-term rate and volatility level (r(t),
y(t))� (x, s)2R���R such that b2(x, s)2 (0, 1) �b2�x, s� 2 �ÿ1, 0��
and 0< j�2(x, s)j<1, there exists a maturity date T (T) depending on (x,
s) such that bond prices are strictly decreasing (increasing) in volatility for
all maturity dates less than T (T).

When do bond prices satisfy a sort of ``strong'' form of the term
structure augmenting (decreasing) volatility property? The answer clearly
depends on whether Equation (12) is satisfied, and is model specific.
Under fairly regular conditions, however, all the model examples of this
section predict that bond prices may be decreasing in volatility at any
arbitrary maturity date corresponding to sufficiently high levels of the
interest rate risk premium (the case of bond prices increasing in volatility

Table 2
Examples of stochastic volatility models in which the risk-neutralized drift function of the short-term rate is
increasing in volatility

b(r, y) �(1)(r, y) �(2)(r, y) '(r, y)  (1)(r, y)  (2)(r, y)

FV � ÿ �r��1y
���
y
p

0 w ÿ ('2��2 0)y � 0

���
y
p

 0

���
y
p �������������

1ÿ �2
p

AL � ÿ �r��1ey/2r ey/2r
 0 w ÿ '2y  0 0
MF � ÿ �r��1y1/�r y1=�

��
r
p

0 w ÿ '2yÿ �2 0y
��
r
p

 0y 0
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has a similar interpretation).10 This is the case, for instance, in the LS
Equation (10) (see Appendix B for details). Also, in the AL model of
Table 2, u1< 0 and u11> 0 for � 2 [t, T ), and

u2�x, s, t, T�� 1

2
E
Z T

t

�1�t, ���ÿu1�#�1����,��1����, � , T��
�

� exp���1�����#�1����2

u11

ÿu1
�#�1����,��1����, � , T�

�
ÿ�1exp ÿ1

2
��1�����#�1����1ÿ2


��
d�

� �
, �12�

where �1, #(1), �(1) are as in Appendix A (see Lemma A1). Under the
conditions introduced in Appendix B for a related problem [see Equation
(B10)], a fixed point argument can then be employed [as in Equation
(B11)] to ensure that there exist sufficiently high values of �1 depending
on T, x, s that make u2< 0 for any finite T. In numerical work, AL found
that u2< 0 for all maturity dates up to thirty years.11 The authors attribute
this finding to (1) the presence of a positively priced risk premium, and (2)
high mean reversion in volatility. As demonstrated here, the first conjec-
ture of the authors is correct.

Finally, consider the Fong and Vasicek (1991) model. In this model it is
possible to analytically find uniform bounds for the critical maturity date
T of Proposition 3. Let �1> 0. In Appendix B, I show that

T � tÿ log�1ÿ 2��1�1=�, if �1 2 0, 1
2�

� �
any strictly positive real number, otherwise:

(
�13�

Equation (13) says that the persistence of the term-structure augmenting
volatility property increases with the risk-premium coefficient �1. They
also reveal that with a sufficiently high interest rate risk premium (viz
�1� 1/2�), bond prices are always negatively related to random volatility
changes. Finally, Equation (13) also shows that in this model, it is the short-
term rate persistence that plays an important role in explaining the term-
structure augmenting volatility property, not the volatility persistence.

4� Stochastic central tendency models in a three-factor setting

The original purpose of three-factor models including a stochastic central
tendency was to make the short-term rate revert toward a stochastically

10 Conditions and methods of proofs are similar to the ones developed for the scalar diffusion case [see Mele
(2002, appendix B)].

11 As regards the MF model, the authors reported results that can be interpreted similarly. Also, note that
the mentioned numerical exercises of AL concerned a three-factor model. However, the main qualitative
properties of that model can be analyzed with the tools of this section, since AL assumed that the third
factor evolves independently of r and y (see the next section).
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moving long-term value [see, e.g., Balduzzi et al. (1996), Chen (1996),
and Andersen and Lund (1997)]. From an empirical standpoint, the
inclusion of a third factor is also important since most of the U.S. yield
curve variation seems to be driven by three principal components [e.g.,
Litterman and Scheinkman (1991)]. More recently, Dai and Singleton
(2000) produced empirical evidence that within the class of three-factor
affine models, U.S. historical interest rate behavior can only be adequately
represented by models with a rich feedback structure between the state
variables and with correlated Brownian motions. An example of such
a model is

dr���� f��`��� ÿ r���� ÿ ��A��B�rv�y��� ÿ �C�r�gd�
� ���������

y���p
dW ���� �rv�

���������
y���p

dB���� �r��dZ���
dy���� f�vÿ ����B�y���gd� � �

���������
y���p

dB���
d`���� f���ÿ `���� ÿ �C ÿ �A��ry���gd� � ��r

���������
y���p

dW ���� �dZ���,

8>>>><>>>>: �14�

where W, B, Z are independent Brownian motions under the risk-neutral
measure, and the notation for the various constants is the one used by the
authors (with the exception of the risk-premia coefficients �A, �B, �C).

In this section I generalize both Equation (1) and Equation (14) and
take as primitive:

dr���
dy���
d`���

0B@
1CA� b�r���, y���, `����

'�r���, y���, `����
"�r���, y���, `����

0B@
1CAd� �V�r���, y���, `����

dW ���
dB���
dZ���

0B@
1CA,

for � 2 �t, T �, �15�
where V is a 3� 3 matrix with �V �1j�r, y, `�� ��j��r, y, `�, [V]2j(r, y, `)�
 (j)(r, y, `), and [V]3j(r, y, `)� ��j��r, y, `�, j� 1, 2, 3; �r�t�, y�t�, `�t���
�x, s, c�, and the various drift and diffusion coefficients satisfy the same
conditions as those of Equation (1) [the risk premia are defined similarly
as in Equation (2)]. Let the price function be u�x; s; c; t;T� finally, I set
��r, y, `�� P3

j� 1 �
�j��r, y, `�2=2,  �r, y, `�� P3

j� 1  
�j��r, y, `�2=2, and

��r, y, `�� P3
j� 1 �

�j��r, y, `�2=2.

Naturally it is generally impossible to interpret one of the unobserved
factors as ``stochastic volatility'' in Equation (15). This would be possible
when, say, @�/@`� 0 and @�/@y> 0, in which case only factor y could be
interpreted as a stochastic volatility factor, as in Equation (14) and in
Equation (17) below. Naturally such interpretative (and arbitrary) con-
straints will not be imposed to derive Propositions 4 and 5 below.

Proposition 4. (Weak term structure augmenting (decreasing) unobservable
factor property). For each current factor level (r(t), y(t), `(t))� (x, s, c)2
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R���R�R such that bi(x, s, c)2 �0,1� �bi�x, s, c� 2 (ÿ1, 0)) and
0< j�i(x, s, c)j<1, i� 2, 3, there exists a maturity date T�T) depending
on (x, s, c) such that bond prices are strictly decreasing (increasing) in factor
j, j� y, `, for all maturity dates less than T�T�.

The previous result generalizes Proposition 3, and is due to phenomena
very similar to those mentioned in Section 2: precisely, the bond price
reaction behavior at short maturity dates is still led by slope effects
[see Equation (C2) in Appendix C]. However, the conditions guaranteeing
the existence of a strong version of Proposition 4 are more complex than
Equation (12).

Proposition 5. (Strong term structure augmenting (decreasing) unobserva-
ble factor property). For any T> t, bond prices are strictly decreasing
(increasing) in factor j, j� y, `, for all maturity dates up to T if for all
(r, y, `, �)2R���R�R� [t, T ),

@b

@y

@u

@r
� @�

@y

@2u

@r2
� @"

@y

@u

@`
� @�

@y

@2u

@`2

� @2u

@r@`
�
X3

j� 1

@

@y
��j���j�< 0 �> 0� �factor y�

�16�
@b

@`

@u

@r
� @�

@`

@2u

@r2
� @'

@`

@u

@y

� @ 

@`

@2u

@y2
� @2u

@r@y
�
X3

j� 1

@

@`
��j� �j�< 0 �> 0� �factor `�

Comparing the first condition in Equation (16) with Equation (12)
reveals that the new terms arising from the presence of a third factor are
(1) slope and convexity of bond prices with respect to factor `; and (2)
correlation terms. As shown in the examples below, these new terms may
also explain the origins of given relationships between bond prices and
factor y (the analysis for factor ` is identical).

An example of models that can be analyzed quite easily with the help of
Equation (16) is one proposed in Dai and Singleton (2000):

dr���� f�rvv���`��� ÿ r���� ÿ ��rv��A��B�rv�y���gd�
� ���������

y���p
dW ���� �rv�

���������
y���p

dB���
dy���� f�vÿ ����B�y���gd� � �

���������
y���p

dB���
d`���� f�����v�vÿ y���� ÿ ����C�`���gd� � �

���������
`���p

dZ���:

8>>>><>>>>: �17�

The authors reported a negative estimate of both ÿ� and
ÿb2��rv��A��B �rv (see their Table III, p. 1965). Therefore, Proposi-
tion 4 predicts that in Equation (17), bond prices are negatively related to
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changes in both factors y and ` at short maturity dates. In addition, in
Appendix C, I show that if �> 0 and ��v< 0 (as in the estimates
reported by the authors), Proposition 5 then predicts that a sufficient
condition for bond prices to be decreasing in volatility at any finite
maturity date is that

ÿ2��rv��A��B�rv�
1� �2�2

rv

>
1

�
, �18�

which is satisfied by the estimates reported by the authors. Equation (18)
generalizes Equation (13) exactly because it keeps track of the rich feed-
back and correlation structure of Equation (17): only when �rv� �rv� 0
does Equation (18) reduce to Equation (13). Also, in this model bond
prices are negatively related to changes in factor ` at any finite maturity
date (see Appendix C).

An issue that deserves a special mention here is that the factor `
dynamics may be important in explaining the sign of the left-hand side
of Equation (16). This is not so evident in Equations (17) and (18) [how-
ever, see Equation (C7) in Appendix C for more details on this], but can be
clearly seen at work within Equation (14). Precisely, Dai and Singleton
(2000, Table II, p. 1964) reported a positive estimate of ÿb2��A��B�rv

in Equation (14), and according to Proposition 4, u2> 0 at short maturity
dates. Furthermore, in Appendix C, I show that if �A��B�rv> 0,
�A��r< 0, and �>� (as in the estimates reported by the authors), then
Proposition 5 predicts that u2> 0 at any maturity date whenever

�A��B�rv

ÿ�A��r
>
�

�
� �

�ÿ � : �19�

Because of the high value of the ratio �/� estimated by the authors,
however, Equation (19) is not satisfied. Intuitively, a high � means that
the third term in Equation (16) for factor y is also high in absolute value.
This is so because (@"/@y) � (@u/@`)�ÿ(@"/@y) � (

R
m#,c(v)dv) � u, where

m#,c(v) is the partial of the short-term rate # with respect to the initial
condition c of factor `; and in the model estimated by Dai and Singleton,R

m#,c is positive and increasing in � [see Appendix C, Equation (C4)]. In
fact, in Appendix C, I use Equation (16) to show that bond prices are
positively related to volatility up to nine months. However, I also show
that Equation (19) can be further elaborated to provide another condition
for bond prices to be decreasing in volatility at longer maturity dates.
I then find that the latter condition is satisfied at least for maturity dates of
two years.

Back to the general theory, the final remark of this section is that the
bond price reaction to short-term rate movements is governed by the same
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logic presented in Section 3. Particularly, results similar to Propositions 1
and 2 also apply here (see the proofs of Propositions 4 and 5; as regards
generalizing Proposition 1, the appropriate condition is that the coeffi-
cients of y and ` do not depend on r). As regards the Dai and Singleton
(2000) Equations (14) and (17), for instance, bond prices are always
decreasing in r.

5� On Jumps and Default

This section examines the robustness of the theory developed in the
previous sections to the introduction of jump phenomena. I shall consider
two settings: jump-diffusion models of the short-term rate, and models of
defaultable bonds. Jump-diffusion models of the short-term rate have
traditionally attracted the interest of modelers because they may capture
sudden changes in market liquidity conditions and/or discontinuous infor-
mation releases. A first general equilibrium treatment of this kind of
model appears in Ahn and Thompson (1988). A detailed list of references
on recent empirical work in this area can be found in Das (2000). As
regards defaultable bonds, I shall make reference to `̀ reduced form''
models [see, for instance, Duffie and Singleton (1999) and the references
therein], in which default is considered as an exogenously given rare event.

5.1 Jump-diffusion models

Let the short-term rate be the solution to

dr���� bJ�r����d� �
�������������������
2a1�r����

p
dW ���� a2�r����� S � dN���, � 2 �t, T �,

r�t�� x, �20�
where bJ is the jump-adjusted risk-neutral drift, a1 is a strictly positive
``diffusion'' function, a2 is a bounded ``jump'' function with bounded
derivatives, and N is a Cox process with intensity function (or `̀ hazard
rate'') of the form v(r), where v is bounded with bounded derivatives.
Finally, S is a random variable with a fixed probability measure on R with
density p and expectation operatorES. [See, e.g., Jacod and Shiryaev (1987,
pp. 142±146) for a succinct discussion of diffusion processes with jumps.]

We have

Proposition 6. Let the short-term rate be the solution to Equation (20). The
following statements are true:

(a) There exists a maturity date T� depending on the current short-term
rate level r(t)� x such that bond prices are strictly decreasing in x for
each maturity date T�T�.
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(b) Assume that for all r2R��, a2
0(r)� 0. Then bond prices are strictly

decreasing in the short-term rate if for all r2R��,ÿ1� v0(r)� 0; when
for all r2R��, v0(r)> 0, bond prices are strictly decreasing in the short-
term rate if for each �r, �� 2R� � � �t, T�, v0(r)/(1� v0(r))< u(r,� ,T)/
ES{u(r� a2S, � , T )}, where a2 is a constant.

(c) Assume that for all r2R��, a2
0(r)� 0 and v0(r)� 0. Then the

conclusions about bond price (global) convexity of Proposition 1
(applied to bJ) are also valid here.

(d) Consider two economies A and B which only differ because for each
r2R��, vA�r�> vB�r� and let uj, j�A, B, be the corresponding bond
price functions. Finally, assume that bJ does not depend on v. Then,
for each (r,�)2R��� [t,T), uA(r,� ,T)< (>) uB�r, � , T� whenever
ES{uB(r� a2(r)S,� ,T)}<(>) uB(r, � , T).

Under the same conditions of Proposition 6(c), the local convexity
properties of Proposition 1 [see Equations (8) and (9)] still hold here
(with respect to bJ) for sets of bond prices satisfying the standard regular-
ity condition that @u1(x,t,T)/@TjT�t�ÿ1. As regards multifactor models,
the analysis of Sections 3 and 4 is unaffected as long as intensity and jump
functions are independent of the state variables [by a simple extension
of Equation (D1) in Appendix D to the multidimensional case;
Proposition 6(a) will then hold even when intensity and jump functions
depend on factor levels, and local analysis is unchanged for all bond prices
satisfying standard regularity conditions as @u11(x, s, t, T)/@TjT� t� 0].

5.2 Defaultable bonds

Assume that under a risk-neutral measure, the short-term rate (r(�))� 2 [t,T]

is a diffusion process and that the event of default at each instant in time is
exactly the same as process N considered in the previous subsection (with
intensity process v). In case of default at point � , the holder of the bond
receives a recovery payment u that I assume to be of the form
u���� u�� , r����. Let the pre default bond price function be upre(r,� ,T),
and set u��1ÿ l� � upre for some process l in [0,1]. Let E�� be the expecta-
tion operator taken with reference to the information sets �(r(u) : t� u� �)
only. As shown by Duffie and Singleton [1999, Equation (10), p. 696],

upre�x, t, T��E� exp ÿ
Z T

t

�r���� l��� � v�r�����d�
� �� �

�21�

and in Appendix D, I indicate a new method of proof of Equation (21)
that is related to a remark by Lando (1998, p. 107). Such a proof reveals
that upre follows the same kind of dynamics followed by the bond price
function of the previous subsection [for technical details, compare
Equation (D1) with Equation (D3) in Appendix D]. Therefore the con-
clusions of Proposition 6 also apply to upre(r, � , T) once the expectation
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ES{u�(r� a2(r)S, � , T)}oftheprevioussubsectionisreplacedwithu����,and
the condition a2

0 � 0 stated in Proposition 6 [parts (b) and (c)] is ignored.

6� Conclusion

This article analyzed theoretical properties of standard, parsimonious
term structure models in which bond prices are modeled starting from
the knowledge of the stochastic evolution of the short-term rate. Consis-
tent with an approach followed by many authors over nearly 30 years, the
short-term rate was assumed to be a diffusion process. The objective here
was to study arbitrage restrictions, together with additional properties,
such as convexity of bond prices with respect to the short-term rate,
implied restrictions on the dynamics of the short-term rate, and other
(possibly unobservable) factor processes. In addition to providing a theo-
retical construction of how rationally formed bond prices move in reac-
tion to observable and unobservable factor changes, the theory developed
in this article imposes new testable restrictions on the joint dynamics of
bond prices, fundamentals, and models of risk aversion. Typical examples
of such restrictions are summarized in property (B) stated in the introduc-
tion or in Table 1. According to property (B), for instance, it cannot be the
case that the risk-neutral drift of the short-term rate is increasing in
volatility and that bond prices are increasing in volatility at short maturity
dates: this is a testable implication of any stochastic volatility model of the
short-term rate in a diffusion setting. Recently there has been increasing
interest in asking data to give detailed information on the validity of
generic properties of asset pricing models. Bakshi, Cao and Chen (2000),
for instance, recently submitted the fundamental, `̀ general properties of
option prices'' of Bergman, Grundy, and Wiener (1996) to a thorough
empirical examination. Similar empirical studies can be conducted within
the context analyzed in this article, especially when the scope is to deepen
our understanding of the relationship between bond prices and volatility.

Appendix A

This appendix makes an iterated use of the Feynman±Kac representation theorem for the

bond price and its partial derivatives, when they come in the form of a solution to partial

differential equations. Naturally the Feynman±Kac representation theorem does not imply

the existence of a solution to partial differential equations per se. As pointed out in Section 1,

Mele (2002, Appendices A, B, and C) contains precise conditions justifying all operations

taken in the present appendix.

Lemma A1. (Feynman±Kac representation of the partial derivatives of the bond price with

respect to the short-term rate and volatility). Let w1(x, s , t, T)� u2�x, s, t, T�,
w2�x, s, t, T�� u1�x, s, t, T�, w3�x, s, t, T�� u11�x, s, t, T�. We have.

wi�x, s, t, T��E
Z T

t

�i�t, ��hi�#�i����,��i����, � , T�d�
� �

, i� 1, . . . , 3,
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where

�1�t, ��� exp ÿ
Z �

t

�#�1��u� ÿ '2�#�1��u�,��1��u���du

� �
�2�t, ��� exp ÿ

Z �

t

�#�2��u� ÿ b1�#�2��u�,��2��u���du

� �
�3�t, ��� exp ÿ

Z �

t

�#�3��u� ÿ 2b1�#�3��u�,��3��u�� ÿ �11�#�3��u�,��3��u���du

� �

8>>>>>>><>>>>>>>:
�A1�

h1� b�1�;2w2���1�;2w3

h2� ÿu�'�2�;1w1� �2�;1u22

h3� ÿ�2ÿ b�3�;11�w2 �'�3�;11w1 � �3�;11u22

� 2 �3�;1u122� 2'�3�;1�
@2

@#2
�
�1�
�3� 

�1�
�3� ���2��3� �2��3�

n o !
u12

8>>>>>>><>>>>>>>:
�A2�

(#(i), �(i))i�1
3 are solutions to the following stochastic differential systems:

d#�1� � b�1� � @

@�

X2

j� 1

�
�j�
�1� 

�j�
�1�

 !
d� � ��1��1�dW � ��2��1�dB

d��1� � '�1� � �1�;2
� �

d� �  
�1�
�1�dW � �2��1�dB

8>>><>>>: �A3i�

d#�2� � �b�2� ���2�;1�d� � ��1��2�dW � ��2��2�dB

d��2� � '�2� �
@

@#

X2

j� 1

�
�j�
�2� 

�j�
�2�

 !
d� � �1��2�dW � �2��2�dB

8>><>>: �A3ii�

d#�3� � �b�3� � 2��3�;1�d� � ��1��3�dW � ��2��3�dB

d��3� � '�3� � 2
@

@#

X2

j� 1

�
�j�
�3� 

�j�
�3�

 !
d� � �1��3�dW � �2��3�dB

8>><>>: �A3iii�

and b�i�, 1 � @b�#�i�,��i��=@#,'�i� �'�#�i�,��i��, �i�;2 � @ �#�i�,��i��=@�, etc.

Proof. By taking the appropriate partial derivatives in Equation (3), one obtains that wi are

solutions to the following partial differential equations:

0� @

@�
�Li ÿ ki

� �
wi�#,�, � , T�� hi�#,�, � , T�, 8�#,�, �� 2R�� �R� �t, T�

wi�#,�, T , T�� 0, 8�#,�� 2R�� �R

8<: �A4�

where hi are as in Equation (A2),

k1�#,���#ÿ '2�#,��
k2�#,���#ÿ b1�#,��
k3�#,���#ÿ 2b1�#,�� ÿ �11�#,��

8><>:

The Review of Financial Studies / v 16 n 3 2003

700



and

L1w1� b� @

@�

X2

j� 1

��j� �j�
 !

w1
1��'� 2�w1

2� �w1
11� w1

22�
X2

j� 1

��j� �j�
 !

w1
12

L2w2��b� �1�w2
1� '� @

@#

X2

j� 1

��j� �j�
 !

w2
2��w2

11� w2
22�

X2

j� 1

��j� �j�
 !

w2
12

L3w3��b� 2�1�w3
1� '� 2

@

@#

X2

j� 1

��j� �j�
 !

w3
2� �w3

11� w3
22�

X2

j� 1

��j� �j�
 !

w3
12

8>>>>>>>>>>><>>>>>>>>>>>:
The result then follows by the Feynman±Kac representation theorem. &

The following lemma formalizes the idea that at small �t, the short-term rate r(t�� t) is

approximately equal to x.

Lemma A2. (Sensitivity of the short-term rate with respect to the initial condition). Let

�#,������ �#,���x, s, � ;!��� 2 �t, T �� denote the flow of the stochastic differential equation

[Equation (1)] at � starting at (x, s) in t at point !2
. We have

(a) lim
�#t

@#

@x
���� 1; and,

(b) lim
�#t

@2#

@x2
���� 0.

Proof. By Theorems 4.7.1 and 4.7.2 in Kunita (1990), p. 177, there exists (up to an

explosion time) a unique forward stochastic flow of local C2-diffeomorphisms (#, �) in

(x,s). The processes @#/@x and @�/@x then satisfy

@#
@x
���� 1�

Z �

t

b1
@#

@x
� b2

@�

@x

� �
�u�du �

Z �

t

�
�1�
1

@#

@x
� �

�1�
2

@�

@x

� �
�u�dW�u�

�
:

� �
�2�
1

@#

@x
� �

�2�
2

@�

@x

� �
�u�dB�u�

�
@�

@x
����

Z �

t

�'1

@#

@x
�'2

@�

@x
��u�du�

Z �

t

 
�1�
1

@#

@x
� �1�2

@�

@x

� �
�u�dW�u�

�
�  

�2�
1

@#

@x
�  

�2�
2

@�

@x

� �
�u�dB�u�

�

8>>>>>>>>>>>><>>>>>>>>>>>>:
from which (a) and (b) follow. &

Lemma A3. (Slope effects dominate convexity effects at short maturity dates). For each

(x,s)2R���R, limT#t(u11/u1)�x; s; t;T�� 0.

Proof. Clearly limT#t u11(x, s, t, T) and limT#tu1�x, s, t, T� are both zero [use, for instance,

the Lebesgue's dominated convergence theorem in Equations (5) and (6) as I do in

showing Proposition 1 in Appendix B; alternatively, just notice that limT#t u11(x,s,t,T) and

limT#t u1(x, s, t, T) both equal zero by the boundary conditions in Equation (A4) given in
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the course of the proof of Lemma A1]. However, lim(u11/u1) can be written as

lim
T#t

u11

ÿu1
�x; s; t;T�

� lim
T#t

E
Z T

t

@#

@x
���d�

� �2

ÿ
Z T

t

@2#

@x2
���d�

( #
exp ÿ

Z T

t

#���d�
� �

g

E
Z T

t

@#

@x
���d�

� �
exp ÿ

Z T

t

#���d�
� �� �

� lim
T#t

E �T ÿ t� 1

T ÿ t

� Z T

t

@#

@x
���d�

� �2

ÿ 1

T ÿ t

Z T

t

@2#

@x2
���d�

( #
exp ÿ

Z T

t

#���d�
� �)

E
1

T ÿ t

Z T

t

@#

@x
���d�

� �
exp ÿ

Z T

t

#���d�
� �� � ,

and given the assumptions of the main text, the result follows from the Lebesgue's dominated

convergence theorem, and the fact that
R
@#/@x and

R
@2#/@x2 are Riemann integrals and

then �T ÿ t�ÿ1 R T

t �@#���=@x�d�! @#�t�=@x and �T ÿ t�ÿ1 R T

t �@2#���=@x2�d�! @2#�t�=@x2

as T # t, where @#(t)/@x� 1 by Lemma A2 part (a) and @2#(t)/@x2� 0 by Lemma A2

part (b). &

Appendix B: Proofs, Examples, and Comparison Theory for Section 3

Proposition 1 will be proven in the scalar case. The general case is treated by making use of

Lemma A1 in Appendix A.

Proof of Proposition 1 (slope issues). In the constant volatility case, the stochastic represen-

tations of w2 and w3 given in Lemma A1 simplify to

w2�x, t, T��E
Z T

t

�2�t, ��h2�#�2����, � , T�d�
� �

w3�x, t, T��E
Z T

t

�3�t, ��h3�#�3����, � , T�d�
� �

8>>><>>>: �B1�

where

�2�t, ��� exp ÿ
Z �

t

�#�2��u� ÿ b0�#�2��u���du

� �
�3�t, ��� exp ÿ

Z �

t

�#�3��u� ÿ 2b0�#�3��u�� ÿ a00�#�3��u���du

� �
8>>><>>>:

and

h2�ÿu

h3�ÿ�2ÿ b00�w2

(
�B2�

and #(2), #(3) denote the stochastic flows of the following equations:

dr���� �b�r����� a0�r�����d� �
�����������������
2a�r����

p
dW���

and

dr���� �b�r����� 2a0�r�����d� �
�����������������
2a�r����

p
dW���:

Since the price of a bond cannot be negative by Equation (4), the first line in Equation (B1)

and the first line in Equation (B2) ensure that w2 is strictly negative and by Lemma A1 [see the

second relation in Equation (A2)], this is also true in the stochastic volatility case under the

restrictions stated in the proposition. &
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Proof of Proposition 1 (convexity issues). The second claim of the proposition is confirmed

by the second line in Equation (B2), since w3 can be written as

w3�x, t, T��E
Z T

t

�3�t, ���2ÿ b00�#�3�������ÿw2�#�3����, � , T��d�
� �

:

As regards the final claim of the proposition, use the Fubini±Tonelli theorem (see note 6) and

write the previous relation as

w3�x, t, T��
Z T

t

G2�x, t, � , T�d�
� �

� 2ÿ

Z T

t

G1�x, t, � , T�d�Z T

t

G2�x, t, � , T�d�

8>>><>>>:
9>>>=>>>;,

where

G1�x, t, � , T�� ÿE b00�#�3����� ��3�t, �� �w2�#�3����, � , T�� 	
G2�x, t, � , T�� ÿE �3�t, �� �w2�#�3����, � , T�� 	

:
:

(
Writing w3 as before is justified because there exists a maturity date T> t within whichR T

t
G2 6� 0. We have

w3�x, t, T�> 0 �< 0� if ��x, t, T��

Z T

t

G1�x, t, � , T�d�Z T

t

G2�x, t, � , T�d�
< 2 �> 2�, �B3�

and

lim
T#t
��x, t, T�

� lim
T#t

Z T

t

E �3�t, ��b00�#�3������E
Z T

�

@#

@x
�u�du

� �
exp ÿ

Z T

�

#�u�du

� ��
F���

� �� �
d�Z T

t

E �3�t, ���E
Z T

�

@#

@x
�u�du

� �
exp ÿ

Z T

�

#�u�du

� ��
F���

� �� �
d�

� lim
T#t

1
Tÿt

Z T

t

E �3�t, ��b00�#�3������ @
@T
E

Z T

�

@#

@x
�u�du

� �
exp ÿ

Z T

�

#�u�du

� ��
F���

� �� �
d�

1
Tÿt

Z T

t

E �3�t, ��� @
@T
E

Z T

�

@#

@x
�u�du

� �
exp ÿ

Z T

�

#�u�du

� ��
F���

� �� �
� b00�x� for each x : jb00�x�j<1, �B4�
by Equation (5); the L'HÃ opital's rule; the Liebnitz's rule (noting also that the integrands in

the numerator and denominator of � evaluated at T are both zero); the Lebesgue's dominated

convergence theorem; continuity and differentiability of
R

T (@#/@x) exp(ÿRT #) w.r.t.

T (ensured by the fact that # and @#/@x have continuous sample paths); the fact that

lim
T#t

@

@T

Z T

t

@#

@x
�u�du

� �
� exp ÿ

Z T

t

#�u�du

� �� �
� @#

@x
�t�� 1,

by Lemma A2; and finally because limT#t �
3(t, T )� 1, by Lemma A1. This shows that there

exists a T̂ depending on x such that 8� 2 �t, T̂ �,
��x, t, T̂�x��< 2 �> 2� for each x : b00�x�< 2 �> 2�,

and the result follows from Equation (B3).

In the stochastic volatility case, the same arguments can be made whenever there exists a

maturity date T� such that w2< 0 for all T�T� (which is ensured by Proposition 2 shown
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below); by Lemma A1; and finally by a strategy of proof similar to the previous one and

revealing that the various integrals involving u2, u22, u122, u12 are dominated by the integral

involving u1 [as in Equation (C2) in Appendix C]. &

A counter example to Proposition 1: the double square-root model. According to the original

formulation of Longstaff (1989), the short-term rate is the solution to

dr���� �2

4
ÿ �

���������
r���

p
��r���

� �
d� � �

���������
r���

p
dW���,�,�, �> 0: �B5�

Thus formulated, this model implies that its ``scale measure'' fails to diverge at both bound-

aries (zero and infinite) [see Karlin and Taylor (1981, chap. 15) and Mele (2002, assumption

A2-(H3)]. The infinite boundary can be attained in finite expected time because the term �r

dominates the term �
��
r
p

as r!1. To avoid this, one may assume that �< 0, but this creates

a negative term premium whenever u1< 0. This is the technical reason for which only the case

�� 0 was considered in Section 3. The drift function considered in the main text was chosen

because the origin is regular (attainable) in Equation (B5) even with �� 0 and in this case,

k2�#�2� � �= 2
��������
#�2�

q� �
in Equation (B1) for w2. It can be shown that the origin is regular for the auxiliary process #(2)

too, which makes k2 explode in finite expected time. Therefore no Feynman±Kac stochastic

representation for w2 is possible if r is generated by Equation (B5). In fact, Longstaff (1989,

p. 203) shows that w2> 0 for small values of r(t)�x. However, this is not concluding evidence

of the violation of the `̀ no-crossing property'' [in the sense of Bergman, Grundy, and Wiener

(1996)], since no Feynman±Kac stochastic representation for u necessarily exists. In contrast,

if the short-term rate is a double square-root process of the form indicated in the main text,

both boundaries cannot be attained in finite expected time, and the result that w2< 0 is

restored.

Comparison theory. In the scalar diffusion case, it is also possible to use powerful comparison

results [e.g., Karatzas and Shreve (1991, pp. 291±295)] to relate very simply bond prices to the

location of the short-term rate drift function. Consider two economies A and B in which the

corresponding short-term rates rA and rB are solutions to

dr j���� b j�r j����d� �
������������������
2a�rj����

p
dW���, r j�t�� x j , j�A, B,

and suppose that xA� xB. Let the bond prices in the two economies be given by uA and uB.

Under conditions given, for instance, in Karatzas and Shreve (1991, proposition 2.18, p. 293),

PrfrA���� rB���, � 2 �t,1�g� 1,

whenever bA(r)� bB(r), r2R��.12 Combining this with Equation (4) reveals that uA� uB.

Since the thought experiment of a permanent shift in b can be interpreted as a permanent

change of the unit risk premium �1 [see Equation (2)], the previous result also means that if

we had to visit two economies differing only in the amount of this risk premium, we would

observe a higher level of the yield curve in the more risk-premium demanding economy.

While the previous result is intuitive, it must be pointed out that it does not need to hold in

more complicated diffusion settings [see Mele (2002, section 7.1)]. Furthermore, it is surpris-

ing that no proof of it was available within the same general framework used here. As an

example, CIR (1985, p. 393) pointed out that bond prices go up when (minus) the market

12 This result is still valid when one relaxes a Lipschitz condition on one of the two bj at the expense of
strengthening the condition bA� bB to bA < bB [see Karatzas and Shreve (1991, exercise 2.19, p. 294)].
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risk-premium goes down, but their observation concerned the specific case of their celebrated

one-factor affine model.13

Even in the scalar setting, elegant comparison results cannot be used to implement

comparative statics relating bond prices to volatility. Nevertheless, it is not hard to show

that two economies A and B for which aA(r)> aB(r), all r2R��, generate a price difference

ru(r, � , T )� uA(r, � , T ) ÿ uB(r, � , T ) which is the solution to

0� @

@�
ru��b̂�

��������
2aA
p

�1
A�ru1� aAru11 ÿ rru

�
��������
2aA
p

��1
A ÿ �1

B�� �
��������
2aA
p

ÿ
��������
2aB
p

��1
B

� �
uB

1 ��aA ÿ aB�uB
11

n o
, �B6�

with ru(r, T, T )� 0 8r2R�� [see Mele (2002, subsection 3.3)]. Suppose that the market

risk-premium
�����
2a
p

�1 is positively valued and increases with volatility. Given Lemma A3, the

previous equation reveals that at short maturity dates, ru< 0 by a direct application of the

maximum principle.14 In fact, in Mele (2002, Appendix B). I show that in the presence of a

sufficiently high level of the risk premium �,ru< 0 at any arbitrary maturity date. See Mele

(2002, section 7) for other comparative statics results in multidimensional settings.

Proof of Proposition 2. By Lemma A1, and the Fubini±Tonelli theorem (see note 6),

w2�x, s, t, T��
Z T

t

fJ2�x, s, t, � , T�� J3�x, s, t, � , T� ÿ J1�x, s, t, � , T�gd� , �B7�

where

J1�x, s, t, � , T��Ef�2�t, �� � u�#�2����,��2����, � , T�g
J2�x, s, t, � , T��Ef�2�t, �� �'1�#�2����,��2����� � u2�#�2����,��2����, � , T�g

J3�x, s, t, � , T��Ef�2�t, �� � 1�#�2����,��2����� � u22�#�2����,��2����, � , T�g:

8>><>>:
Therefore, w2(x, s, t, T)< 0 whenever

��x, s, t, T��
R T

t J2�x, s, t, � , T�d�R T

t J1�x, s, t, � , T�d�
�
R T

t J3�x, s, t, � , T�d�R T

t J1�x, s, t, � , T�d�
< 1,

13 The referee pointed out that in a thought experiment in which the unit risk-premium changes, it is
possible that the physical drift function also changes. I may illustrate such a remark with the help of the
CIR example reported in note 14. There ���� � � �������

r���p
=v, where � and v are constants, and a change in �

(say) makes both the volatility and the physical drift functions change. To apply the previous comparison
results, one has then to think of a change in �, say, as one that is exactly counterbalanced by changes in
other parameters [say h, b or k (see note 14)] that keep volatility and physical drift unchanged. Without
this kind of interpretation in mind, comparative statics results such as the previous ones may only have a
partial equilibrium flavor.

14 CIR (1985, p. 393--394) state that bond prices are an increasing function of the volatility parameter in
their single-factor model because they define (as is customary) a market risk premium

�����
2a
p

�� �r that is
not literally taken to be proportional to the volatility parameter [see their Equation (22)]. In terms of
Equation (B6), this implies that volatility affects bond prices only through convexity terms. However,
using the framework (and some notation) in Duffie (1996, p. 230--233), one finds that a supporting
equilibrium for the CIR model generates: dr���� fbv2 ��k����r���gd� � k�v ���������

r���p
dW ��� and

����� � ���������
r���p

=v, where �> 0 (to ensure positive term-premia), v�
�������������
hÿ �2
p

, and b, h, �, k are constants
(a similar analysis can be conducted with the original CIR article). Therefore, here a thought experiment
of an increase in the short-term volatility that is unambiguously interpreted only as a change in volatility
(and not also as a change in the short-term rate drift under the physical measure and/or �) corresponds to
a change in k (in Duffie, k represents the volatility parameter of the primitive state process of the
economy, that is, the `̀ shock'' process affecting capital productivity).
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and since Ji, i� 1, 2, 3, are all continuous with respect to � and T, and

lim
T#t

1

T ÿ t

Z T

t

Ji�x, s, t, � , T�d�
1

T ÿ t

Z T

t

J1�x, s, t, � , T�d�
� 0, i� 2, 3,

then there exists a T� depending on x, s such that 8T�T��x, s�, ��x, s, t, T�< 1. &

Uniform bounds for T�. Are there situations in which there exist values of T� in Proposition 2

that are independent on the initial state (x, s)? The answer is definitely positive in the

case of affine models, that is, when the bond price functions are of the form u�x, s, t, T��
exp �B�T ÿ t��C�T ÿ t� �x�D�T ÿ t� � s�, where B, C, and D are not functions of the initial

state (x, s), and limT#t B� limT#t C� limT#t D� 0 (boundary conditions for u). A rigorous

proof is as follows. In affine models, functions '1 (�, �) and  1 (�, �) reduce to two constants

that with a slight abuse of notation I shall refer to as '1 and  1. Equation (B7) can then be

written as

w2�x, s, t, T��
Z T

t

J1�x, s, t, � , T�f'1 �D�T ÿ ��� 1 �D�T ÿ ��2 ÿ 1gd� ,

and since J1 is always positive, w2< 0 for all maturity dates T�� :'1 �D�T�� ÿ ���
 1 � D(T�� ÿ �)2< 1, all � 2 [t, T��], independently of x, s. &

Conditions and examples for bond prices to be increasing in the short-term rate at medium-long

maturity dates. Here the starting point is Equation (B7), which clarifies why cases (b) and (d)

in Table 1, for instance, are necessary conditions for @u/@r> 0 at medium-long maturity dates

when @ /@r� 0. In the general case, one has that @u/@r> 0 at medium-long maturity dates

whenever
R

h2> 0 in Lemma A1.

This kind of condition can be illustrated within the LS model [Equation (10)], which has a

known closed-form solution that is `̀ typical'' of all models examined in Section 3 (see below).

As an example, LS (1992, p. 1267) noticed that in their model, @u/@r is always negative for

small T ÿ � , but can become positive for bonds with longer maturities. This perfectly

illustrates Proposition 2. LS also point out @u/@y can be of either sign, or can be positive

within certain maturity dates, negative at the remaining maturity dates, and vice versa. Let us

see how the theory in Section 3 may help to clarify such phenomena.

According to the notation introduced by Longstaff and Schwartz (1992, p. 1264;

and Equation (9), p. 1263), Equation (10) describes the dynamics of r, y under the risk-

neutral measure with coefficients b0 ��
� ��; b1� (��ÿ��)/(�ÿ�), b2� (�ÿ�)/(�ÿ�),

'0��2
� �2�, '1��� (� ÿ �)/ (� ÿ �), '2���� ÿ ���=�� ÿ ��;where �, �, 
, � are con-

stants entering the primitive dynamical system of the model. Therefore it is not hard to find

that the equilibrium price satisfies

0� @

@�
�Lÿ r

� �
u, 8�r, y, �� 2D�;� � �t, T�

u�r, y, T , T�� 1, 8�r, y� 2D�;�

8<: �B8�

where, for given constants  j and �j, j� 1, 2, given below,

Lu�r, y, � , T�� �b0 ÿ b1r� b2y�u1�r, y, � , T�� �'0�'1rÿ '2y�u2�r, y, � , T�
� y

2
� u11�r, y, � , T�� � 1r� 2y�u22�r, y, � , T�� ��3r� �4y�u12�r, y, � , T�,

and D�,��f�r, y� 2R���R�� : �y=r� 2 ��, ��g. Under mild parameter restrictions such as

those given in LS (1992, note 9, p. 1264), the process (y(�)/r(�))� � 0 cannot attain the

boundary @D�,� in finite expected time, and so no further transversality and/or boundary

condition is needed.
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The solution to Equation (B8) reported by the authors [Equation (20), p. 1266] (with

coefficients  i and �i given by  1� ÿ �������=2;  2� (�3ÿ�3)/(2(�ÿ�)), �3�ÿ��,

�4� ���� is

u�x, s, t, T��A�T ÿ t�2
 �B�T ÿ t�2� � exp����T ÿ t��C�T ÿ t��x�D�T ÿ t� � s�, �B9�

where

A���� 2�=�������exp���� ÿ 1�� 2��
B���� 2 � =���� � ��exp� � �� ÿ 1�� 2 � �
C���� ����exp� � �� ÿ 1�B��� ÿ � � �exp���� ÿ 1�A����=�� � �� ÿ ���
D���� � � �exp���� ÿ 1�A��� ÿ ��exp� � �� ÿ 1�B����=�� � �� ÿ ���

8>>><>>>:
and �� 
(���)� �(�� � ), ��

���������������
2�� �2

p
, � �

����������������
2�� �2

p
.

Functions C and D are factor loadings of the short-term rate and volatility, respectively.

To compute them, I first use the estimates reported in Longstaff and Schwartz (1993,

exhibit 3, p. 10), which are �� 0.001149, �� 0.1325, �� 0.05658, �� 0.335. In Table A.1,

``case I,'' the previous figures are used to compute four important coefficients of

Equation (10); `̀ case II,'' instead, reports coefficients computed using ad hoc chosen coeffi-

cients: �� 0.10, �� 0.13, �� 0.55, �� 0.33; the column corresponding to `̀ eigenvalues''

reports the eigenvalues of matrix
ÿb1 b2

'1 ÿ'2

� �
.

Figure 2 depicts the two factor loadings in these two cases. Consistently with Proposition 2,

C� 0 at short maturity dates. In case II, C> 0 at medium-long maturity dates. To see this

with the methods of Section 3, notice that for Equation (10),

h2�ÿu�'1u2� 1u22��'1D� 1D2 ÿ 1�u,

and since limT#t D� 0, u1 can never be positive at short maturity dates. Because  1< 0,

a necessary condition for C�w2/u� (
R

h2)/u> 0 at longer maturity dates is that '1 � u2> 0.

In case II, '1 and u2 are both negative, and as Figure 2 shows, u1 becomes positive at

medium-long maturity dates. In case I, '1 and u2 are both positive; given the small value of

'1, however, u1� 0 always. More on the role of '1 in this kind of models below.

To understand the sign of u2 in the two cases, consider Proposition 3. In case I, u1< 0,

b2< 0 and, by affinity of the LS model, u11> 0: by Equation (12), then, bond prices can never

be decreasing in volatility. In case II, b2> 0 and in addition, slope effects dominate convexity

effects at short maturity dates: therefore, bond prices are decreasing in volatility at short

maturity dates, which is exactly Proposition 3. Given the parameter values of Table A.1, it

also turns out that slope effects dominate convexity effects even at long maturity dates, thus

making bond prices react negatively to volatility changes even at long maturity dates.

To examine further the role of the volatility drift function in qualifying how bond prices

react to the short-term rate at medium-long maturity dates, consider a toy, parametrized

model with  1(r, y)� 0 and a semilinear volatility drift function:

'�r, y��'1r� '̂�y�,
where '1 is a constant and '̂ is a well-defined function. By Lemma A1,

Table A.1

b1 b2 '1 '2 Eigenvalues

Case I 5.4145� 10ÿ2 ÿ2.1197 3.227� 10ÿ4 0.3374 ÿ5.658� 10ÿ2; ÿ0.3349
Case II 1.2833 7.3333 ÿ9.5333� 10ÿ2 ÿ0.4033 ÿ0.5497; ÿ0.3302
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w2�x, s, t, T ;'1�� ÿE
Z T

t

�2�t, � ;'1� � u�#�2����,��2����, � , T ;'1� � d�
� �

�'1 �E
Z T

t

�2�t, � ;'1� �w1�#�2����,��2����, � , T ;'1� � d�
� �

,

where I have emphasized the dependence of the various functions on '1. A sufficient

condition for w2> 0 at an arbitrarily small but strictly positive maturity date T is that j'1j
may be increased without bounds and the remaining parameters of the model may at the

same time be smoothly changed in such a way that

lim
j'1 j!1

j��'1�j<1, �B10�

where

��'1��
E
R T

t �2�t, � ;'1� � u #�2����,��2����, � , T ;'1

� �
� d�

n o
E
R T

t �2�t, � ;'1� �w1 #�2����,��2����, � , T ;'1

� �
� d�

n o ,

a continuous function. Indeed, if Equation (B10) holds, � has at least one fixed point because

lim
j'1j! 0�

j��'1�j<1:

Figure 2
Factor loadings for Equations (10)
The two graphs depict factor loadings for the pricing equation [Equation (B9)]. Panel A depicts the
short-term rate factor loading C under case I and case II of Table 3. Panel B shows the volatility factor
loading D, also computed under case I and case II of Table 3. When C< 0 (> 0), bond prices are
negatively (positively) related to random changes of the short-term rate. When D > 0 (< 0), bond prices
are positively (negatively) related to random volatility changes.
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Assume that a single fixed point exists [multiple fixed points can be coped with using the

strategy of proofs in Appendix B of Mele (2002)]. One can then take as a critical value of '1

the fixed point

'�1���'�1�: �B11�
If '�1 < 0 (> 0), bond prices are increasing in the short-term rate at any arbitrarily small

maturity date ~T for any '1 <'
�
1 (>'�1). Of course, all such '1 will be functions of x, s, ~T .

Proof of Proposition 3.15 I only provide the proof of the weak term-structure augmenting

volatility property, the proof of the weak term structure decreasing volatility property being

nearly identical. Furthermore, I first present a heuristic proof that helps to develop intuition

on the main features of Proposition 3, and that is based on some regularity conditions. I then

prove Proposition 3 in full generality.

Suppose first that w3> 0 for all T2 (t, T��), where T��<1 is given, and that w2< 0 for all

T2 (t, T��). Also, assume that �2(x, s)> 0 (the case �2(x, s)< 0 is treated similarly), and that

for any T 2 �t, T���, �ÿu11=u1��x, s, t, T� is ��x, s�ÿ� uniformly bounded. Then there exists a

continuous function K(t, �) such that 8�r, y� 2R�� �R, �ÿu11=u1��r, y, � , T��K�� , T� and

that, by Lemma A3,

lim
T#t

K�t, T�� 0: �B12�

Next, suppose that there exists a maturity date within which

F1�x, s, t, � , T�� ÿEf�1�t, �� ��2�#�1����,��1����� � u1�#�1����,��1����, � , T�g

F2�x, s, t, � , T�� Ef�
1�t, �� � u1�#�1����,��1����, � , T� � b2�#�1����,��1�����g

Ef�1�t, �� � u1�#�1����,��1����, � , T� � �2�#�1����,��1�����g

8><>:
are well defined. By the Fubini±Tonelli theorem (see note 6),

8T 2 �t, T ���, w1�x, s, t, T��
Z T

t

F1�x, s, t, � , T� � fK�� , T� ÿ F2�x, s, t, � , T�gd� , �B13�
and by applying the same kind of arguments used to derive Equation (B4),

lim
T#t

F2�x, s, t, � , T�� lim
T#t
Ef�1�t, �� � u1�#�1����,��1����, � , T� � b2�#�1����,��1�����g
Ef�1�t, �� � u1�#�1����,��1����, � , T�,�2�#�1����,��1�����g

� b2�x, s�
�2�x, s� > 0: �B14�

Combining Equation (B12) with Equation (B14) shows that there exists a T� depending

on x, s such that T� <T�� and 8� 2 �t, T��, K�� , T���F2�x, s, t, � , T��. The result then fol-

lows by Equation (B13). The case w3� 0 is trivial.

The previous case makes clear how Lemma A3 is related to the bond price reaction to

random volatility changes at short-maturity dates. When (u11/u1)(x, s, t, T) is not ((x, s)ÿ)

uniformly bounded and the regularity conditions underlying Equation (B13) are not easy to

check (these conditions are always satisfied by affine models), the proof is similar to the proof

15 An alternative proof based on the derivative of the yield curve at the origin is available upon request from
the author. Unfortunately the method of such an alternative proof cannot be used to show any of the
other results appearing in this article. Specifically, such an alternative method of proof does not make it
possible to uncover the important role that slope and convexity issues have in explaining the origins of the
strong versions of the term structure augmenting (decreasing) volatility property [see Equation (12),
Proposition 5, Appendices B and C, and all of the model examples worked out in Sections 3 and 4)]. Even
the intuition about the origins of the phenomenon described in Proposition 3 can only be obtained by
using the method of proof presented here (see the discussion in Section 2 on the connection of bond prices
convexity to the Rothschild--Stiglitz--Jagannathan theory).
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of Equation (B4) and so here it will be sketchy. For each T2 (t, T��), rewrite w1 in Lemma A1

as

w1�x, s, t, T��E
Z T

t

��1�ÿu1�����d�
� �

EfR T

t ��1�2u11����d�g
EfR T

t ��1�ÿu1�����d�g
ÿEf

R T

t ��1b2�ÿu1�����d�g
EfR T

t ��1�ÿu1�����d�g

( )
,

and conclude by showing that limT#tEf
R T

t ��1�2u11����d�g=Ef
R T

t ��1�ÿu1�����d�g� 0 and

limT#t Ef
R T

t ��1b2�ÿu1�����d�g=Ef
R T

t ��1�ÿu1�����d�g� b2�x, s� > 0 [use (1) the Fubini±

Tonelli theorem (see note 6), and the L'Hôpital's rule; (2) the Liebnitz's rule; (3) the

Lebesgue's dominated convergence theorem; (4) limT#t�@u1=@T��ÿ1,

limT#t�@u11=@T� � 0; and (5) Lemma A2], and noting that there exists a maturity date within

which 1: EfR T

t ��1�ÿu1�����d�g� 0, with equality as T# t.

Finally, relax the assumption that w2< 0 for all T2 (t,T ��). By Proposition 2, there

still exists a maturity date T��(x,s) within which EfR T

t ��1�ÿu1�����d�g� 0 (with equality as

T# t), and the proof is complete by repeating the same arguments produced before. &

Proof of Equation (13). Let �� @# / @ x denote the first partial of the short-term rate flow

#(�) with respect to the initial condition #(t)�x. A simple computation reveals that

�(�)� exp(ÿ�(�ÿt)). Substituting this into Equations (5) and (6) leaves u1(x,s,t,T)/

u�x, s, t, T�� ((1ÿexp (ÿ� (Tÿt)))/ � and u11�x, s, t, T�=u�x, s, t, T�� ((1ÿexp(ÿ�(Tÿt)))/�)2.

Substituting these expressions of u1 and u11 into Equation (7) and using Lemma A1 enable

one to conclude that u2(x,s,t,T)< 0 whenever �1� {1ÿexp (ÿ� (Tÿt))}/(2�). Equation (13)

then follows immediately. &

Appendix C: Proofs for Section 4

Proof of Propositions 4 and 5 (sketchy). I use the same arguments used to show Proposition 3

and Equation (12). Specifically, I find that w1� u2 and w2� u1 satisfy

0� @

@�
�Li ÿ ki

� �
wi�#,�,�, � , T�� hi�#,�,�, � , T�, 8�#,�,�, �� 2R�� �R�R� �t, T�

wi�#,�,�, T , T�� 0, 8�#,�,�� 2R�� �R�R,

8<:
�C1�

where Li (i� 1,2) are partial differential operators, and h1 � b2u1� �2u11� "2u3��2u33 �
�P3

j� 1@���j���j��=@y��u13, k1�#,�,�� � #ÿ '2�#,�,�� h2�'1u2� 1u22� "1u3� �1u33�
�P3

j� 1@� �j���j��=@r� � u23 ÿ u, and k2(#, �, �)� "ÿb1 (#, �, �) [(see Mele (2002, Appendix

D) for additional details]. Proposition 4 (bounded case) is then proved thanks to the follow-

ing results leading to a generalization of Lemma A3: for each (x,s,c)2R���R�R,

lim
T#t

u12

u1
�x, s, c, t, T�

� lim
T#t

E 1
Tÿt

R T

t
@2#
@x@s
���d� ÿ �T ÿ t�� 1

Tÿt

R T

t
@#
@x
���d��� 1

Tÿt

R T

t
@#
@s
���d��

h i
exp �ÿ R T

t #���d��
n o

E 1
Tÿt

R T

t
@#
@x
���d�

� �
exp ÿ R T

t #���d�
� �n o

� 0, �C2�
by Lebesgue's dominated convergence theorem and the fact that @#(t)/@x� 1, @2#(t)/

@x@s� 0, and @#(t)/@s� 0 (by a straightforward generalization of Lemma A2). The proofs

for the other partial derivatives are similar. The unbounded case is treated similarly as in

Proposition 3. Finally, Proposition 5 also follows from Equation (C1).
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Analysis of Equations (14) and (17). First I show the claim in the main text that Equation

(19) is sufficient to guarantee that bond prices are increasing in volatility at any finite

maturity date whenever �A��B�rv> 0, �A��r< 0 and �>� in Equations (14). According

to Proposition 5, it is sufficient to show that for any (r, y, `, �)2R�R�R� [t, T ),

h1�ÿ��A��B�rv�u1� 1��2
rv�

2

2
u11 ÿ �A��ru3� �2

�r

2
u33 ���ru13 > 0: �C3�

Let m#, x� @#/@x and m#, c� @#/@c denote the sensitivity of the interest rate flow to initial

conditions r(�)�x and �(�)� c. We have u1����ÿ�
R T

� m#;x�v�dv�u���, u11��� �
�R T

� m#;x�v�dv�2u���, u3��� � ÿ �
R T

� m#;c�v�dv�u���, u33���� �
R T

� m#;c�v�dv�2u���, u13��� �
�R T

� m#;x�v�dv��R T

� m#;c�v�dv�u���, whereZ T

�

m#;x�v�dv� 1ÿ exp�ÿ��T ÿ ���
�Z T

�

m#;c�v�dv�
Z T

�

m#;x�u�du

� �
� �

�ÿ � �
1ÿ exp�ÿ��T ÿ ���
1ÿ exp�ÿ��T ÿ ���

�

�
ÿ 1

� �
:

8>>><>>>: �C4�

Equation (C3) can thus be written as

h1�� , T�
u�r, y, `, � , T� �

~h1�� , T�

�
Z T

�

m#;x�v�dv

� �
� �A��B�rv��A��r

�

�ÿ �
1ÿ exp�ÿ��T ÿ ���
1ÿ exp�ÿ��T ÿ ���

�

�
ÿ 1

� �� �
� �2

rv�
2

2

Z T

�

m#;x�v�dv

� �2

� 1

2

Z T

�

m#;x�v�dv� ��r
Z T

�

m#;c�v�dv

� �2

: �C5�

When �A��B�rv> 0 and �A��r< 0, a sufficient condition for

h1 > 0 for all � 2 �t, T� is then that

�A��B�rv

ÿ�A��r
>

�

�ÿ �
1ÿ exp�ÿ��T ÿ ���
1ÿ exp�ÿ��T ÿ ���

�

�
ÿ 1

� �
:

Now, function f (Tÿ �)� (1ÿexp (ÿ� (Tÿ �)))/(1ÿexp (ÿ� (Tÿ �))), � varying, is

continuous in [t, T), with f (Tÿ �)< 1 for any � 2 [t, T) and lim�"Tf (Tÿ �)�
�/�< 1, which shows that the inequality [Equation (19)] is sufficient to guarantee that

h1> 0. Note also that the second relation in Equation (C4) reveals that u3< 0 for any finite

maturity date.

When the inequality [Equation (19)] does not hold, Equation (C5) may be used to develop

a condition under which bond prices react negatively to volatility at longer maturity dates. By

a straightforward extension of Lemma A1, u2�x, s, c, t, T��EfR T

t �1�t, �� �h1�#�1����,��1����,
��1��u�, � , T�d�g, where �1�t, ��� exp�ÿ R �t �#�1��u� ÿ '2�#�1��u�,��1��u�,��1��u���du� 2 �0, 1�
for � 2 [t, T], and (#(1), �(1), �(1)) is solution to the system of stochastic differential of

Equation (14), except that the drifts are as in operator L1 in Equation (C1). Furthermore,

the parameters estimates reported by Dai and Singleton (2000) are such that '�� : 8T>��,
~h1�� , T�< 0 for all � 2 [t, ��], and ~h1�� , T�> 0 for all � 2 [��, T]. Let

��x, s, c, t, � , T��Ef�1�t, ��� u�#�1����,��1����,��1��u�, � , T�g 2 �0, 1�. By Fubini,

u2�x, s, c, t, T��
Z ��

t

��x, s, c, t, � , T� � ~h1�� , T�d� �
Z T

��
��x, s, c, t, � , T� � ~h1�� , T�d�:

Therefore, u2< 0 at longer maturity dates wheneverZ T

��
~h1�� , T�d� < min� 2 �t;�����x, s, c, t, � , T�

Ef�1�t, ���g �
Z ��

t

fÿ~h1�� , T�gd�: �C6�
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To illustrate, Equation (C6) for T� 2 holds when 0.2981<min� 2 [0,1.25] ��(x, s, c, 0, � , 2),

where ��� �eÿ(���B). As an example, by taking (x, s, c)� (0.1041, 0.1134, 0.0151)

[which are the values of r, y, and ` under which the drift functions of Equation (14) are

zeroed], I find that min� 2 [0,1.25] ��(x, s, c, 0, � , 2)� 0.8132 after a straightforward numerical

analysis in which � was computed as ��x, s, c, 0, � , T��Efexp�ÿ R �0 #�1��u�du�Efexp�ÿ R T

� #

�u�du�=�#,�,������ �#�1�,��1�,��1�����g=�#�1�,��1�,��1�� �0��x, s, cg�Efexp�R �0 �#�u�ÿ
#�1��u��du� � exp�ÿ R T

0 #�u�du�=initial state�x, s, cg.
Finally, I show the claim in the main text that the inequality [Equation (18)] is sufficient to

guarantee that bond prices are decreasing in volatility at any finite maturity whenever

�rv��A��B�rv< 0 in Equation (17). First, I show that u3< 0. It suffices to use Equation

(16) (for factor `) and conclude that for any (r, y, `, �)2R�R�R� [t, T), u3 (r, y, `, �)< 0

whenever �u1 (r, y, `, �)< 0. But �> 0, and �u1< 0 because u1< 0 by an application of

Equation (C1) for i� 2 (the coefficients of y and ` don't depend on r here). To show that

u2< 0, use Equation (16) (for factor y) and note that it is sufficient to show that for any

(r, y, `, �)2R�R�R� [t, T ),

ÿ��rv��A��B�rv�u1� 1� �2�2
rv

2
u11 ÿ ��vu3 < 0: �C7�

Because ��v< 0 and u3< 0, it is sufficient to show thatÿ��rv��A��B�rv�u1� ((1� �2�rv)/2)

u11< 0. But again, u1���� ÿ�
R T

� m#;x�v�dv�u��� and u11���� �
R T

� m#;x�v�dv�2u���, whereR T

� m#;x�v�dv�f1ÿ exp�ÿ��T ÿ ���g=�, which implies that the inequality [Equation (C7)]

holds for any (r, y, `, �)2R�R�R� [t, T ) whenever the inequality [Equation (18)] in the

main text is true.

Appendix D: Proofs for Section 5

Proof of Proposition 6. By a standard argument, the following equation will be satisfied by

the price function u(r, � , T) in the absence of arbitrage opportunities:

0� @

@�
�LJ ÿ r

� �
u�r, � , T�, 8�r, �� 2R�� � �t, T�

u�r, T , T�� 1, 8r2R��,

8<: �D1�

where @�/@� �LJ� is the jump-diffusion infinitesimal generator of Equation (20), with

LJ u�r, � , T��Lu�r, � , T�� v�r�
Z
fu�r� a2�r� S, � , T� ÿ u�r, � , T�gp�dS�,

and @�/@� �L� is the usual infinitesimal generator for diffusion processes.

Next, differentiate Equation (D1) twice with respect to r to obtain

0� @

@�
�LJ;i ÿ ki

� �
wi�#, � , T�� hJ;i�#, � , T�, 8�#, �� 2R�� � �t, T�

wi�#, T , T�� 0, 8#2R��,

8<: �D2�

where w2� u1, w3� u11,

hJ;2�#, � , T�� ÿ u�#, � , T�� v0�#�
Z
fu�#� a2�#� S, � , T� ÿ u�#, � , T�g � p�dS�

� v�#�
Z

w2�#� a2�#� S, � , T��a02�#� S�p�dS�,
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hJ;3�#, � , T�� ÿ �2ÿ bJ 00�u1�#, � , T�� v�#�
Z

u1�#� a2�#� S, � , T� � a2
00�#� S � p�dS�

� v�#�
Z

w3�#� a2�#� S, � , T� � �a02�#�2 S2 � 2a02�#� S� � p�dS�

� 2v0�#�
Z
fu1�#� a2�#� S, � , T� � �1� a02�#� S� ÿ u1�#, � , T�g � p�dS�

� v00�#�
Z
fu�#� a2�#� S, � , T� ÿ u�#, � , T�g � p�dS�,

and k2�#ÿ bJ 0 �#�, k3�#ÿ 2bJ 00 �#� ÿ a00�#�, with operators LJ,i, i� 2, 3, satisfying

LJ;iwi�#, � , T��Liwi�#, � , T�� v�#�
Z
fwi�#� a2�#� S, � , T� ÿ wi�#, � , T�g � p�dS�,

where Li� are defined similarly as in the proof of Lemma A1 in Appendix A.

Since hJ,2(#, � , T) tends to minus one as T approach � and Efeÿ
R �

t
k2

hJ;2�#���, � , T�g is

continuous in both � and T, claim a) of Proposition 6 follows from an argument nearly

identical to the one used to show Proposition 2.

Claim (b) follows from rearranging terms in Equation (D2), and claim (c) follows

because when v0(r)� a2
0(r)� 0 for all r2R��, hJ;2 and hJ,3 reduce to functionals h2 and h3

encountered during the proof of Lemma A1.

Finally, claim (d) is correct because the price difference ru� uA ÿ uB satisfies

0� @

@�
�LJ

r ÿ r

� �
ru�r, � , T�

� �vA�r� ÿ vB�r��
Z

uB�r� a2�r�S, � , T� ÿ uB�r, � , T�� 	
p�dS�, 8�r, �� 2R�� � �t, T�

ru�r, T , T�� 0, 8r2R��,

8>>>>><>>>>>:
where LJ

rru� bJru1 � aru11� vA�r� Rfru�r� a2�r� S, � , T� ÿ ru�r, � , T��gp�dS�: &

Proof of Equation (21). Let �̂ be the random default time, and define an auxiliary state

process g with the property that

g���� 0, if t� � < �̂
1, otherwise:

�
In this economy, all relevant information is thus subsumed by the following risk-neutral

dynamics:

dr���� b�r����d� � �����������������
2a�r����p

dW���
dg���� S�dN���, where S � 1 with probability one:

(

Denote the rational bond price function as u(r, g, � , T ), � 2 [t, T ]. By a standard argument,

the following equation is satisfied by the predefault bond price u(r, 0, � , T )� upre(r, � , T ) in

the absence of arbitrage opportunities:

0� @

@�
�Lÿ r

� �
u�r, 0, � , T�� v�r���u�r, 1, � , T� ÿ u�r, 0, � , T��

� @

@�
�Lÿ �r� v�r��

� �
u�r, 0, � , T�� v�r�u���, � 2 �t, T�, �D3�

with the usual boundary condition u(r, 0, T, T)� 1. The second line of Equation (D3) follows

by the definition of the recovery payment and by rearranging terms. Equation (D3) has
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exactly the same form as the equations treated in Appendix A (see Lemma A1). Under the

usual regularity conditions, the solution for the predefault bond price is

upre�x, t, T��E� exp ÿ
Z T

t

�r���� v�r�����d�
� �� �

�E�
Z T

t

exp ÿ
Z �

t

�r�u�� v�r�u���du

� �
� v�r����u���d�

� �
: �D4�

The previous formula is an easy extension of the evaluation formula reported by Duffie, Pan,

and Singleton (2000, Equation (1.3), p. 1345) in the case of a constant recovery payment. To

show that Equation (D4) coincides with the original derivation of Duffie and Singleton

(1999, Equation (10), p. 696) [or with the derivation in Lando (1998, example 3.5, p. 107)],

that is with Equation (21), insert u� (1ÿl ) � u(�, 0, �, �) into Equation (D3) to obtain

0� @

@�
�Lÿ �r� l���v�r��

� �
u�r, 0, � , T�, 8�r, �� 2R�� � �t, T�,

with the usual boundary condition, the solution to which is exactly Equation (21). &
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