
Affine Term Structure Models ∗

The term structure of interest rates is the yield-to-maturities on a set of bonds of

different maturities, expressed as a function of the times-to-maturity. It is a simple,

summary measure of the cross-section of bond prices measured at a point in time. An

affine term structure model hypothesizes that the term structure – at any date – is

a time-invariant linear function of a small set of common state variables (or factors).

Once the dynamics of the state variables and their risk premiums are specified, then

the dynamics of the term structure are determined.

Of course, in order for the term structure of interest rates (or yield curve) to be

meaningful, the bonds that are being compared must have similar risk and payout

characteristics. The literature that we examine in this chapter focuses on the term

structure of default-risk free, nominal bonds that make a single payment at a pre-

specified date in the future (so-called zero-coupon bonds). The models described

below can be applied to other types of bonds, but this class of simple financial claims

is important because it defines the market determined discount rates embedded in

any more complicated claim that makes payments over time.

The literature on the term structure is large, and it reaches back to some of

the giants of early twentieth century economics: Fisher, Hicks, and Keynes. The

preeminent theoretical model of the term structure, prior to the advent of the explicit

no-arbitrage approach to asset pricing, was the expectations hypothesis. Although

it exists in a variety of forms (see Cox, Ingersoll, and Ross, 1981), we will follow

Campbell (1986) and Campbell and Shiller (1991) by defining it as the hypothesis that

term premiums on default-risk free zero-coupon bonds are constant through time. The

other commonly espoused early term structure theories – the liquidity preference and

preferred habitat theories – can be viewed as extensions of the expectation hypothesis

that make additional predictions for the size of term premiums as a function of term-

to-maturity.

Empirical tests of the expectations hypothesis are often based on the following
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regression:

yt+m (n−m)− yt (n) = kn,m + φn,m

{
m

n−m
[yt (n)− yt (m)]

}
+ εt+m (n,m) , (1)

where yt (n) is the yield to maturity on a long maturity (n period) bond and yt (m)

is the yield-to-maturity on a shorter maturity (m period) bond such that n/m is an

integer. kn,m is a maturity dependent constant. φn,m is the regression slope coefficient,

and εt+m (n, m) is a random shock observed at t+m that may be maturity dependent.

The left-hand side of (1) is the m-period change in an n-period bond between t and

t + m, and the regressor is a maturity adjusted yield spread observed at time t. The

empirical prediction of the expectations hypothesis is that φn,m is equal to one, for

all choices of n and m.

This prediction has been rejected in the U.S. data for most choices of n and m. For

example, Campbell and Shiller (1991) find that φn,m is negative and reliably different

from one “... between almost any two maturities ...” ranging from two months to

ten years. Fama and Bliss (1987) report similar results using a different data set

and a slightly different specification of the expectations hypothesis regression (1).

This overall rejection of the basic prediction of the expectations hypothesis has been

replicated in a number of different studies using maturities from one month to ten

years. Longstaff (2000) presents evidence that suggests that the prediction φn,m = 1

is not rejected in data with extremely short maturities; i.e., days or weeks.

The failures of the expectations hypothesis imply that there are time-varying

term premiums in the prices of default-risk free zero-coupon bonds. Explaining the

dynamics of these term premiums is an important goal of affine term structure models.

These models have two important strengths compared to the earlier theories of the

term structure. They explicitly rule out arbitrage opportunities among the bonds

being priced, and they simultaneously allow for flexible specifications of bond term

premiums. Weaknesses of affine models include the fact that they are typically not

easy to estimate, and there can be very limited intuition as to the interpretation of

the fundamental factors. Chapman and Pearson (2001), Dai and Singleton (2003),

and Piazzesi (2005) are all recent, more detailed, and more technical examinations of

much of the material that follows.
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Any affine term structure model starts from the assumption that there are no

arbitrage opportunities in financial markets. This assumption implies that there

exists a strictly positive stochastic process, Λ, that prices all assets.1 This process

is typically referred to as a state price deflator in continuous-time models of asset

pricing and a stochastic discount factor in discrete-time models. In our discussion

of affine pricing models, we follow the more common approach in the literature and

develop the models in continuous-time. The existence of a state price deflator also

implies that there exists a risk-neutral measure, Q, which is distinct from the physical

measure, P, that generates observed variation in asset prices.

Independent of any specific model of bond prices, it is always possible to express

the price at time t of a zero coupon bond that matures at time t + τ as

Pt (τ) = EQ
t

[
exp

(
−

∫ τ

0

rsds

)]
, (2)

where EQ
t [·] denotes the expected value at time t under the risk-neutral measure and

r is the instantaneous rate of interest (or short rate). The short rate can be defined

as

rt = lim
τ↓0

Pt (τ) , (3)

but it is also related to the expected value of the instantaneous rate of change of the

state price deflator because

dΛt

Λt

− rtdt + σΛ (Λt, t) dW Q
t , (4)

where W Q
t is a Brownian motion under Q, σΛ (·) is the time- (and possibly state-)

varying instantaneous volatility of the state price deflator, and the second term in (4)

is a common shorthand notation for an Itô stochastic integral.2

As equation (2) clearly shows, pricing zero-coupon default-risk free bonds comes

down to specifying a model for the dynamics of the short rate under the risk neutral

measure. In choosing models for rt, there are two paramount considerations: (i) a

1See Duffee (2001) for a textbook treatment of the implications of absence of arbitrage for asset
pricing.

2See Duffie (2001) for a textbook treatment of continuous-time stochastic processes, including
the definitions of Brownian motion and the Itô integral.
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flexible specification that does a reasonable job of capturing the dynamics of proxies

for the short rate (since rt itself is unobservable), and (ii) a specification that yields

a convenient form for the bond prices that are the ultimate objects of interest.

Short rate models, when developed in continuous time, are completely determined

by the drift function, which defines the instantaneous expected value of the short rate,

and the diffusion function, which determines the instantaneous volatility of the short

rate. What is not clear from equation (2) is that in order to move from the theoretical

risk-neutral measure, Q, to the actual (or physical measure), P, that generates the

observed data, a term structure model must also specify a structure for the risk

premium functions controling the transformation of bond prices between Q and P.

Single-Factor Models

In a single-factor affine model, the determinant of bond prices is the short rate itself.

The model is constructed by specifying a continuous-time process for the short rate

and a form of the risk premium function. As Cox, Ingersoll, and Ross (1985) note,

these choices must be mutually consistent in order to avoid accidentally introducing

arbitrage opportunities into a (supposedly) arbitrage-free model. The fundamental

building blocks of all affine models are the single-factor models due to Vasicek (1977)

and Cox, Ingersoll, and Ross (1985) (hereafter CIR).

The Vasicek model assumes that the short rate evolves as an Ornstein-Uhlenbeck

process under the risk neutral measure

drt = κ (θ − rt) dt + σdW Q
t , (5)

where κ > 0 determines the speed of reversion to the constant mean, θ > 0, and

σ is the unconditional instantaneous volatility of the process. The conditional and

unconditional distributions of interest rate changes are Gaussian in this model. Ac-

cordingly, it is possible for the short rate to be negative. The risk premium function

is a constant, λ0, which means that the short rate is also Gaussian under the physi-

cal measure, P. Solving the conditional expectation in (2) under these assumptions

generates an explicit expression for the price of a default-risk free zero coupon bond

Pt (τ) = exp [a (τ) + b (τ) rt] , (6)
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where

a (τ) =

(
θ − λ0

κ
− 1

2

σ2

κ2

) [
1

κ
(1− exp (−κτ))− τ

]
− σ2

4κ3
[1− exp (−κτ)]2 (7)

and

b (τ) = −1

κ
[1− exp (−κτ)] . (8)

Equation (6) is the first statement of an exponential-affine pricing function. It

implies a simple structure where continuously compounded yields are Gaussian with

constant volatility. The term structure of forward rates implied by this simple model

can assume most (but not all) of the commonly observed shapes of the term structure.

In particular, the term structure of forward rates can be upward sloping, downward

sloping, or humped shaped, although the model cannot generate an inverted humped

shape. Since prices at all maturities are driven by a single stochastic factor, this

model implies that all yield levels are perfectly correlated. In the data, yield levels

are very highly – but not perfectly – correlated.

In the single-factor CIR term structure model, the short rate evolves as

drt = κ (θ − rt) dt + σ
√

rtdW Q
t , (9)

where κ > 0 and θ > 0 have the same interpretation as in the Vasicek case, but the

short rate is no longer Gaussian. The parameter restriction 2κθ ≥ σ2 is imposed in

order to ensure that the short rate process does not get trapped at zero. rt has a

conditional noncentral chi-square distribution (and an unconditional Gamma distrib-

ution). The instantaneous conditional variance of the short rate is linear in the level

of the rate. The risk premium specification that is consistent with no-arbitrage in

the single-factor CIR specification is λ (rt) = λ1rt, and the no-arbitrage bond price

is, again, of the form (6) with

a (τ) =
2κθ

σ2
log

[
2γ exp

(
1
2
τ (κ + λ1 + γ)

)
(κ + λ1 + γ) [exp (γτ)− 1] + 2γ

]
(10)

and

b (τ) =
−2 [exp (γτ)− 1]

(κ + λ1 + γ) [exp (γτ)− 1] + 2γ
, (11)
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where γ ≡
√

(κ + λ1)
2 + 2σ2. Once again, the CIR model can generate the most

common shapes of the term structure, but it still implies that all yield levels are

perfectly correlated.

The Vasicek and CIR models are the most common forms of single-factor affine

models, but Duffie and Kan (1996) provide the conditions on the drift, diffusion, and

risk premium functions of a short rate specification, like (5) or (9), that ensure that

the bond pricing function is exponential-affine under the risk neutral measure. In

particular, a pricing function of the form of (6) will follow if

µ (rt)− λ (rt) = ρ0 + ρ1rt (12)

and

σ (rt) =
√

β0 + β1rt (13)

hold, where µ (rt) is a general expression for the drift of the short rate and σ (rt) is

a general expression for the instantaneous volatility of the short rate. For example,

in the CIR case, ρ0 = κθ, ρ1 = − (κ + λ1), β0 = 0, and β1 = σ2. In this more

general case, the a (τ) and b (τ) functions will not generally have explicit closed-

form expressions. Rather, they will be defined as the solutions to a pair of ordinary

differential equations.

The empirical evidence clearly shows that a single-factor specification is not suf-

ficient to describe the dynamics of the default-risk free term structure. As such,

empirical analysis of simple specifications, like (5) and (9), have shifted away from

attempting to completely characterize yields on all maturities and, instead, have con-

centrated on explaining the dynamics of a proxy for the unobservable short rate.

Chan, Karolyi, Longstaff, and Sanders (1992) pioneered this approach, using a sim-

ple generalized method of moments estimation scheme. Durham (2003) is the natural

evolution of this literature using state-of-the-art approximate maximum likelihood

estimation. The conclusions of this literature are: (i) The evidence of mean rever-

sion in the short rate is weak, at best, but (ii) there is little consistent evidence of

nonlinear mean reversion. (iii) There are complicated volatility dynamics that are

not consistent with either constant volatility (Vasicek) or instantaneous conditional

variances that are linear in the short rate (CIR).
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Multifactor Models

If single-factor models are insufficient to explain the observed term structure, then

how many factors are needed and what are the dynamics of these factors? The

common answer to the first question was provided by the analysis in Litterman and

Scheinkman (1991). Using a simple principal components approach, they argue that

three factors – extracted from yields themselves – can explain well over 95% of the

variation in weekly changes to U.S. Treasury bond prices, for maturities of up to 18

years. The answer to the second question – in the most general form consistent with

an exponential-affine pricing function – was provided by Dai and Singleton (2000)

and extended by Duffee (2002).

The multifactor affine term structure model consists of the following three com-

ponents: There is linear relation between the short rate and the factors:

rt = δ0 + δ′Yt, (14)

where Yt denotes the N -vector of time t factor realizations. The factor dynamics

conform to an affine diffusion

dYt = K (θ − Yt) dt + Σ
√

StdW Q
t , (15)

where K and Σ are N×N matrices (with no general restrictions) and St is a diagonal

matrix with the i-th diagonal element equal to

[
Sii

t

]
= αi + β′

iYt. (16)

The St matrix allows for the instantaneous conditional variance of the factors to

be linear functions of factor levels. If every element of Yt can affect the conditional

volatility of every other factor, then (15) is a multifactor generalization of the CIR

model from the last section. Of course, the fact that volatility is linear in the level of

Y requires strong restrictions on the parameters of the model in order to ensure that

variances are non-negative.

If no elements of Y affect the conditional volatility, then (15) is a multifactor

generalization of the Vasicek model. If m < N factors affect the conditional volatility,

7



then the multifactor affine model is a mixture of the CIR and Vasicek forms. Dai

and Singleton (2000) define different classes of affine models by the number of factors

that affect the conditional factor volatilities, with Am (N) being the general notation

for an N -factor model with m-factors driving conditional volatilities.

Under these assumptions, bond prices satisfy a multivariate generalization of (6)

given by

Pt (τ) = exp
[
A (τ) + B (τ)′ Yt

]
. (17)

The functions A (τ) and B (τ) are the solutions to the ordinary differential equations

dA (τ)

dτ
= −θK′B (τ) +

1

2

N∑
i=1

[Σ′B (τ)]
2
i αi − δ0 (18)

and
dB (τ)

dτ
= −K′B (τ) +

1

2

N∑
i=1

[Σ′B (τ)]
2
i βi − δ. (19)

The third – and final – component of the general multifactor affine model is the

specification of the market prices of risk, which connects pricing under the risk-neutral

measure to pricing under the physical measure:

Λt =
√

Stλ0 +
√

S−
t λYt, (20)

where λ0 is an N -vector of constants, λ is an N ×N matrix of constants, and S−
t is

an N -dimensional diagonal matrix with diagonal elements equal to

S−
t (ii) =

{
(αi + β′

iYt)
−1/2 , if inf (αi + β′

iYt) > 0;

0, otherwise.
(21)

The first term in (20) is a straightforward generalization of the single-factor risk

premium specifications: risk premiums are proportional to factor volatilities. The

second component is an important source of additional flexibility in multifactor affine

models. It allows these models to provide a better fit to the distribution of bond

excess returns, and it is also useful in rationalizing the observed violations of the

expectations hypothesis discussed earlier.
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As noted earlier, the general multifactor affine model can be viewed as a blending

of the Vasicek and CIR forms. These extreme specifications also reveal a critical

trade-off in multifactor term structure modelling. The CIR form offers the greatest

flexibility in specifying the volatility dynamics of bond prices. However, this flexibility

comes at a cost. The parameter restrictions that are ¡required to ensure that (16)

provides a valid description of factor variances, impose substantial restrictions on

the permissible correlations between the factors. In the extreme case of the pure

multifactor CIR model, the factors must be uncorrelated to ensure an admissible

volatility specification.

Dai and Singleton (2002), Duffee (2002), and Brandt and Chapman (2005) fit

multifactor affine term structure models to more than 25 years of monthly U.S. bond

data. Each paper considers the ability of different versions of Am (3) models (for

m ∈ {0, 1, 2, 3}) to explain both the rejections of the expectations hypothesis gen-

erated by regressions of the form of (1) and the ability of these models to provide

meaningful forecasts of future yields. Both Dai and Singleton (2002) and Brandt and

Chapman (2005) find that a Gaussian version (an A0 (3) model) can rationalize the

risk premiums revealed by yield change regressions. Duffee (2002) demonstrates that

an A0 (3) model with the expanded risk premium specification of (20) can produce

meaningful multistep forecasts of Treasury yields at different maturities.

Although the ability to explain risk premiums and yield movements is an impor-

tant success for multifactor affine models, their biggest failing is that these explana-

tions require that conditional yield volatilities are constant. Essentially, the flexibility

in factor correlations that are required to explain these features of the data require a

stochastic structure that precludes the volatility dynamics that are an equally impor-

tant feature of interest rate data. A final important issue in evaluating these models

is whether or not their latent factors can be connected in any meaningful way to

structural (macroeconomic) explanations of term structure dynamics.

Models with Macroeconomic Factors

Ang and Piazzesi (2003) and Ang, Dong, and Piazzesi (2005) are recent papers that

begin to answer the question about how to connect no-arbitrage term structure models

with elements of the macroeconomy. In Ang and Piazzesi (2003), a term structure

model is developed where some of the factors are macroeconomic variables and some
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factors remain unobservable (or latent). In particular, they retain the structure of

equation (14) in a multifactor affine model, and they consider a Gaussian model

with five factors. The first two factors are observable macroeconomic factors that

are extracted as principal components from two groups of observable variables, one

that captures measures of inflation and one that captures measures of real activity.

The three (latent) factors are allowed to be correlated with each other, but they are

assumed to be orthogonal to the macroeconomic factors. The results of estimating

this model suggests that macroeconomic variables explain a significant portion of

return variances. This is particularly true for short and intermediate maturity bonds.

Ang, Dong, and Piazzesi (2005) extends the analysis in Ang and Piazzesi (2003)

by allowing macroeconomic variables to have a feedback effect on the dynamics of

the latent factors and vice versa. This structure is then interpreted as a Taylor

rule for monetary policy, where the monetary authority is interested in controlling

both deviations from a target real growth rate and deviations from a target inflation

rate. This multifactor model includes three factors – two macroeconomic variables

and one latent factor – that follow a Gaussian structure. This structure allows for

a decomposition of yield changes into responses to monetary policy (as specified in

the Taylor rule) and responses to monetary policy shocks. They find that 30 to 40

percent of the variability of short and intermediate maturity yields can be explained

by responses to policy. The approach followed in this paper can be extended and

combined with different forms of latent-factor affine term structure models by making

additional assumptions about either factor dynamics or risk premiums.

Conclusions

Affine term structure models have come a long way in the nearly thirty years since

their initial formulation. Flexible multifactor models have been specified that are both

amenable to econometric estimation and capable of rationalizing many important

features of U.S. Treasury bond prices. In particular, these models have been capable

of producing term premiums that are both consistent with no-arbitrage and with

observed rejections of the expectations hypothesis of the term structure.

There are two directions for future work in this area that seem particularly impor-

tant. One direction consists of extending and strengthening the connections between

no-arbitrage models and models of the actions of monetary authorities. This research
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holds out the promise of greater intuition behind the factors in no-arbitrage models

as well as a greater understanding of how capital markets perceive the actions of

monetary authorities. A second direction for multifactor affine models is to explain

simultaneously rejections of the expectations hypothesis and yield volatility dynamics.

Michael W. Brandt

David A. Chapman

Bibliography

Ang, A., and M. Piazzesi. 2003. A No-Arbitrage Vector Autoregression of Term

Structure Dynamics with Macroeconomic and Latent Variables. Journal of Monetary

Economics 50, 745-787.

Ang, A., S. Dong, and M. Piazzesi. 2005. No-Arbitrage Taylor Rules. Manuscript.

Columbia University and University of Chicago.

Brandt. M. W., and D. A. Chapman. 2005. Comparing Multifactor Models of the

Term Structure. Manuscript. Duke University and Boston College.

Campbell, J. Y. 1986. A Defense of Traditional Hypotheses About the Term Structure

of Interest Rates. Journal of Finance 41, 183-193.

Chan, K. C., G. A. Karolyi, F. A. Longstaff, and A. B. Sanders. 1992. An Empir-

ical Comparison of Alternative Models of the Short-Term Interest Rate. Journal of

Finance 47, 1209-1227.

Chapman, D. A., and N. D. Pearson. 2001. Recent Advances in Estimating Term

Structure Models. Financial Analysts Journal 57, 77-95.

Cox, J. C., J. E. Ingersoll, Jr., and S. A. Ross. 1981. A Re-examination of Traditional

Hypotheses About the Term Structure of Interest Rates. Journal of Finance 36, 769-

799.

Cox, J. C., J. E. Ingersoll, Jr., and S. A. Ross. 1985. A Theory of the Term Structure

of Interest Rates. Econometrica 53, 385-408.

Dai, Q., and K. J. Singleton. 2000. Specification Analysis of Affine Term Structure

Models. Journal of Finance 55, 1943-1978.

11



Dai, Q., and K. J. Singleton. 2002. Expectation Puzzles, Time-Varying Risk Premia,

and Affine Models of the Term Structure. Journal of Financial Economics 63, 415-441.

Dai, Q., and K. J. Singleton. 2003. Term Structure Dynamics in Theory and Reality.

Review of Financial Studies 16, 631-678.

Duffee, G. R. 2002. Term Premia and Interest Rate Forecasts in Affine Models.

Journal of Finance 57, 405-443.

Duffie, D. 2001. Dynamic Asset Pricing Theory, 3rd Ed. Princeton: Princeton Uni-

versity Press.

Duffie, D., and R. Kan. 1996. A Yield Factor Model of Interest Rates. Mathematical

Finance 6, 379-406.

Durham, G. B. 2003. Likelihood-Based Specification Analysis of Continuous-time

Models of the Short-Term Interest Rate. Journal of Financial Economics 70, 463-487.

Fama, E. F., and R. R. Bliss. 1987. The Information in Long Maturity Forward

Rates. American Economic Review 77, 680-692.

Litterman, R. and J. Scheinkman. 1991. Common Factors Affecting Bond Returns.

Journal of Fixed Income 3, 54-61.

Longstaff, F. A. 2000. The Term Structure of Very Short Term Interest Rates: New

Evidence for the Expectations Hypothesis. Journal of Financial Economics 58, 397-

415.

Piazzesi, M. 2005. Affine Term Structure Models. In the Handbook of Financial

Econometrics, Y. Aı̈t-Sahalia and L. P. Hansen (eds). Amsterdam: Elsevier-Science.

Vasicek, O. 1977. An Equilibrium Characterization of the Term Structure. Journal

of Financial Economics 5, 177-188.

12


