
THE NEW INTEREST RATE MODELS

For general volatility structures for forward rates, the evolu-
tion of interest rates may not be Markovian and the entire
path may be necessary to capture the dynamics of the term
structure. This chapter identifies conditions on the volatility
structure of forward rates that permit the dynamics of the
term structure to be represented by a two-dimensional state
variable Markov process. The permissible set of volatility
structures that accomplishes this goal is shown to be quite
large and includes many stochastic structures. In general,
analytical characterisation of the terminal distributions of
the two state variables is unlikely, and numerical procedures
are required to value claims. Efficient simulation algorithms
using control variates are developed to price claims against
the term structure.

This chapter deals with the pricing of contingent claims when interest rates are

stochastic. The methodology used incorporates all current information in the

yield curve. This approach, pioneered by Ho and Lee (1986) and significantly

generalised by Heath, Jarrow and Morton (1992), relies upon markets being dynamically

complete with continuous trading opportunities. Analogous to the Black–Scholes model,

where preferences are embedded into the stock price and the volatility is exogenously

provided, in this approach preferences are embedded into the observable term struc-

ture, and the volatility function for forward rates is exogenously specified.

Heath, Jarrow and Morton (1992) show that to preclude arbitrage opportunities

among bonds of different maturities, the drift and volatility terms in the evolution of all

forward rates must be related to a common market price of interest rate risk. Further,

they identify a unique martingale measure that can be used to price all interest rate

claims. Unfortunately, the computation of prices is complex because the evolution of

the term structure under the martingale measure is usually not Markovian with respect

to a finite-dimensioned state space.1 The path dependence is also made apparent in a
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related paper by Heath, Jarrow and Morton (1990) where they use a binomial approxi-

mation to provide an alternative derivation of their main results. Due to path depen-

dency the lattice usually grows exponentially with the number of time periods. The path

dependence causes complications even if simulation models are used to compute the

prices of European claims. In particular, since the entire term structure must be manip-

ulated along each simulated path, simulations are computationally intensive, and the

build-up of errors due to discreteness may be severe. Many single-factor models of the

term structure resolve the complications introduced by path dependence by imposing

sufficient structure on the problem so that the evolution of the term structure is path-

independent. In contrast, this chapter identifies conditions which permit the term

structure’s dynamics to be captured by two variables rather than the entire term struc-

ture. In particular, we identify conditions on the volatility structure of forward rates that

permits the term structure’s dynamics to be represented by a two-dimensional sufficient

statistic. Unlike the general Heath, Jarrow and Morton (HJM) models, our models thus

lead to a two-state-dimensional Markov representation of the term structure. The per-

missible set of volatility structures that accomplishes this goal is shown to be quite large

and includes many stochastic and deterministic structures. For example, the volatility

structure can be specified in such a way that the resulting spot rate dynamics is gener-

ated by a square root process. In general, an analytical characterisation of the terminal

distributions of the two state variables is unlikely, and hence numerical procedures are

required. We illustrate how simulation techniques, combined with control variables, can

be used to establish efficient pricing algorithms for all types of claims against the term

structure.

The chapter proceeds as follows. In the next section we identify the path depen-

dence that is implicit in models of the term structure in which the volatility structure of

forward rates is arbitrary. We then show that if the volatility structure is carefully cur-

tailed, bond prices can be expressed in terms of the spot rate and an additional statistic

which captures all the relevant history of the term structure dynamics. The resulting

spot rate process induced by the volatility constraint is developed. This process is a two-

state-variable Markovian process and has the desirable property of incorporating into its

dynamics all the information provided from the term structure. When the volatility struc-

tures are deterministic then simple analytical solutions for pricing interest rate claims are

available. For all other cases numerical procedures are required. Fortunately, since the

martingale measure which is relevant for pricing is Markovian, models can be estab-

lished which do not require the entire term structure to be manipulated along each

path. The third section discusses simulation mechanisms and provides examples of pric-

ing interest-sensitive options, when the volatility structure of forward rates is non-deter-

ministic. The convergence of simulated results is substantially accelerated by using

appropriate control variables. The valuation of claims that depend on prices of risky

assets as well as on yields drawn from the term structure is also considered. The fourth

section summarises the chapter.

Path dependence and volatility structures
Forward rates are assumed to follow a diffusion process of the form

(1)

Here µf(t, T) and σf(t, T) are the drift and volatility parameters which could depend on

the level of the term structure itself, and δω(τ) is the Wiener increment.

Integrating (1) yields the relation between current forward rates and their values at

time t. In particular,
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Since the spot rate at time t, r(t), is given by f(t, t), we obtain that

(3)

The dynamics of the spot rate are then obtained as

(4)

Let P(t, T) be the price at date t of a pure discount bond that matures at time T. By defi-

nition, the bond price is given by

(5)

Since bond prices depend on forward rates, as evidenced by (5), the drift and volatility

structure of bond returns must be related to the drift and volatility structure for forward

rates. In particular, let

(6)

Usual arbitrage arguments then lead to

(7)

and

(8)

where

(9)

Here λ(t) is the market price of interest rate risk at time t, and is perhaps stochastic, but

is the same for all bonds regardless of maturity. Equation (1) can now be written as

(10)

Equation (10) makes explicit the relation between the drift component of the evolution

of forward rates, the volatility structure of forward rates, and the market price of risk,

which must be satisfied to preclude dynamic arbitrage opportunities. Equivalently, inte-

grating (10) we obtain

(11)

Using (6) and (11) leads to the relation between forward prices and future bond prices:

(12)

This form of the bond pricing equation is given in Heath, Jarrow and Morton (1992). As

they emphasise, this general form is quite distinct from the traditional literature. In the

traditional literature, bond prices are assumed to be functions of some state variables
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and explicit formulae linking bond prices to these state variables are then established.

For example, in many single-factor models, the state variable is the spot rate and bond

prices are developed as a function of the spot rate. In the above term-structure-con-

strained approach, bond prices may not be Markovian with respect to a finite set of state

variables. Indeed, the above single-factor representation of the term structure highlights

the fact that bond prices at date t depend on prices at an earlier date, on the entire path

taken from date 0 to date t, and of course on the evolution of the market price of risk.

From a valuation perspective, (11) and (12) are of little use. It would be desirable to

obtain a bond pricing equation that depends on a few state variables, common across all

maturities. It would also be desirable for the equation to be preference free in the sense

that the market prices of risk do not appear. To accomplish this goal, we impose further

restrictions on the process by which forward rates are generated. This point marks our

departure from Heath, Jarrow and Morton (1992).

With the goal of obtaining a proxy for the path of interest rates that is relevant for

pricing all bonds, rewrite (11) as

Λ(t, T) reflects the path dependence as the “weighted sum” of all Brownian disturbances

realised from time 0 to time t. This path dependence can be captured by a single statistic

common across all maturities, T, without imposing any additional restrictions on the ini-

tial term structure, f(0, T), or on the structure for the market price of risk, λ(t), providing

a common “weighting scheme” exists for forward rates of all maturities. However, if a

unique weighting scheme is to exists for all forward rates, it must be the case that the

weighting function is independent of T. This in turn implies that

Equivalently,

where the new quantity k(t, T) is well defined for all t > 0.

Of course σf(u, T) is fully determined at date u. This implies that the right-hand side is

also fully determined at date u. In general, both the numerator and the denominator of

k(t, T) are only known at a later date t, but from the above, their ratio must be indepen-

dent of the path taken from the earlier date u. Hence, k(t, T) must be deterministic.

Substituting t = u leads to

where σr(u) = σf(u, u). Similarly, σf(u, t) = σr(u)k(u, t). Hence

(13)
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Differentiating with respect to T yields

This implies that the above derivative is independent of u. Let κ(T) = –∂g(u, T) ⁄ ∂T. Then,

by definition,

Further, g(u, u) = 0. Hence the above equation reduces to

(14)

Equation (14) is a necessary condition that must be satisfied by the volatility structure of

forward rates if the path dependence is to be captured by a single statistic. It turns out

that this is sufficient as well, and in the resulting models all bond prices can be

expressed in terms of two state variables. These results are summarised below.

PROPOSITION 1 (a) If the volatilities of forward rates are differentiable with respect

to their maturity dates, then for any initial term structure, a necessary and sufficient

condition for the prices of all interest contingent claims at time t to be completely

determined by a two-state-variable Markov process is that the volatility structure of

forward rates satisfy

(15)

(b) Under the restriction imposed by (15), the price of a bond, at any future date t,
can be represented in terms of its forward price at date 0, the short interest rate at

date t, and the path of interest rates as

(16)

where

PROOF See the Appendix.

Equation (16) identifies the two state variables as the spot interest rate, r(t), and the

“integrated variance” factor, φ(t). Given these two values at date t, the entire term struc-

ture can be reconstructed. Further, under the forward rate volatility restriction, we can

express the evolution of the two state variables, r(t) and φ(t), in terms of their current

values and the level of the forward rate curve at an earlier date 0. Specifically, substitut-

ing in (4) from (15) and (16) leads to
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and

(18)

where

and

Equation (17) describes the evolution of the spot interest rate by a two-state Markovian

process. This is in sharp contrast to the general HJM models in which the interest rate

process cannot be described by a finite-state Markov process.

By constraining the volatility structure of forward rates we are able to capture the

dynamics of the entire term structure by a two-state Markovian representation. If the

volatility structure is not of the form in (15), then such a representation is not possible,

and either full path dependence (as in the general HJM models) will be present, or addi-

tional assumptions on volatilities and investment behaviour will be necessary to obtain a

Markovian representation.

The class of volatility structures admitted by (15) is quite large. In particular, no

restrictions are placed on the volatility of the spot interest rate. Indeed, the spot rate

volatility at date t could depend on the full set of information available at date t. As an

example of a feasible representation, consider the special case of (15) where

(19)

and 

(20)

Notice that for γ = 0 the volatility structure becomes deterministic. In this case the spot

interest rate becomes the only state variable, and the above proposition reduces to a

statement on necessary and sufficient conditions that permit the term structure to be

Markovian with respect to the spot interest rate. The conditions have previously been

derived by Carverhill (1994) and by Hull and White (1993). The above proposition gen-

eralises their results by considering a larger class of volatility structures that permit a

two-state Markovian representation.

For γ = 0.5 the spot rate volatility is square root and forward rates are linked to spot

rates via an exponentially dampened function. In general, the specification given in (19)

and (20) leads to models of the term structure that are completely described by three

parameters, namely σ, κ and γ.

Valuation of claims under the restricted volatility structure
Heath, Jarrow and Morton (1992) develop the martingale measures under which claims

on the term structure may be priced as expectations of their terminal payoffs relative to

a money market fund. In practice, computing these expectations is extremely difficult,

except for the simplest of cases where the volatility structure is deterministic. For the

general case, computing the terminal term structures under the risk-neutralised process

requires constructing the entire term structure at every point in time. This burden

rapidly becomes computationally expensive, but is necessary for valuing all types of

interest rate claims.

In contrast, models under the restricted volatility structure identified in this chapter

are two-state Markovian. As a result, all the information contained in the term structure

is captured by two variables. Hence, to construct the terminal term structure, any algo-

rithm need only keep track of these two variables. In this section we develop a discrete

approximation algorithm to value European claims on the term structure. Further, we

show how the performance of the algorithm can be significantly enhanced by using con-

σ σ
γ

r t r t( ) ( )= [ ]

σ σ κ
f r

T tt T t e( , ) ( ) ( )= −

σ σr ft t t( ) ( , )=

µ κ φ σ λr rt t f t r t t t t
d

dt
f t( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( , )= −[ ] + + +0 0

d t t t t dtrφ σ κ φ( ) ( ) ( ) ( )= −( )2 2

V O L AT I L I T Y

S T R U C T U R E S  O F

F O R W A R D  R AT E S

A N D  T H E  D Y N A M I C S

O F  T H E  T E R M

S T R U C T U R E

6

RISK BOOKS



trol variate techniques, in conjunction with pricing relationships developed when inter-

est rates have deterministic volatilities.

To make matters specific, we shall restrict attention to the case where the structure

for the spot rate volatility depends on the level of the spot rate and κ(·) is a constant.

Specifically, we assume that the volatility structure is given by (19) and (20). With these

restrictions the interest rate process given in (17) reduces to

(21)

The volatility of the resulting spot rate dynamics is similar to that of models nested in the

structure

The main difference, however, is that the drift term depends on information from a past

term structure as well as on the path statistic, φ(t), which is described as 

(22)

Now, let g(0) represent the date 0 value of a claim having a terminal payout at date s that

is fully determined by yields drawn from the term structure. Using standard arbitrage

arguments the martingale measure under which all claims are priced is obtained by set-

ting λ(t) = 0 in (21). In particular, following Heath, Jarrow and Morton we obtain 

(23)

where M(s) is the value of a money fund that is initialised with US$1.0 at date 0 and rolls

over at the current riskless rate of return. The expectation in the above equation is taken

under the joint risk-neutralised process

(24)

and

(25)

In general, because of path dependency, it is unlikely that analytical expressions for the

terminal joint distribution of the state variables r(s) and φ(s) can be obtained.2 To estab-

lish numerical approximations of the term structure, we begin by partitioning the inter-

val [0, s] into n equal time increments of width ∆t. Over the discrete intervals let

The approximating path statistic and change in interest rate are a(·) and ∆[ra(·)], respec-

tively, where

(26)φ σ
σ

κa a

i

j

j i tj r i e( ) ( ) ( )= [ ]
=

−
− −∑2

2

0

1

2 ∆

σ σ
γ

κ
f
a j t ti j r i t e j i( , ) ( ) ,    ( )= [ ] ≥− −∆ ∆

d t t t t dtrφ σ κ φ( ) ( ) ( ) ( )= −( )2 2

dr t t f t r t t
d

dt
f t dt t dw tr( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )= −[ ] + +







+κ φ σ0 0

g s E
g s

M s
( , ) ˜ ( )

( )
0 0=













φ σ
γ

κ( ) ( ) ( )t r u e dut u

t

= [ ] − −∫2
2

2

0

dr t r t dt r t dw( ) ( ) ( )= −[ ] + [ ]κ µ σ
γ

dr t f t r t t t r t
d

dt
f t dt

r t dw t

( ) ( , ) ( ) ( ) ( ) ( ) ( , )

( ) ( )

= −[ ] + + [ ] +







+ [ ]

κ φ λ σ

σ

γ

γ

0 0

V O L AT I L I T Y

S T R U C T U R E S  O F

F O R W A R D  R AT E S

A N D  T H E  D Y N A M I C S

O F  T H E  T E R M

S T R U C T U R E

7

THE NEW INTEREST RATE MODELS



and

where ra(0) = r(0) and ra(i) approximates the interest rate r(i∆t). Then

(27)

where Z(i) is a normal random variable with mean zero and variance ∆t. Using (26) and

(22) the path statistic, φa(·) can be updated as follows:

(28)

To investigate the convergence of (27) extensive simulations were performed over a

wide range of parameter settings. Specifically, given particular values of the parameters,

κ, σ, and γ, we simulated a path of 800 partitions, updating every time increment. Using

the same sequence of random numbers we then considered updating less frequently.

The percentage error in the resulting terminal value of r(t) and φ(t) was computed for

each path and solely reflects the bias from less frequent updates. Ten thousand paths

were simulated, and the first four central sample moments of the marginal distribution

of these percentage errors were computed. Table 1 summarises the mean percentage

error when the number of updates over the three-month period ranged from 25 to 200.

The table only reports the average percentage errors for the marginal distributions. The

magnitudes of the second, third and fourth moments of the percentage errors were neg-

ligibly small and are not reported.

The table illustrates the fact that the percentage errors decline with the number of

partitions with no systematic bias. For the parameters chosen in Table 1 it appears that

the moments of the “true” marginal distributions of r(t) and φ(t) are well approximated

with 100 updates. For a three-month period this corresponds to updating the path once

a day.3 The analysis was repeated for different time periods, and similar results were

obtained. Indeed, in all our simulations the rule of allowing one revision period per day

appeared to provide results that were not economically different from finer partitions. In

all our future analyses, our simulated joint distributions were based on approximately

two revisions per day.
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Table 1. Convergence of the mean percentage error of terminal values of
the state variables

� = 0.0 � = 0.5 � = 1.0
N VAR Vol = 1% Vol = 3% Vol = 1% Vol = 3% Vol = 1% Vol = 3%

25 r –0.010 –0.009 –0.010 –0.009 –0.010 –0.008
φ –0.007 –0.017 0.145 –0.138 0.302 –0.292

50 r –0.010 –0.009 –0.009 –0.009 –0.009 –0.008
φ –0.007 –0.012 0.064 0.059 0.137 0.131

100 r –0.008 –0.008 –0.008 –0.008 –0.008 –0.007
φ –0.006 –0.008 0.024 0.020 0.055 0.052

200 r –0.005 –0.005 –0.005 0.005 –0.005 0.005
φ –0.004 –0.005 0.005 0.004 0.016 0.014

The volatility (Vol) of the short rate process was chosen to be σ√(r(0)). The yield curve was flat at 10%. The time is three
months. Numbers displayed are the average of the percentage errors computed as 100(rN – r800) ⁄ r800 and 100(φN –
φ800) ⁄ φ800 where rN (φN) is the interest rate (path variable) generated with N updates. For example, when the mean rever-
sion parameter, κ, equals 0.5, and the volatility of the short rate is set at 3%, then the mean percentage error in com-
puting the average terminal interest rate with 50 updates is –0.009% of its value using 800 updates.



The simulation procedure was used to generate φ(s), r(s), and the money market

account, M(s), under the risk-neutralised process. For each path, the entire term struc-

ture could then be obtained using (16), and the terminal payout of any interest rate

claim computed. We simulated 10,000 paths and averaged the resulting terminal payouts

of the interest rate claim relative to the money fund. This leads to an approximation to

the fair value in (23).

The convergence of the numerical prices to their true values can be significantly

accelerated by using control variables. A candidate for the control variable is obtained by

setting γ to zero in (19) and (20). For this case, however, φ(s) is deterministic and the

two-state model reduces to a path-independent, single-state-variable representation.

Specifically, from (22) we obtain

For this specification, interest rates are normally distributed and analytical solutions are

available for a wide variety of interest rate claims. For example, the price of an s-period

European call option with strike X on a discount bond with maturity date T is given by

(29)

where

This model was first developed by Jamshidian (1989). Also, the price of an s-period

European yield option, that provides the owner with the option to buy the yield y(s, T)
for X dollars is given by

(30)

where

and

and y0(s, T) is the forward yield to maturity viewed from time 0, and

where N(x) in the cumulative standard normal distribution.

Figures 1 and 2 illustrate the rate of convergence of the simulated prices to their true

values given in (29) and (30). The contract in Figure 1 is a three-month at-the-money call

option on a 15-year discount bond, while in Figure 2 the claim is an at-the-money three-

month interest rate call option on the spot rate. The mean reversion parameter, κ, was

set at 0.5 and the annual volatility parameter, σ, was set at 2%. Notice that as the itera-
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tions increase, the simulated results converge to the analytical, which are indicated by

horizontal lines. As can be seen, with 10,000 replications the algorithm produced

results indistinguishable from their analytical counterparts.

Figures 3 and 4 illustrate the rate of convergence of the same option contracts for

γ = 0.5. Since analytical solutions are available for γ = 0, control variate procedures are
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1. Rate of convergence of the simulated price of an at-the-money, three-month call
option on a 15-year discount bond
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2. Rate of convergence of the simulated price of an at-the-money, three-month call
option on the spot rate

The initial term structure is flat at 10%, and the volatility structure of forward rates is given by (19)
and (20) with κ = 0.5, σ = 0.02 and γ = 0. The flat horizontal line is the theoretical value given by (29)

The initial term structure is flat at 10%, and the volatility structure of forward rates is given by (19)
and (20) with κ = 0.5, σ = 0.02 and γ = 0. The flat horizontal line is the theoretical value given by (30)



used to enhance the speed of convergence.4 The figures compare the rate of convergence

with and without the control variable. In each figure, the nearly horizontal line represents

the price of the option using the γ = 0 model price as a control variable, while the more

volatile line is the simulated price obtained without using the control variable. The figures

suggest that the prices generated using the control variable stabilise by 2,000 iterations.
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3. Comparison of the rate of convergence of a three-month at-the-money call
option on a 15-year discount bond with and without control variables
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4. Comparison of the rate of convergence of a three-month at-the-money call
option on the spot interest rate with and without control variables

The initial term structure is flat at 10%, and the volatility structure of forward rates is given by (19)
and (20) with κ = 0.5, σ* = 0.02 and γ = 0. The nearly flat line is the value computed using the
control variate

The initial term structure is flat at 10%, and the volatility structure of forward rates is given by (19)
and (20) with κ = 0.5, σ* = 0.02 and γ = 0. The nearly flat line is the value computed using the
control variate



If the economy is expanded to include risky assets, claims having terminal values

determined by both risky assets and yields drawn from the term structure can be readily

valued. To illustrate this, assume

(31)

Here µs(t) is the instantaneous drift, σs(t) is the instantaneous volatility, and dv(t) is the

standard Wiener increment with E[dw(t)dv(t)] = ρvwdt. Using standard arbitrage argu-

ments, the equivalent martingale measure under which all securities are priced is given

by

As an example, consider the price of a call option on a stock when the forward rates are

given by (19) and (20) and the volatility of the instantaneous returns on the stock are

constant. For the special case where γ = 0, the price of a call option on the stock with

strike X and maturity s can be computed as

(32)

The convergence of the at-the-money call option for γ = 1⁄2, using the above model as a

control variable, is demonstrated in Figure 5. For the example presented, we chose κ =
0.5, σ* = 0.02, σs = 0.2, and ρ = –0.5.

The nearly horizontal line plots the price generated using the γ = 0 price as a control

variable, while the variable line is the simulated value for γ = 0.5. The above examples

illustrate how the Markovian property of the term structure can be fully exploited to

yield simple algorithms for pricing claims against the term structure.

Conclusion
For general volatility structures for forward rates, the evolution of interest rates is not

Markovian, and the entire path is necessary to capture the dynamics of the process.

Numerical models such as simulation and lattice procedures for valuing claims have to

manipulate the entire term structure along each path. In this chapter we identified nec-

essary and sufficient conditions on the volatility structure of forward rates that eliminate

the market price of risk from the bond-pricing equation while allowing prices to be rep-
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resented by a two-state Markov process, where the spot interest rate is one of two state

variables, the second representing a measure of the history of its evolution. As a conse-

quence, the burden of carrying full information on the term structure at each point is

dramatically reduced.

The class of volatility structures that permit this reduction is quite large and imposes

no restrictions on the volatility of spot interest rates. We also showed that if the volatility

structure of forward rates does not belong to this class then path dependence cannot be

captured by a two-dimensional state variable Markovian model. More precisely, to make

the process Markovian additional assumptions on volatilities and/or on investor behav-

iour will be required. Given that the volatility structure belongs to the restricted class,

simple simulation models were established for pricing interest rate claims. The effi-

ciency of such algorithms were improved using control variates.

It remains for future research to identify non-deterministic volatility structures

belonging to the restricted class that lead to analytical solutions for the terminal risk-neu-

tralised process. It also remains for future research to establish the path reconnecting lat-

tice approximations for the risk-neutralised process. Such lattices would permit

American claims to be valued. Finally, the analysis presented here focused on a single-fac-

tor model of the term structure. These results can readily be extended to multifactor

economies. In a two-factor economy, for example, path dependence will be captured by

two sufficient statistics and the term structure could be made Markovian with respect to

four state variables. Such extensions, together with empirical tests are also the subject of

future research.

Appendix
PROOF OF PROPOSITION 1

1(a). The necessity of the restriction has already been outlined in the motivation of the

proposition and will not be repeated here. The sufficiency obtains from the develop-

ment of the bond pricing equation below.
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5. Comparison of the rate of convergence of a three-month at-the-money call
option on the risky stock with and without control variables

The initial term structure is flat at 10%, and the volatility structure of forward rates is given by (19)
and (20) with κ = 0.5, σ* = 0.02 and γ = 0. The volatility of the stock σs = 0.2 and the correlation ρ =
–0.5. The nearly flat line is the value computed using the control variate generated using (32)



1(b). From equation (11), let

(33)

Here, R(t; T) is defined as the difference between the forward rate at date t and that at

the original date. Using the restriction imposed by (16) on (33), we obtain

(34)

Since the right-hand side of (34) is independent of T, take T = t to obtain

which simplifies to

where

Equivalently,
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Further, from (5) we have

which upon simplification yields the result.

Observe that the state variable, (t) which captures the information relating to the

path of interest rates is independent of bond maturity. Further, since the two state vari-

ables, r(t) and (t), permit us to compute the prices of all discount bonds, they also per-

mit us to construct the entire term structure at time t. This then allows one to compute

the prices of all other interest contingent claims.

1 An exception to this case is when volatility of all forward rates are deterministic. In this case

simplifications result and analytical solutions for certain claims are available. For example Jamshidian

(1989) and Heath, Jarrow and Morton (1992) have developed term-structure-constrained models for debt

options in a dynamically complete market. Turnbull and Milne (1991) establish an equilibrium model

where prices follow diffusion processes but trading dates are simple pricing mechanisms for a large variety

of interest rate claims.

2 Exceptions to this of course are the cases where the volatility structure of all forward rates are

deterministic.

3 Similar results held true over all parameter settings. Specifically, we tested the models with κ ranging

from 0 to 1, σ ranging from 0.1 to 0.4 and γ from 0 to 1.

4 For a discussion on control variate techniques and their use in pricing options see Boyle (1977) and

Hull and White (1988). In our control variate scheme, we chose the parameter of the volatility of the spot

rate process: ie, σ = σ*, say, so that it equalled the initial volatility of the interest rate under the stochastic

volatility structure. That is, σ* = σ[r(0)]γ. For the results presented in Figures 3 and 4, we chose σ* at 2%

and κ at 0.5.
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