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Abstract

We consider interest rate models where the forward rates are allowed
to be driven by a multidimensional Wiener process as well as by a marked
point process. Assuming a deterministic volatility structure, and using
ideas from systems and control theory, we investigate when the input-
output map generated by such a model can be realized by a ¯nite dimen-
sional stochastic di®erential equation. We give necessary and su±cient
conditions, in terms of the given volatility structure, for the existence of
a ¯nite dimensional realization and we provide a formula for the deter-
mination of the dimension of a minimal realization. The abstract state
space for a minimal realization is shown to have an immediate economic
interpretation in terms of a minimal set of benchmark forward rates, and
we give explicit formulas for bond prices in terms of the benchmark rates
as well as for the computation of derivative prices.
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1 Introduction

The purpose of the present paper is to investigate when and how the input
output behavior of a given, a priori in¯nite dimensional, forward rate model can
be realized by a ¯nite dimensional linear stochastic system. More precisely we
take a forward rate volatility structure ¾(t; x) in a Heath-Jarrow-Morton type
model as given, and we then try to answer the following questions.

² When does there exist a ¯nite dimesnional state space realization of the
forward rate model de¯ned by ¾ above?

² If there exist a ¯nite dimensional realization, what is the minimal dimen-
sion of the state space?

² How do we construct a realization, given only a speci¯cation of the forward
rate volatility structure ¾?

² Is there an economic interpretation of the abstract state space?

In this paper we only study the linear case, and the main reasons for the project
are as follows.

Firstly we want to obtain a deeper understanding of the geometric structure of
the forward rate dynamics. Put in other words we want to lay bare the \minimal
essential dynamics" of the interest rate model under study. The linear case is
then a natural starting point, and in a subsequent paper we hope to carry out
parts of the same program for the nonlinear case.

Secondly we hope that this theoretical paper can be used as a foundation for
future empirical research. In particular we view our results as a ¯rst step towards
an application of stochastic realization theory (see e.g. [17]) to the area of interest
rates. In statistical terms this means that we hope to be able to carry out
\dynamic factor analysis" based on observed bond price information.

Using ideas and concepts from systems and control theory we are able to provide
a fairly complete analysis of the given problems above. The structure and main
results of the paper are as follows.

In Section 3 we connect our problem to systems theory by computing the transfer
function for the given forward rate system. Using the structure of the transfer
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function, the main result is Theorem 3.1 which gives necessary and su±cient
conditions for the existence of a ¯nite dimensional linear realization. In Sec-
tion 4 we study realizations having minimal dimension, and the main result is
Proposition 4.1, which gives an easy test for the existence of a ¯nite dimensional
realisation, as well as a formula for the minimal dimension. Section 5 is devoted
to the economic interpetation of the abstract state space, and in Proposition 5.1
it is shown that the states of a minimal realization can be interpeted as a set
of benchmark forward rates. In Section 6 we give some examples to illustrate
the theory, and in Section 8 we extend the theory by allowing also a driving
multivariate point process.

As far as we know, the idea of looking at interest rates from a realization point
of view is new, but there are a number of related results in the literature.

In a recent paper [1], it is investigated when the forward rate curve for a given
(nonlinear) interest rate model actually evolves on a given ¯nite dimensional
submanifold in the forward curve space.

Because of the linear structure, the present paper is also connected to the well
known theory of a±ne term structures developed in [7] and [10]. Note however
that our approach is, in a sense, inverse to that of e.g. Du±e-Kan [10]. Du±e-
Kan take as given a state space model, and then investigate when there is an
a¯ne term structure, whereas we take as given the forward rate volatilities and
ask when a state space realization exists at all.

The preprint [11] contains interesting results related to ours. As in the a±ne term
structure theory, the authors take as given a deterministic volatility structure
and they also take as given a factor model with invertible di®usion matrix. They
then (among other things) show that the state dynamics are indeed linear and
that it is possible to identify the state space with a set of forward rates. In the
present paper, in contrast, we do not take a state space model as given but
instead we give conditions which ensures the existence of a ¯nite state space.
Furthermore we are not con¯ned to assume an invertible di®usion matrix for the
state dynamics in order to obtain the forward rate interpretation of the state
space. Instead we show that for a minimal realisation (see further comments
after proposition 5.1) we automatically have this interpretation.

A connection between control theory and in¯nite dimensional linear stochastic
equations is made, within a Hilbert space framework, in [9]. In [19], which has
been an inspiration of the present paper, the results of [9] are applied to forward
rate dynamics.

Many of the ideas and techniques below come from ¯nite dimensional linear
systems theory, and for ease of reference we have included an appendix, where
the standard results and de¯nitions can be found. For further information about
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linear systems the reader is referred to [6] or to any textbook on the subject.

2 The model

We consider a bond market model living on a stochastic basis (¯ltered probability
space) (­;F;F;Q) where F = fFtgt¸0. The basis is assumed to carry a standard
d-dimensional Wiener processW , and we also assume that the ¯ltration F is the
internal one generated byW . The restriction to a pure Wiener process framework
is made for readability reasons, and in Section 8 we will also consider a driving
marked point process.

By p(t; x) we denote the price, at t, of a zero coupon bond maturing at t + x,
and the forward rates r(t; x) are de¯ned by

r(t; x) = ¡@ log p(t; x)
@x

: (1)

Note that we use the Musiela parameterization, where x denotes the time to
maturity. The short rate R is de¯ned as R(t) = r(t; 0), and the money account B

is given by B(t) = exp
nR t
0 R(s)ds

o
. The model is assumed to be free of arbitrage

in the sense that the measure Q above is a martingale measure for the model.
In other words, for every x ¸ 0, the process

Z(t; x) =
p(t; x)

B(t)
;

is a Q-martingale.

Let us now consider a given forward rate model of the form

dr(t; x) = ¯(t; x)dt+ ¾(t; x)dW; (2)

r(0; x) = r?(0; x): (3)

where, for each x, ¯ and ¾ are given optional processes. The initial curve
fr?(0; x); x ¸ 0g is taken as given. It is interpreted as the observed forward
rate curve.

The standard Heath-Jarrow-Morton drift condition ([13]) can easily be trans-
ferred to the Musiela parameterization. The result (see [4], [19]) is as follows.

Proposition 2.1 (The Musiela Equation) Under the martingale measure Q
the r-dynamics are given by

dr(t; x) =

(
@

@x
r(t; x) + ¾(t; x)

Z x

0
¾(t; u)du

)
dt+ ¾(t; x)dW (t);

r(0; x) = r?(0; x):
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We recall that we have the relation

p(t; x) = e¡y(t;x) (4)

where the yield y(t; x) is de¯ned by

y(t; x) =
Z x

0
r(t; s)ds: (5)

In the present paper we will only consider the case when the volatility ¾(t; x) is
a deterministic time-independent function ¾(x) of x only. Denoting the function
x 7¡! r(t; x) by r(t), and correspondingly for y and p we then have

dr(t) = fFr(t) +Dg dt+ ¾dW (t); r(0) = r?(0): (6)

y(t) = Hr(t); (7)

p(t) = ey(t): (8)

Here the linear operators F and H are de¯ned by

F =
@

@x
; (9)

Hg(x) =
Z x

0
g(s)ds; (10)

whereas the function D is de¯ned by

D(x) = ¾(x)
Z x

0
¾(s)ds; (11)

i.e.

D =
1

2
FkH¾k2: (12)

We now note that the system (6)-(7) constitutes a linear (or rather a±ne)
in¯nite dimensional input-output system, which takes a Wiener trajectory
W (¢; !) into the corresponding (in¯nite dimensional) yield trajectory y(¢; !).
The purpose of the present paper is now to investigate when and how the input-
output map de¯ned by (6)-(7) can be realized by means of a linear (or a±ne)
¯nite dimensional system driven by the same Wiener process W . In order to
make our problem precise we now transform our model from the case of a±ne
dynamics and linear output to the case of linear dynamics and a±ne output.

The operator F is the in¯nitesimal generator of the group of translations, i.e.
for any f 2 C[0;1) we have

h
eFtf

i
(x) = f(t+ x); (13)
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and we can write the solution of (6) as

r(t; x) = eFtr?(0; x) +
Z t

0
eF(t¡s)D(x)ds +

Z t

0
eF(t¡s)¾(x)dW (s): (14)

Thus we have

r(t; x) = r?(0; x+ t) +
Z t

0
D(x+ t¡ s)ds+

Z t

0
eF(t¡s)¾(x)dW (s); (15)

and, de¯ning r0 by

dr0(t; x) = Fr0(t; x)dt+ ¾(x)dW (t); r0(0; x) = 0 (16)

it is clear by inspection that the forward rate process r(t; x), and the yield
process y(t; x) have the representations

r(t; x) = r0(t; x) + ±(t; x); (17)

y(t; x) = Hr0(t; x) + ¢(t; x); ; (18)

where ± and ¢ are given by

±(t; x) = r?(0; x+ t) +
Z t

0
D(x+ t¡ s)ds

= r?(0; x+ t) +
1

2

³
kH¾(x+ t)k2 ¡ kH¾(x)k2

´
; (19)

¢(t; x) =
Z x

0
±(t; u)du;

= y?(0; t+ x)¡ y?(0; t)
+

1

2

Z x

0

n
kH¾(t+ u)k2 ¡ kH¾(u)k2

o
du (20)

To connect to the standard formulation of systems theory we may ¯nally write
the equations (6)-(7) as

dr0(t; x) = Fr0(t; x)dt+ ¾(x)dW (t); r0(0; x) = 0 (21)

y0(t; x) = Hr0(t; x) (22)

r(t; x) = r0(t; x) + ±(t; x) (23)

y(t; x) = y0(t; x) + ¢(t; x) (24)

Since ¢(t; x) is not a®ected by the input W , we see that the input output
behavior of the term structure system (6)-(7) is completely determined by the
linear system (21)-(22). We are thus led to the following de¯nition.
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De¯nition 2.1 A triple [A;B;C(x)], where A is an n£ n-matrix , B is n£ d-
matrix and C is an n-dimensional row-vector function, is called an n-dimensional
realization of the system (21)-(22) if y0 has the representation

dz(t) = Az(t)dt+BdW (t); z(0) = 0: (25)

y0(t; x) = C(x)z(t); (26)

The triple [A;B;C(x)] is called an n-dimensional realization of the system (21)
if r0 has the representation

dz(t) = Az(t)dt+BdW (t); z(0) = 0: (27)

r0(t; x) = C(x)z(t); (28)

It is obvious that [A;B;C(x)] is a ¯nite dimensional realization for r0 if and only
if [A;B;HC(x)] is a realization for y0. Thus it is enough to consider realizations
of the r0 process.

Our main problems are now as follows.

² Take as a priori given a volatility structure ¾(x).

² When does there exists a ¯nite dimensional realization?

² If there exists a ¯nite dimensional realization, what is the minimal dimen-
sion?

² How do we construct a minimal realization from knowledge of ¾?

² Is there an economic interpretation of the \state process" z in the realiza-
tion?

3 Existence of ¯nite dimensional realizations

We will study the existence of a ¯nite dimensional realization of the stochastic
system

dr0(t; x) = Fr0(t; x)dt+ ¾(x)dW (t); r0(0; x) = 0 (29)

by studying the transfer function of an associated deterministic system.
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To this end we solve (29) explicitly. Integrating by parts (the integrand is deter-
ministic) then gives us r0 as

r0(t; x) =
Z t

0
¾(x+ t¡ s)dW (s) (30)

= W (t)¾(x) +
Z t

0
W (s)¾0(x+ t¡ s)ds (31)

We now see that, for each x, we have

r0(t; x; !) = ©[x;W (¢; !)](t); (32)

where that mapping
©[x; ¢] : C[0;1) ! C[0;1); (33)

is de¯ned by

©[x; v](t) = v(t)¾(x) +
Z t

0
v(s)¾0(x+ t¡ s)ds (34)

We now observe that, for each x, the mapping ©[x; ¢] is continuous in the topol-
ogy of uniform convergence on compacts. Thus it is completely determined by
its behavior on any dense subset, S ½ C[0;1), and in particular we may choose
S = C1[0;1). For any v 2 C1 it is however easily seen that ©[x; v](t) = r0(t; x),
where r0 is de¯ned as the solution of the deterministic system

dr0
dt
(t; x) = Fr0(t; x) + ¾(x)u(t); (35)

and where u(t) = dv
dt
(t).

The same argument applied to any ¯nite dimensional realization gives us the
following result.

Lemma 3.1 The system

dz(t) = Az(t)dt+BdW (t); z(0) = 0: (36)

r0(t; x) = C(x)z(t); (37)

is a realization of

dr0(t; x) = Fr0(t; x)dt+ ¾(x)dW (t); r0(0; x) = 0 (38)

if and only if the deterministic system

dr0
dt
(t; x) = Fr0(t; x) + ¾(x)u(t); (39)
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has the same input-output map as the system

dz

dt
(t) = Az(t) +Bu(t); (40)

r0(t; x) = C(x)z(t); (41)

The point of all this is that we may now restate the problem in terms of transfer
functions. Denoting the Laplace transform by ~ it is easily shown (see below)
that for the linear system (39) as well as for the system (40)-(40) we have a
relation between ~u(s) and ~r0(s; x) of the form

~r0(s; x) = G(s; x)~u(s):

The function G is called the transfer function for the system in question, and the
uniqueness of the Laplace transform immediately gives us the following result.

Corollary 3.1 The system (36)-(37) is a realization of (38) if and only if the
system (40)-(41) has the same transfer function as (39).

We now go on to determine the transfer function for the system (39). In the
formulas below subindex denotes translation, i.e. gx(y) = g(x + y). We denote
Laplace transforms by ~ or by L. We have the following easy, but for our purposes
fundamental, result.

Lemma 3.2 The transfer function G(s; x) of (39) is given by

G(s; x) = L [¾x] (s); (42)

Proof. From (39) we have

r0(t; x) =
Z t

0
¾(x+ t¡ s)u(s)ds = [¾x ? u] (t); (43)

and thus
~r0(s; x) = L [¾x] (s)~u(s):

The main result now follows immediately.
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Proposition 3.1

1. The system

dr0(t; x) = Fr0(t; x)dt+ ¾(x)dW (t); r0(0; x) = 0 (44)

has a ¯nite dimensional realization if and only if the volatility function ¾
can be written on the form

¾(x) = C0e
AxB (45)

2. If ¾ has the form (45) then a concrete realization is given by

dz(t) = Az(t)dt+BdW (t); z(0) = 0: (46)

r0(t; x) = C(x)z(t); (47)

with A;B as in (45), and with C(x) = C0eAx.

Proof. Suppose that (40)-(41) is a realization. It is easy to see that the transfer
function H(s; x) of (40)-(41) is given by

H(s; x) = C(x) [sI ¡ A]¡1B: (48)

so we must also have G(s; x) = C(x) [sI ¡ A]¡1B. Thus for each x, G(s; x) is
a rational matrix function with a zero at in¯nity, and by Lemma 3.2 this also
holds for L f¾xg (s). By a standard result from systems theory we thus infer the
existence of functions A(x);B(x); C0(x) such that

¾x(t) = C0(x)e
A(x)tB(x): (49)

We thus obtain
¾(t) = ¾0(t) = C0(0)e

A(0)tB(0); (50)

which gives us (45) with C0 = C0(0), A = A(0), and B = B(0).

Suppose on the other hand that ¾ has the form ¾(x) = C0eAxB. Then we have
¾x(t) = C0eAxeAtB and an easy calculation shows that

G(s;X) = L f¾xg (s) = C0eAx [sI ¡ A]¡1B:

This, however, is precisely the transfer function of the system (40)-(41) with
C(x) = C0e

Ax.

There are a number of standard algorithms in the systems theoretic literature
which constructs a realization, given knowledge of the transfer functions. When
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you try to ¯nd a realization of the r0 system, it is thus generally easier to ¯nd a
realization of the corresponding transfer function G(s; x), rather than to factor
¾(x) directly as in (45). For that purpose the following observation, which is an
immediate consequence of the preceding result, can be useful. It shows that we
do not have to ¯nd a realization for the general expression G(s; x). It is enough
to apply the standard realization algorithms from linear systems theory to the
transfer function G(s; 0).

Lemma 3.3 Assume that the r0 system has a ¯nite realization. Assume fur-
thermore that we have fund A, B and C such that [A;B;C] is a realization of
the transfer function G(s; 0), i.e.

G(s; 0) = C [sI ¡ A]¡1B;

then a realization of r0 is given by
h
A;B;CeAx

i
. The forward rates r(t; x) have

then the representation

r(t; x) = ±(t; x) +
Z t

0
eA(t¡s)¾(x)dW (s); (51)

where ± is given by (19).

Proof. The ¯rst assertion follows at once from Proposition 3.1. it remains to
show is (51). But this follows immediately from (15) and Proposition 3.1.

Remark 3.1 Note that in order to use the lemma above, we must have a priori
knowledge of the existence of a ¯nite dimensional realisation. An easy test is
given in the next section.

4 Minimal realizations

The purpose of this section is to determine the minimal dimension of a ¯nite
dimensional realization.

De¯nition 4.1 The dimension of a realization [A;B;C(x)] is de¯ned as the
dimension of the corresponding state space. A realization [A;B;C(x)] is said
to be minimal if there is no other realization with smaller dimension. The
McMillan-degree, M, of the forward rate system is de¯ned as the dimension
of a minimal realization.
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Since the forward rate system (21) in systems theoretic terms is observable
(we observe the state directly), one conjectures immediately that the McMillan
degree equals the dimension of the \reachable subspace" R of the system (39).
In analogy with ¯nite dimensional theory we furthermore expect R to be given
by R = span [¾;F¾;F2¾; ¢ ¢ ¢] ; where as usual F = d

dx
.

Remark 4.1 The ideas above are of course quite standard in linear systems
theory, and there also exist a fairly well developed theory for linear systems in a
Hilbert or Banach space (see e.g. [8]). It is therefore tempting to try to attack our
realization problem by abstract methods. The problem with such an approach is
that the natural space of forward rate curves seems to be the topological vector
space C[0;1) with the topology of uniform convergence on compacts, and on
this space the translation semigroup is not equicontinuous, thus making it hard
to use the standard abstract theory.

For linear stochastic systems, Da Prato and Zabczyk have developed a deep
theory for linear stochastic di®erential equations in a Hilbert space, and they
characterize the support space of the solution of a linear Hilbert space valued
SDE as the space R above. In the context of forward rates these results of [9]
are referred to by Musiela in [19] who identi¯es the support of the forward rate
process with the space R. It is, however, not clear that the results from [9] can
be transferred to our case, and the reason is that Da Prato & Zabczyk work
within a Hilbert space framework whereas again the natural space of forward
rate curves seems to be C[0;1).
Rather than developing a full theory for systems in topological vector spaces,
we have thus chosen to give a direct proof or the conjecture above.

Proposition 4.1 Consider the volatility function

¾ = [¾1; ¢ ¢ ¢ ; ¾m]

as given. Then the McMillan degree, M, is given by

M = dimR; (52)

with

R = span
h
¾;F¾; F2¾; ¢ ¢ ¢

i
(53)

= span
h
Fk¾i ; i = 1; ¢ ¢ ¢ ;m: k = 0; 1; ¢ ¢ ¢

i
(54)

Proof. It is obvious that dimR < 1 if and only if ¾ satis¯es a linear ODE with
constant coe±cients, so from ODE theory it follows that dimR < 1 if and only
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if ¾ can be written on the form ¾(x) = CeAxB. Thus dimR < 1 if and only if
there exists a ¯nite dimensional realization, so the proposition is proved for the
case dimR = 1.
Assume now that M = n, and that

h
A;B;CeAx

i
is a ¯nite dimensional minimal

realization. In particular A is then an n £ n matrix, [A;C] is observable, and
[A;B] is reachable. Using Proposition 3.1 we can write

¾(x) = CeAxB; (55)

and we have
Fk¾(x) = CeAxAkB; k = 0; 1; ¢ ¢ ¢ (56)

Now consider the linear mapping ¤ : Rn ! C[0;1) de¯ned by

[¤b](x) = CeAxb:

This map is injective. To see this assume that ¤b = 0, i.e. CeAxb = 0 for all x.
Taking derivatives and setting x = 0 gives us the equation

2
66666664

C
CA
CA2

...
CAn¡1

3
77777775
b = 0;

so b = 0 since (A;C) is observable.

Furthermore (A;B) is reachable, so we know that

span[B;AB;A2B; ¢ ¢ ¢] = span[B;AB;A2B; ¢ ¢ ¢ ; An¡1] = Rn;

where the span operation is interpreted as the linear hull of the column vectors
of the partitioned matrices. From (55) and (56) we see that

R = span
h
¾; F¾; F2¾; ¢ ¢ ¢

i
= ¤

³
span[B;AB;A2B; ¢ ¢ ¢]

´
= Im¤;

and the injectivity of ¤ gives us dimR = n:

5 Economic interpretation of the state space

In many practical applications of linear systems theory, the state space for the
minimal realization has no concrete (e.g. physical) interpretation. In our case,
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however, it turns out that the states of the minimal realization have a very
simple economic interpretation. The states are, modulo an a±ne transformation,
a minimal set of \benchmark" forward rates.

We will need the following technical result. For generality the result below is
stated and proved for a general triple of matrices (A;B;C), whereas in our
applications the matrix C always is a row vector.

Lemma 5.1 Assume that (A;C) is observable and that (A;B) is reachable,
where A is n £ n. Then, on any compact interval I, apart from a ¯nite set
of forbidden values, the matrices

2
664

CeAx1
...

CeAxn

3
775

and h
eAx1B; eAx2B; ¢ ¢ ¢ ; eAxnB

i

have rank n, for all distinct choices of x1; ¢ ¢ ¢ ; xn in I.

Proof. The two cases have exactly the same proofs, so we consider only the ¯rst
matrix above. For each k with 1 · k · n we consider matrices of the form

Hk =

2
664

CeAx1
...

CeAxk

3
775

and proceed by induction to show that we can choose x1; ¢ ¢ ¢ ; xk such that
rank[Hk] ¸ k.

The case k = 1 is clear since C 6= 0 and eAx is invertible for all choices of x.
For any k with 1 · k · n¡ 1 we now assume that we have chosen x1; ¢ ¢ ¢ ; xk so
that rank[Hk] ¸ k. If rank[Hk] > k the induction step is already ¯nished, so we
need only to consider the case when rank[Hk] = k. We now consider the time
dependent matrix H(t) de¯ned by

H(t) =

2
66664

CeAx1
...

CeAxk

CeAt

3
77775
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and we want to prove that we can choose a t such that rank[H(t)] ¸ k + 1. To
this end we de¯ne the real valued function f(t) by

f(t) =
X

j

[Dj(t)]
2

where the Dj is the determinant of a (k + 1) £ (k + 1) submatrix of H(t). We
thus sum the squares of the determinants of all (k+1)£ (k+1) minors. We now
want to prove that, for almost all t, rank[H(t)] ¸ k+1, so it is enough to prove
that for almost all t we have f (t) 6= 0. Now, all Dj are real analytic functions,
so f(t) is real analytic. Thus: either it has only a ¯nite number of zeroes on
any compact, or it is identically zero. In the ¯rst case we are ¯nished, so it only
remains to show that we can not have the second case.

Assume that in fact f(t) = 0; for all t 2 R. Using the induction hypothesis,
this means that, for all t, all rows of the matrix y(t) = CeAt belongs to the
k-dimensional linear hull M of the rows of

2
664

CeAx1
...

CeAxk

3
775

This also means that, for all t, the rows of all derivatives of y(t) belongs to M ,
and in particular all the rows of the matrices

CAj =
djy

dtj
(0)

belong to M for 0 · j · n¡ 1. This however is impossible, since the dimension
of M is k, whereas, by observability, we have

rank

2
66664

C
CA
...
CAn¡1

3
77775
= n:

We now proceed to the interpretation of the state space, and therefore assume
that [A;B;C] is a minimal realization of the forward rates as in (46)-(47). Let
us choose a set of \benchmark " maturities x1; ¢ ¢ ¢ ; xn. We use the notation
¹x = (x1; ¢ ¢ ¢ ; xn). Assume furthermore that the maturity vector ¹x is chosen so
that the matrix

T (¹x) =

2
664

CeAx1
...

CeAxn

3
775 (57)

15



is invertible. According to Lemma 5.1 this can \almost always" be done as long
as the maturities are distinct. We use the notation

r0(t; ¹x) =

2
664

r0(t; x1)
...

r0(t; xn)

3
775

and corresponding interpretations for column vectors like r(t; ¹x), ±(t; ¹x) etc.

Since T = T (¹x) is invertible we now have, from (47)

r0(t; ¹x) = Tz(t); (58)

z(t) = T¡1r0(t; ¹x); (59)

and from (46) and (58) we obtain

dr0(t; ¹x) = Tdz = TAzdt+ TBdW;

= TAT¡1r0(t; ¹x)dt+ TBdW: (60)

From (23) we have
r(t; x) = r0(t; x) + ±(t; x); (61)

which gives us

dr(t; x) = dr0(t; x) +
@

@t
±(t; x)dt: (62)

Plugging (60) into (62), and using (61) as well as (19) we ¯nally obtain the
following result.

Proposition 5.1 Assume that (46)-(47) is a minimal realization of the forward
rates, and assume furthermore that a maturity vector ¹x = (x1; ¢ ¢ ¢ ; xn) is chosen
as in Lemma 5.1. Then the following hold.

² With notation as above, the vector r(t; ¹x) of benchmark forward rates has
the dynamics

dr(t; ¹x) =
h
T (¹x)AT¡1(¹x)r(t; ¹x) + ª(t; ¹x)

i
dt+ T (¹x)BdW (t); (63)

r(0; ¹x) = r?(0; ¹x); (64)

where the deterministic function ª is given by

ª(t; ¹x) =
@r?

@x
(0; t¹e+ ¹x) +D(t¹e+ ¹x)¡ T (¹x)AT¡1(¹x)±(t; ¹x) (65)
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Here ¹e 2 Rn denotes the vector with unit components, i.e.

¹e =

2
66664

1;
1;
...
1

3
77775

² The system of benchmark forward rates determine the entire forward rate
process according to the formula

r(t; x) = CeAxT¡1(¹x)r(t; ¹x)¡CeAxT¡1(¹x)±(t; ¹x) + ±(t; x): (66)

Proof. The only thing left to prove is (66). We have

r(t; x) = r0(t; x) + ±(t; x) = Ce
Axz(t) + ±(t; x)

= CeAxT¡1(¹x)r0(t; ¹x) + ±(t; x)

= CeAxT¡1(¹x) [r(t; ¹x)¡ ±(t; ¹x)] + ±(t; x);

which gives us (66).

The conclusion is thus that the state variables of a minimal realization can be
interpreted as an a±ne transformation of a vector of benchmark forward rates.
Note that we can easily handle multiple roots of the matrix A, and that the input
noise can actually have dimension smaller than the dimension of A. Neither of
these cases are usually treated by the standard theory of multifactor models.

According to Lemma 5.1 we see that the set of benchmark maturities can be
chosen almost arbitrarily, and we also see that the SDE (63) for the benchmark
forward rates resembles the Hull-White model (the extension of the Vasi·cek
model) in the sense that we have an a±ne system where the function ª(t; ¹x) is
chosen to obtain a perfect ¯t between the theoretical initial forward rates and
the observed initial forward curve.

For completeness sake we end by giving the formula which connects bond prices
to the set of benchmark forward rates. Since we are in a linear enviroment we
of course have an a±ne term structure, so the formula below could as well be
obtained from [10]. We again stress the fact that the point of the present paper
is not the a±ne term structure, but the existence and constructability of a ¯nite
dimensional state space representation given only a speci¯cation of the volatility
structure.

17



Proposition 5.2 With the assumptions above, bond prices p(t; x) are given by

p(t; x) =
p?(0; t+ x)

p?(0; t)
exp f¡(t; x; ¹x)¡ ©(x; ¹x)r(t; ¹x)g ;

where

©(x; ¹x) = C
µZ x

0
eAsds

¶
T¡1(¹x); (67)

¡(t; x; ¹x) = C
µZ x

0
eAsds

¶
T¡1(¹x)±(t; ¹x) (68)

¡ 1

2

Z x

0

n
kH¾(t+ u)k2 ¡ kH¾(u)k2

o
du (69)

Proof. Use the formula p(t; x) = exp f¡ R x
0 r(t; s)dsg, (66) and (20) .

6 Examples

In this section we will give some simple illustrations of the theory. Note again
the handling of multiple roots of the matrix A, and the fact that the input noise
can have dimension smaller than the dimension of A.

Example 6.1 ¾(x) = ¾e¡ax

We consider a model driven by a one dimensional Wiener process, having the
forward rate volatility structure

¾(x) = ¾e¡ax;

where ¾ in the right hand side denotes a constant. (The reader will probably
recognize this example as the Hull-White model.) We start by determining the
McMillan degree M, and by Proposition 4.1 we have

M = dimR;

where the reachable subspace R is given by

R = span

"
dk

dxk
¾e¡ax ; k ¸ 0

#
:

It is obvious that R is one dimensional, and that it is spanned by the single
function e¡ax. Thus the McMillan degree is given by M = 1. We now want

18



to apply Proposition 3.1 to ¯nd a realization, so we must factor the volatility
function. In this case this is easy, since we have the trivial factorization ¾(x) =
1 ¢ e¡ax ¢ ¾. In the notation of Proposition 3.1 we thus have

C0 = 1;

A = ¡a;
B = ¾:

A realization of the forward rates is thus given by

dz(t) = ¡az(t)dt+ ¾dW (t);
r0(t; x) = e¡axz(t);

r(t; x) = r0(t; x) + ±(t; x);

and since the state space in this realization is of dimension one, the realization
is minimal. We see that if a > 0 then the system is asymptotically stable.

We now go on to the interpretation of the state space, and since M = 1 we can
choose a single benchmark maturity. The canonical choice is of course x1 = 0,
i.e. we choose the instantaneous short rate R(t) as the state variable. In the
notation of Proposition 5.1 we then have

T (¹x) = 1;

r(t; ¹x) = R(t);

and we get rate dynamics

dR(t) = fª(t; 0)¡ aR(t)g dt+ ¾dW (t):

Thus we see that we have indeed the Hull-White extension of the Vasi·cek model.
Note however that we do not have to choose the benchmark maturity as x1 = 0.
We can in fact choose any ¯xed maturity, x1 and then use the corresponding
forward rate as benchmark. This will give us the dynamics

dr(t; x1) = fª(t; x1)¡ ar(t; x1)g dt+ e¡ax1dW (t);

and now the entire forward rate curve will be determined by the x1-rate according
to formula (66).

Example 6.2 ¾(x) = xe¡ax

In this example we still have a single driving Wiener process, but the volatility
function is now \hump-shaped".
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By taking derivatives of ¾(x) we immediately see, from Proposition 4.1 that R
is given by

R = span
h
xe¡ax; e¡ax

i
;

so in this case M = 2, and we have a two dimensional minimal state space. In
order to obtain a realization we compute the transfer function G(s; x), which is
given by Lemma 3.2 as

G(s; x) = L
h
(x+ ¢)e¡a(x+¢)

i
(s):

An easy calculation gives us

G(s; x) =
e¡ax

(a+ s)2
+
xe¡ax

(a+ s)
=
sxe¡ax + (1 + ax)e¡ax

(a+ s)2
;

and we now look for a realization of this transfer function (for a ¯xed x). The
obvious thing to do is to use the standard controllable realization (see [6]), and
we obtain

C(x) =
h
xe¡ax; (1 + ax)e¡ax

i

A =

"
¡2a ¡a2
1 0

#
;

B =

"
1
0

#
:

Since M = 2 and this realization is two-dimensional we have a minimal realiza-
tion, given by

dz1(t) = ¡2az1(t)dt¡ a2z2(t)dt+ dW (t);
dz2(t) = z1(t)dt

r0(t; x) = xe¡axz1(t) + (1 + ax)e
¡axz2(t)

r(t; x) = r0(t; x) + ±(t; x):

We have a double eigenvalue of the system matrix A at ¸1 = ¡a, so if a > 0 the
system is asymptotically stable.

Example 6.3 ¾(x) = [¾1x; ¾2e
¡ax]

We have a two-dimensional driving Wiener process but, as we shall see, the
McMillan degree is not equal to two. Taking derivatives it is easy to see that in
fact

R = span
h
1; x; e¡ax

i
:
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Thus we have M = 3. We may now use Lemma 3.3, and conclude that in order
to ¯nd a realization for the transfer function G(s; x) it is enough to ¯nd one for
G(s; 0). We have

G(s; 0) =
·
1

s2
;
1

s+ a

¸
:

For this transfer function it is natural to use the standard observable realization.
The result is as follows

C = [1; 0; 0]

A =

2
64
0 1 0
0 0 1
0 0 ¡a

3
75 ;

B =

2
64
0 1
1 ¡a
0 a2

3
75 :

We see that we have two stable modes which are not asymptotically stable,
both corresponding to the pole at s = 0, and one asymptotically stable mode
corresponding to the pole at s = ¡a.

7 Calibration and actual computations

In this section we discuss how to actually compute the prices p(t; x), and how to
construct the matrices A;B;C from market data. There is no loss of generality
in assuming that A;B;C are already the matrices relative to the representation
in terms of the benchmarks, so that T (¹x) ´ I and r(t; x) is given by (51). Then,
to compute the prices, we need to compute ± and ¢ in (19) and (20).

If the matrix A is invertible, these correction terms can be easily computed by
solving a system of linear equations. To see this we need a simple lemma.

Lemma 7.1 Let P (t) =
R t
0 e

AsQeA
0sds. Then P (t) is the solution to the Lya-

punov equation:
AP (t) + P (t)A0 +Q¡ eAtQeA0t = 0 (70)

Proof. We can write eAtQeA
0t ¡Q as the integral of its derivative, i.e.:

eAtQeA
0t ¡Q =

Z t

0
(AeAsQeA

0s + eAsQeA
0sA0)ds = AP (t) + P (t)A0

from which the conclusion follows.
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Equation (70) is, for each ¯xed time t, a standard Lyapunov equation, and since
algorithms to solve these equations are very fast (they are linear), ±(t; x) can in
fact be computed online.

The computation of ±(t; x) then goes as follows:

±(t; x) = r¤(0; t+ x) +
Z t

0
eF(t¡¿)D(x)d¿

where

D(x) = ¾(x)
Z t

0
¾0(s)ds = CeAxBB0

Z x

0
eA

0sdsC 0

= CeAxBB0(A0)¡1[eA
0x ¡ I ]C 0

and so
(eF(t¡¿ )D)(x) = CeA(t¡¿+x)BB0(A0)¡1[eA

0(t¡¿+x) ¡ I]C 0

Integrating between 0 and t and adding r¤(0; x) we get:

±(t; x) = r¤(0; x) + CA¡1eAx[I ¡ eAt]BB0(A0)¡1C 0 (71)

+ CeA(x+t)
·Z t

0
e¡A¿BB0e¡A

0¿d¿
¸
eA

0(x+t)(A0)¡1C 0

Setting P (t) :=
R t
0 e

¡A¿BB0e¡A
0¿d¿ and integrating once more with respect to

x, we obtain

¢(t; x) := y¤(0; t+ x)¡ y¤(0; t) + (72)

+ CA¡2[eAx ¡ I][I ¡ eAt]BB0(A0)¡1C 0 (73)

+ CeAt
·Z x

0
eAsP (t)eA

0sds
¸
eA

0t(A0)¡1C 0

Notice that the integral

¦(t) :=
Z x

0
eAsP (t)eA

0sds

can also be easily computed as a solution to a Lyapunov equation of the form
(70).

How do we calibrate the model on real data, i.e. how do we actually determine
A;B;C? Two approaches are possible.

1. Statistical analysis of past data to estimate the forward rates volatility:
this is a standard procedure. Nevertheless, due to the particular structure
of the volatility, very e®ective system identi¯cation methods can be used:
the literature on this subject is quite extensive and there is a vast library
of computer algorithms to solve this kind of problems (see [18] or [21]).The
computational load is very low.
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2. Implied volatility based on some derivatives market price. In other words,
given the market prices of n derivatives D¤

1; :::; D
¤
n, ¯nd matrices A;B;C

such that, for each i, the theoretical derivative price Di coincides with the
market price D¤

i . This is, as usual, computationally more demanding. Nev-
ertheless, since all quantities can be computed, and there exist good atlases
for equivalence classes of matrices A;B;C (we refer to the appendix for the
concept of equivalence), we can formulate the problem as a minimization
problem where the value function is, for example

V (A;B;C) :=
nX

i=1

jDi(A;B;C)¡D¤
i j2

then the equations for the critical points of this value function (again
referred to the equivalence classes) can be derived explicitly and gradient
algorithms can be used to solve them numerically. Or, more simply, a direct
minimization algorithm can be implemented directly on the value function
(without computing the gradient).

The details of these approaches will be discussed elsewhere. But, to illustrate
the relative ease of computation, we calculate the value C(t; x1; x2; K) at time t
of a european call option with strike price K and time to maturity x1 on a bond
with time to maturity x2 (obviously x1 < x2).

It is well known (see [12]) that

C(t; x1; x2; K) = q(t; x2)N(d2)¡Kq(t; x1)N (d1) (74)

where

d1 :=
ln q(t;x2)

Kq(t;x1)
+ 1

2
§x1;x2(x1)q

§x1;x2(x1)

d2 := d1 ¡
q
§x1;x2(x1)

Z(s) :=
q(t+ s; x2 ¡ s)
q(t+ s; x1 ¡ s)

and §x1;x2(s) is the variance of lnZ(s), with respect to the forward measure Q
x1

with numeraire q(t+s; x1¡s) for which the process Z(s) is a martingale. In view
this fact, of (51), and the fact that a change of measure preserves the volatility,
the process Z(t) satis¯es

dZ(s) = Z(s)
Z x2¡s

x1¡s
¾(u)dudW x1(s)
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where W x1 denotes the Brownian Motion with respect to the new forward mea-
sure Qx1. Therefore, we can conclude that lnZ(s) has variance

§x1;x2(s) =
Z s

0

·Z x2¡¿

x1¡¿
¾(u)du

¸ ·Z x2¡¿

x1¡¿
¾(u)0du

¸
d¿

=
Z s

0

·Z x2¡¿

x1¡¿
CeAuBdu

¸ ·Z x2¡¿

x1¡¿
B0eA

0uC 0du
¸
d¿

=
Z s

0
CA¡1[eA(x2¡¿) ¡ eA(x1¡¿ )]BB0[eA0(x2¡¿) ¡ eA0(x1¡¿)](A0)¡1C 0d¿

= CA¡1[eAx2 ¡ eAx1 ]
Z s

0
e¡A¿BB0eA

0¿d¿ [eA
0(x2¡¿ ) ¡ eA0(x1¡¿ )](A0)¡1C 0

= CA¡1[eAx2 ¡ eAx1 ]P (¡s)[eA0(x2¡¿ ) ¡ eA0(x1¡¿)](A0)¡1C 0

where P (¡s) is computed as in Lemma 7.1. In conclusion, the option value (74)
can be computed exactly. Observe that, as usual, when t = 0, the only term
to compute is §x1;x2(x1) and this computation is, as we have just shown, fairly
straightforward.

8 Point Process Inputs

In this section we will extend our results by allowing also for a marked point
process as driving noise in the forward rate model. The ideas are, modulo some
minor technicalities, exactly the same a for the purely Wiener driven case, so
we will give the results and only sketch the arguments.

The stochastic basis is thus assumed to carry, beside the usual d-dimensional
Wiener processW , a marked point process ¹(dt; dx) on a measurable Lusin mark
space (E;E) with compensator º(dt; dy). We assume that º([0; t]£ E) < 1 Q-
a.s. for all ¯nite t, i.e. ¹ is a multivariate point process in the terminology of
[16].

Assumption 8.1 We assume that, under a martingale measure Q, the forward
rate dynamics are of the form

dr(t; x) = ®(t; x)dt+ ¾(x)dW (t) +
Z

E
´(x; y)¹(dt; dy); (75)

where ¾(x) and ´(x; y) are deterministic functions. We also assume that the
compensator º has a predictable deterministic time invariant intensity measure,
i.e. º(dt; dy) = ¸(dy)dt.

We now have the following result from [2], [3], which generalizes the HJM drift
condition to the point process case.
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Proposition 8.1 Under the martingale measure Q the following relation hold

®(t; x) =
@r

@x
(t; x) + ¾(x)

Z x

0
¾(s)ds¡

Z

E
´(x; y)eN(x;y)¸(dy); (76)

where
N(x; y) = ¡

Z x

0
´(s; y)ds: (77)

Again we view all functions of x as vectors in C[0;1), and, suppressing the
x-dependence, we then have our basic system

dr(t) = fFr(t) +Dg dt+ ¾dW (t) +
Z

E
´(y)¹(dt; dy); (78)

r(0) = r?(0): (79)

y(t) = Hr(t); (80)

p(t) = ey(t): (81)

Here the linear operators F and H are de¯ned as before whereas the function D
is de¯ned by

D(x) = ¾(x)
Z x

0
¾(s)ds¡

Z

E
´(x; y)eN (x;y)¸(dy) (82)

i.e.

D = F
½
1

2
kH¾k2 +

Z

E
eN (¢;y)¸(dy)

¾
: (83)

As before we introduce the process r0, and write

dr0(t; x) = Fr0(t; x)dt+ ¾(x)dW (t) +
Z

E
´(x; y)¹(dt; dy); (84)

r0(0; x) = 0 (85)

y0(t; x) = Hr0(t; x) (86)

r(t; x) = r0(t; x) + ±(t; x) (87)

y(t; x) = y0(t; x) + ¢(t; x) (88)

where

±(t; x) = r?(x+ t) +
Z t

0
D(x+ t¡ s)ds

= r?(x+ t) +
1

2

³
kH¾(x+ t)k2 ¡ kH¾(x)k2

´

+
Z

E

n
eN(x+t;y) ¡ eN (x;y)

o
¸(dy); (89)

¢(t; x) =
Z x

0
±(t; u)du;
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= q?(0; t) ¡ q?(0; t+ x)
+

1

2

Z x

0

n
kH¾(t+ u)k2 ¡ kH¾(u)k2

o
du

+
Z x

0

Z

E

n
eN(t+u;y) ¡ eN (u;y)

o
¸(dy) (90)

The main problem is again to ¯nd out when and how the input-output map
generated by the r0-process can be realized by a ¯nite dimensional system.

De¯nition 8.1 A list [A;B;K;C] where where A is an n £ n-matrix , B is
n £ d-matrix K : E ! Rn is a column-vector function, and C : R ! Rn is a
row-vector function, is called an n-dimensional realization of r0, if r0 has the
representation

dz(t) = Az(t)dt+BdW (t) +
Z

E
K(y)¹(dt; dy); (91)

r0(t; x) = C(x)z(t): (92)

As before we study the existence of a ¯nite dimensional realization for r0 by
comparing the transfer function for the deterministic system

dr0(t; x) = Fr0(t; x)dt+Bu(t)dt+
Z

E
´(x; y)m(dt; dy): (93)

with the transfer function for the system

dz(t) = Az(t)dt+Bu(t) +
Z

E
K(y)m(dt; dy); (94)

r0(t; x) = C(x)z(t): (95)

For these control systems we have deterministic inputs of two kinds: u, which is
an arbitrary continuous d-dimensional column vector function, and m, which is
an arbitrary point process trajectory (an \E-valued impulse control").

For both these systems the transfer function will be of the form

G(s; x) = [G1(s; x); G2(s; x; ¢)] ;

i.e.
~r0(s; x) = G1(s; x)~u(s) +

Z

E
G2(s; x; y) ~m(s; dy)

where ~ as before denotes the Laplace transform in the t-variable. A straight-
forward calculation gives us the following results, where L denotes the Laplace
transform, and x as subindex denotes translation.
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Proposition 8.2

1. The transfer function for (93) is given by

G(s; x) = [L [¾x] (s);L [´x] (s; ¢)] ; (96)

i.e.

G1(s; x) =
Z 1

0
¾(t+ x)e¡stdt;

G2(s; x; y) =
Z 1

0
´(t+ x; y)e¡stdt:

2. The transfer function for (94)-(95) is given by

G1(s; x) = C(x) [sI ¡ A]¡1B; (97)

G2(s; x; y) = C(x) [sI ¡ A]¡1K(y): (98)

We thus see that (94)-(95) is a realization of the r0-process if and only if we
have

L [¾x] (s) = C(x) [sI ¡ A]¡1B;
L [´x] (s; y) = C(x) [sI ¡ A]¡1K(y);

and an argument along the lines of the pure Wiener case gives us the following
basic result.

Proposition 8.3

1. There exists a ¯nite dimensional realization of the r0-process if and only
if the volatility functions can be factored as

¾(x) = CeAxB; (99)

´(x; y) = CeAxK(y): (100)

2. If ¾ and ´ have the forms above, then a concrete realization is given by
[A;B;K(y); C(x)], with A, B, and K as in (99)-(100), and with
C(x) = CeAx.

Using this result it is easy to show the following result for the McMillan degree.

Proposition 8.4 The McMillan degree M for the forward rate system is given
by

M = span
h
Fk¾(¢);Fk´(¢; y);k ¸ 0; y 2 E

i
: (101)
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As in Section 5 we can interpret the states in a minimal realization as a set of
benchmark forward rates. Using Lemma 5.1 the generalization of Propositions
5.1 and 5.2 is as follows.

Proposition 8.5 Assume that
h
A;B;K(y); CeAx

i
is a minimal realization of

the forward rates. Assume furthermore that a maturity vector ¹x = (x1; ¢ ¢ ¢ ; xn)
is chosen as in Lemma 5.1. Then, with T = T (¹x) as in (57), the following hold.

² The vector r(t; ¹x) of benchmark forward rates has the dynamics

dr(t; ¹x) =
h
TAT¡1r(t; ¹x) + ª(t; ¹x)

i
dt+ TBdW (t) (102)

+
Z

E
TK(y)m(dt; dy); (103)

r(0; ¹x) = r?(0; ¹x); (104)

where the deterministic function ª is given by

ª(t; ¹x) =
@r?

@x
(0; t¹e+ ¹x)¡D(t¹e+ ¹x)¡ T (¹x)AT¡1(¹x)±(t; ¹x) (105)

² The system of benchmark forward rates determine the entire forward rate
process according to the formula

r(t; x) = CeAxT¡1r(t; ¹x)¡ CeAxT¡1±(t; ¹x) + ±(t; x): (106)

² Bond prices p(t; x) are given by

p(t; x) =
p?(0; t+ x)

p?(0; t)
exp f¡(t; x; ¹x)¡ ©(x; ¹x)r(t; ¹x)g ; (107)

where

©(x; ¹x) = C
µZ x

0
eAsds

¶
T¡1; (108)

¡(t; x; ¹x) = C
µZ x

0
eAsds

¶
T¡1±(t; ¹x)

¡ 1

2

Z x

0

n
kH¾(t+ u)k2 ¡ kH¾(u)k2

o
du

¡
Z x

0

Z

E

n
eN(t+u;y) ¡ eN (u;y)

o
¸(dy)du (109)
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9 Appendix on Linear Systems

In this appendix we give a brief review of some basic concepts and results in
linear systems theory. For details the reader is referred to [6] or almost any
textbook on the subject.

We consider an input-output system of the form

dz

dt
(t) = Az(t) +Bu(t); (110)

y(t) = Cz(t): (111)

Here A, B andC are matrices of dimension n£n, n£d, and k£n respectively. The
interpretation is that we feed the d-dimensional input signal u into the system.
We can not observe the state z directly, but we can observe the k-dimensional
output signal y. We will denote such a system by [A;B;C]. Sometimes we will
have no input, and then the system will be denoted by by [A;C]. At other times
we will disregard the output, and the system will be denoted by [A;B]. Given a
starting point z(0) = z0 and an input signal u, z(t; x0; u) will denote the value
of z at time t, with the corresponding interpretation for y(t; x0; u) We note that
we have

z(t; z0; u) = eAtz0 +
Z t

0
eA(t¡s)Bu(s)ds; (112)

y(t; z0; u) = CeAtz0 +
Z t

0
CeA(t¡s)Bu(s)ds: (113)

9.1 Reachability and Observability

If » = z(t; x0; u) we say that we have reached the point » by starting at z0 and
using the control u.

De¯nition 9.1

² The reachable subspace, R is the set of points in Rn which, for some
choice of input signal u and some choice of time t, can be reached starting
from the origin z(0) = 0.

² If all points can be reached, i.e. if R = Rn, then the system [A;B] is said
to be reachable.

The basic result concerning reachability follows fairly easy from (112).
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Proposition 9.1

² The reachable subspace is given by
R = span

h
B;AB;A2B; ¢ ¢ ¢ ; An¡1B

i
; (114)

where span denotes the linear hull of the column vectors.

² The system [A;B] is reachable if and only if

span
h
B;AB;A2B; ¢ ¢ ¢ ; An¡1B

i
= Rn: (115)

It should be noted that the \basic" result is that

R = span
h
B;AB;A2B; ¢ ¢ ¢

i
:

It is then the ¯nite dimensionality of the system, together with the Cayley-
Hamilton Theorem, which gives us the relation (114).

The dual concept of reachability is observability. Consider the system [A;C],
and consider the mapping ¡ : Rn ! C[0;1) taking a starting point z0 into the
corresponding output trajectory y, i.e.

[¡z](t) = y(t; z):

De¯nition 9.2

² The silent subspace S of the system [A;C] is de¯ned as

S = ker¡ (116)

² The system [A;C] is said to be observable if S = f0g.

The silent subspace is thus the set of points which will give rise to the zero
output signal. If a system is observable it is possible to determine the starting
point z0 from observation of the output signal. The basic result is the following.

Proposition 9.2 The system [A;C] is observable if and only if

ker

2
66664

C
CA
...
CAn¡1

3
77775
= f0g :

i.e. if and only if

rank

2
66664

C
CA
...
CAn¡1

3
77775
= n:
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9.2 Realization Theory

Consider the systems

(§)

(
dz
dt
(t) = Az(t) +Bu(t);

y(t) = Cz(t):

It is easily seen that, if we set, for example, z(0) = 0, for each input u(t) the
function

y(t) =
Z t

0
CeA(t¡s)Bu(s)ds

is uniquely determined. Typically u(¢) is taken in C[0;1) (or L1[0;1)). Then
the output y(t) is also a continuous function (or an essentially bounded function
if the system is stable). Thus we can de¯ne the impulse response ©(u) := eAuB
and a map I©

I© : C[0;1) 7! C[0;1)
u(t) 7!

Z t

0
©(t¡ s)u(s)ds

The map I© is called input-output map of the system (§) (The same concept
can be de¯ned for bounded functions).

Conversely, we have the following:

De¯nition 9.3 Given an input-output map I©, we say that a system (§) is a
realization of I© if the the input output map of (§) is I©. Two systems (§) and
(§0) are said to be equivalent if they have the same input-output map.

Although the input-output map is a very powerful concept, it is not immediate
to represent it or to construct a realization. It turns out that, with our assump-
tions, it is equivalent and much simpler to work in the frequency domain with
the Laplace transform of the impulse response. With ~ denoting the Laplace
transform, we can set

G(s) := ~©(s)

De¯nition 9.4 The matrix function G(s) de¯ned above is called the transfer
function for the input-output map I©.

In view of the invertibility of the Laplace transform, an input-output map is
uniquely determined by its transfer function. Thus, to describe or realize an
input-output map we can use its transfer function. Now, it is immediately seen
that if © = CeAuB, then

G(s) = C[sI ¡ A]¡1B
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Thus it is quite obvious that di®erent systems may have the same transfer func-
tion and that also this relation is also an equivalence. Clearly these two equiva-
lences must coincide:

Lemma 9.1 Two systems are equivalent if they have the same transfer function.

From the Cramer rule it follows that if G is a transfer function of a system (§),
then it is a rational matrix function, which is strictly proper, i.e. the degree
of each component is · ¡1. Rational matrix functions are extremely simple to
describe in terms of their coe±cients. The interesting point is that we can always
go back from a transfer function to a system:

Proposition 9.3 Let G be any k£m-dimensional strictly proper rational matrix
function. Then there exist matrices A, B and C such that G(s) = C [sI ¡A]¡1B.

We say that the system [A;B;C] is a realization of the transfer function G.
Although, as we said, the realization of a transfer function is far from unique,
there exist some properties which can be imposed on the realization to turn it
into a useful object.

De¯nition 9.5

² The dimension n of a realization [A;B;C] is the dimension of the matrix
A.

² A realization is minimal if there exist no realization with smaller dimen-
sion.

Clearly two minimal realizations must have the same degree. There is a simple
way to characterize a minimal realization and to relate two di®erent minimal
realizations.

Proposition 9.4 Let transfer function G be given, and assume that [A;B;C]
is a realization of G. Then

² [A;B;C] is minimal if and only if [A;B] is reachable and [A;C] is observ-
able.

² Let [A;B;C] and [A0; B0; C 0] be minimal realizations of the same transfer
function G. Then there exists an invertible transformation T such that

A0 = TAT¡1 B0 = TB C 0 = CT¡1
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The other immediate result which we use in this paper is the following corollary.

Corollary 9.1 Let G be any k £m-dimensional strictly proper rational matrix
function. Then there exist matrices A, B and C such that L¡1[G](s) = CeAtB.

References

[1] BjÄork, T. & Christensen, B.J. (1997) Interest rate models and invariant
manifolds. Preprint.

[2] BjÄork, T. & Kabanov, Y. & Runggaldier, W. (1997) Bond market structure
in the presence of marked point processes. Mathematical Finance 7, 211-
239.

[3] BjÄork, T. & Di Masi, G. & Kabanov, Y. & Runggaldier, W. (1997) Towards
a general theory of bond markets. Finance and Stochastics 1, 141-174.

[4] Brace, A. & Musiela M. (1994) A multi factor Gauss Markov implementa-
tion of Heath Jarrow and Morton. Mathematical Finance 4, Vol.3, 563-576.

[5] Br¶emaud, P. (1981) Point Processes and Queues: Martingale Dynamics.
Springer-Verlag, Berlin.

[6] Brockett, R.W. (1970) Finite Dimensional Linear Systems. Wiley.

[7] Brown, R.H. & Schaefer, S.M. (1994) Interest rate volatility and the shape
of the term structure. Phil. Trans. R. Soc. Lond. A 347, 563-576.

[8] Curtain, R.F. & Zwart, H. (1995) An Introduction to In¯nite-Dimensional
Linear Systems Theory. Wiley.

[9] Da Prato, G. & Zabczyk, J.(1992) Stochastic Equations in In¯nite Dimen-
sions. Cambridge University Press.

[10] Du±e, D. & Kan, R (1996) A yield factor model of interest rates. Mathe-
matical Finance, 6, 379-406.

[11] El Karoui, N. & Lacoste, V (1993) Multifactor models of the term structure
of interest rates . Preprint

[12] Geman, H, El Karoui, N & Rochet, (1995) J.C. Change of Numeraire,
changes of probability measure and option pricing, J. Appl. Prob., 32, 443-
458.

33



[13] Heath, D. & Jarrow, R. & Morton, A. (1992) Bond pricing and the term
structure of interest rates. Econometrica 60 No.1, 77-106.

[14] Ho, T. & Lee, S. (1986) Term structure movements and pricing interest rate
contingent claims. Journal of Finance 41, 1011-1029.

[15] Hull, J & White, A. (1990) Pricing interest-rate-derivative securities. The
Review of Financial Studies 3, 573-592.

[16] Jacod, J. & Shiryaev A.N. (1987) Limit Theorems for Stochastic Processes.
Springer-Verlag, Berlin.

[17] Lindquist,A. & Picci, G. (1985) Realization theory for multivariate station-
ary Gaussian processes. SIAM Journal of Control and Optimization 23 no.
6, 809-857.

[18] Ljung, L. (1987) System Identi¯cation - Theory for the user , Prentice Hall.

[19] Musiela M. (1993) Stochastic PDE:s and term structure models. Preprint.

[20] Shirakawa, H. (1991) Interest rate option pricing with Poisson{Gaussian
forward rate curve processes. Mathematical Finance 1, 77-94.

[21] (1996) van Overschee, P. & de Moor, B. Subspace Identi¯cation for Linear
Systems Kluwer.
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