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Abstract

In this paper we discuss the significant computational simplification
that occurs when option pricing is approached through the change of
numeraire technique. The original impetus was a recently published paper
(Hoang, Powell, Shi 1999) on endowment options; in the present paper
we extend these results to the case of stochastic interest rates. We also
discuss four additional option pricing problems within the framework of
a change of numeraire:

• Pricing savings plans which incorporate a choice of linkage.

• Pricing convertible bonds.

• Pricing employee stock ownership plans

• Pricing options where the strike price is in a currency different from
the stock price.
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1 Introduction

In this paper we explore five possible applications of the numeraire method in
option pricing. While the numeraire method is well-known in the theoretical
literature, it appears to be infrequently used in more applied papers, and many
practitioners seem to be unaware of how to use it as well as when it is profitable
(or not) to use it. In order to illustrate the uses (and possible misuses) of
the method we discuss in some detail five concrete applied problems in option
pricing:

• Pricing endowment warrants.

• Pricing savings plans which incorporate a choice of linkage.

• Pricing convertible bonds within a stochastic interest rate franework.

• Pricing employee stock ownership plans (ESOPs)

• Pricing options where the strike price is in a currency different from the
stock price.

The standard Black-Scholes (BS) formula prices a European option on an asset
that follows a geometric Brownian motion. The asset’s uncertainty is the only
risk factor in the model. A more general approach developed by Black-Merton-
Scholes leads to a partial differential equation. The most general method de-
veloped so far for the pricing of contingent claims is the martingale approach
to arbitrage thory developed by Harrison-Kreps (1981), Harrison-Pliska (1981)
and others. However, whether one uses the PDE or the standard “risk neutral
valuation” formulas of the martingale method, it is in most cases very hard to
obtain analytic pricing formulas. Thus, for many important cases, special for-
mulas (typically modifications of the original BS formula), were developed. See
Haug (1997) for an extensive set of examples.

One of the most typical cases of several risk factors occurs when an option is
to choose among two assets with stochastic prices. In such a case it is often
of considerable advantage to use a change of numeraire in the pricing of the
option. In what follows we demonstrate examples where the numeraire approach
leads to significant simplifications but, in order not to oversell the method, also
examples where the numeraire change is trivial or where an obvious numeraire
change really does not simplify the computations. The main message is still that
in many cases the change of numeraire approach leads to a drastic simplification
of the computational work.

In section 2 we start with a brief introductory review of the numeraire method,
followed by a mathematical summary (which can be skipped on first reading
of this paper). In sections 3-7 we then present five different option pricing
problems. For each problem we present the possible choices of numeraire, discuss
the pros and cons of the various numeraires, and compute the option prices.
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2 The change of numeraire approach

The basic idea of the numeraire approach can be described as follows: Suppose
that an option’s price depends on several (say n) sources of risk. We may then
compute the price of the option according to the following scheme:

• Fix a security which embodies one of the sources of risk, and choose this
security as the numeraire.

• Express all prices on the market, including that of the option, in terms of
the chosen numeraire. In other words, we perform all our computations
in a relative price system.

• Since the numeraire asset in the new price system is riskless (by definition)
we have decreased the number of risk factors by one from n to n−1. If, for
example, we started out with two sources of risk, we can now often apply
standard one-risk-factor option pricing formulas (such as Black-Scholes).

• We thus derive the option price in terms of the numeraire. A simple
translation from the numeraire back to the local currency will then give
the price of the option in monetary terms.

These ideas were developed independently by Geman (1989) and Jamshidian
(1989).1 The standard reference in an abstract setting is Geman, et.al. (1995).
In the remainder of this section, we consider a Markovian framework which is
simpler than that of the last paper, but which is still reasonably general. All
details and proofs can be found in Björk (1999).2

Assumption 2.1 The following objects are given a priori.

• An empirically observable (k + 1)-dimensional stochastic process

X = (X1, . . . , Xk+1),

with the notational convention

Xk+1(t) = r(t).

• We assume that under a fixed risk neutral martingale measure Q, the
factor dynamics have the form

dX i(t) = µi (t, X(t)) dt + δi (t, X(t)) dW (t), i = 1, . . . , k + 1,

where W = (W1, . . . , Wd)? is a standard d-dimensional Q-Wiener process.
The superscript ? denotes transpose.

1The earliest incarnation of a similar idea is to be found in papers by Fischer (1978) and
Brenner and Galai (1978).

2The remainder of this section can be skipped by readers interested only in the implemen-
tation of the numeraire method.
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• A risk free asset (money account) with the dynamics

dB(t) = r(t)B(t)dt.

The interpetation of this is that the components of the vector process X are the
underlying factors in the economy. We make no a priori market assumptions,
so whether or not a particular component is the price process of a traded asset
in the market will depend on the particular application. We now also introduce
asset prices, driven by the underlying factors, in the economy.

Assumption 2.2

• We consider a fixed set of price processes S0(t), . . . , Sn(t), each of which is
assumed to be the arbitrage free price process for some traded asset without
dividends.

• Under the risk neutral measure Q, the S-dynamics have the form

dSi(t) = r(t)Si(t)dt + Si(t)
d∑

j=1

σij(t, X(t))dWj(t), (1)

for i = 0, . . . , n − 1.

• The nth asset price is always given by

Sn(t) = B(t),

and thus (1) also holds for i = n with σnj = 0 for j = 1, . . . , d.

We now fix an arbitary asset as the numeraire, and for notational conveni-
nence we assume that it is S0. We may then express all other asset prices
in terms of the numeraire S0, thus obtaining the normalized price vector
Z = (Z0, Z1, . . . , Zn), defined by

Zi(t) =
Si(t)
S0(t)

.

The main result is the following theorem, which shows how to price an arbitrary
contingent claim in terms of the chosen numeraire. For brevity, a contingent
claim with exercise date T will henceforth be referred to as a “T -claim”.

Theorem 2.1 (Main theorem) Let the numeraire S0 be the price process for
a traded assset with S0(t) > 0 for all t. Then there exists a probability measure,
denoted by Q0, with the following properties.

• For every T -claim Y, the corresonding arbitrage free price process Π(t;Y)
is given by

Π(t;Y) = S0(t)E0
t,X(t)

[ Y
S0(T )

]
, (2)

where E0 denotes expectation w.r.t. Q0.
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• The Q0-dynamics of the Z-processes are given by

dZi = Zi [σi − σ0] dW 0, i = 0, . . . , n. (3)

• The Q0-dynamics of the price processes are given by

dSi = Si (r + σiσ
?
0) dt + SiσidW 0, (4)

where W 0 is a Q0-Wiener process.

• The Q0-dynamics of the X-processes are given by

dX i(t) =
(
µi + δiσ?

0

)
dt + δidW 0(t). (5)

• The measure Q0 depends upon the choice of numeraire asset S0, but the
same measure is used for all claims, regardless of their exercise dates.

In passing we note that if we use the money account B as the numeraire, then the
pricing formula above reduces to the well known standard risk neutral valuation
formula

Π (t;Y) = B(t)E0
t,X(t)

[ Y
B(T )

]
= E0

t,X(t)

[
e
−
∫

T

t
r(s)dsY

]
(6)

In more pedestrian terms, the main points of the Theorem above are as follows.

• The pricing formula (2) shows that the measure Q0 “takes care of the
stochasticity” related to the numeraire S0. Note that we do not have to
compute the price S0(t)–we simply use the observed market price. We
also see that if the claim Y is of the form Y = X · S0(T ) then the change
of numeraire is a huge simplification of the standard risk neutral formula
(6): Instead of computing the joint distribution of

∫ T

t r(s)ds and Y (under
Q) we only have to compute the distribution of X (under Q0).

• Formula (3) says that the normalized price processes are martingales (i.e.
zero drift) under Q0, and identifies the relevant volatility.

• Formulas (4)-(5) shows how the dynamics of the asset prices and the un-
derlying a factors change when we move from Q to Q0. Note that the
crucial object is the volatility σ0 if the numeraire asset.

In the following sections we show examples of the use of the numeraire method
which illustrate the considerable conceptual and implementational simplification
to which this method leads.
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3 Endowment warrants

Endowment options, which are primarily traded in Australia and New Zealand,
were recently discussed in Hoang-Powell-Shi (1999, henceforth HPS), where the
arbitrage free price of the warrant was derived in the case of a deterministic short
rate. The authors in HPS also provide an approximation of the option price for
the stochastic interest rate case. Our contribution in this section is to prove that
the exact option pricing formula of HPS, for the case of a deterministic short
rate, is in fact invariant under the introduction of stochastic interest rates, thus
making an approximation procedure unnecessary.

3.1 Institutional setup

An endowment option is a very long term call option. Typically we have the
following setup:

• At issue, the initial strike price K0 is set to approximatively 50% of the
current stock price, so the option is initially deep in the money.

• The endowment options are European.

• The time to exercise is typically 10+ years.

• The options are interest rate and dividend protected. The protection is
performed by the following two adjustments:

– The strike price is not fixed over time. Instead it is increased by the
short-term interest rate.

– The strike price is decreased by the size of the dividend each time a
dividend is paid.

• The payoff at the exercise date T is that of a standard call option, but
with the adjusted (as above) strike price KT .

3.2 Mathematical model

We model the underlying stock price process St in a standard Black-Scholes
setting. In other words, under the objective probability measure P , the price
process St follows Geometrical Brownian Motion (between dividends) as:

dSt = αStdt + StσWt,

where α and σ are deterministic constants. We allow the short rate rt to be
an arbitrary random process, thus giving us the following P -dynamics of the
money-market account:

dBt = rtBtdt, (7)
B0 = 1. (8)
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In order to analyze this option we have to formalize the protection features of
the option. This is done in the following way.

• We assume that the strike price process Kt is changed at the continuously
compounded instantaneous interest rate. The formal model is thus as
follows

dKt = rtKtdt. (9)

• For simplicity we assume (see Remark 3.1 below) that the dividend pro-
tection is perfect. More precisely we assume that the dividend protection
is done by reinvesting the dividends into the stock itself. Under this as-
sumption we can view the stock price as the theoretical price of a mutual
fund which includes all dividends invested in the stock. Formally this
implies that we can treat the stock price process St defined above as the
price process of a stock without dividends.

The value of the option at the exercise date T is given by the contingent claim
X , defined by

X = max [ST − KT , 0]

Clearly there are two sources of risk in endowment options: The stock price risk
and the risk of the short-term interest rate. In order to analyze this option, we
observe that from (7)-(9) it follows that

KT = K0BT .

Thus we can express the claim X as

X = max [ST − K0BT , 0]

and from this expression we see that the natural numeraire process is now
obviously the money account Bt. The martingale measure for this numeraire is
the standard risk neutral martingale measure Q under which we have the stock
price dynamics

dSt = rtStdt + StσdWB
t , (10)

where WB is a Q-Wiener process.

A direct application of Theorem 2.1 gives us the pricing formula

Π (0;X ) = B0E
Q

[
1

BT
max [ST − K0BT , 0]

]
.

After a simple algebraic manipulation, and using the fact that B0 = 1, we thus
obtain

Π (0;X ) = EQ [max [ZT − K0, 0]] (11)

where Zt = St/Bt is the normalized stock price process. It follows immediately
from (7), (10), and the Itô formula that under Q we have Z-dynamics given by

dZt = ZtσdWB
t . (12)
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and from (11)-(12) we now see that our original pricing problem has been re-
duced to that of computing the price of a standard European call, with strike
price K0, on an underlying stock with volatility σ in a world where the short
rate is zero. Thus the Black-Scholes formula gives the endowment warrant price
at t = 0 directly as

CEW = Π(0;X ) = S0N(d1) − KN(d2) (13)

where

d1 =
ln (S0/K0) + 1

2σ2T

σ
√

T
,

d2 = d1 − σ
√

T .

Using the numeraire approach price of the endowment option in (13) is given
by a standard Black-Scholes formula for the case where r = 0. The result does
not in any way depend upon assumptions made about the stochastic short rate
process rt.

The pricing formula (13) was in fact earlier derived in HPS, but only for the
case of a deterministic short rate. The case of a stochastic short rate is not
treated in detail in HPS. Instead the authors of HPS attempt to include the
effect of a stochastic interest rate by introducing the following scheme:

• They assume that the short rate r is deterministic and constant.

• The strike price process is assumed to have dynamics of the form

dKt = rKtdt + γdVt

where V is a new Wiener process (possibly correlated with W ).

• They then go on to value the claim X = max [ST − KT , 0] by using the
Margrabe (1978) result about exchange options.

The claim made in HPS is that this setup is an approximation to the case of
a stochastic interest rate. Whether it is a good approximation or not is never
clarified in HPS, and from our analysis above we see that the entire scheme
is in fact unnecessary, since the pricing formula (13) is invariant under the
introduction of a stochastic short rate.

Remark 3.1 We note that the result above relies upon our simplifying as-
sumption about perfect dividend protection.3 A more realistic modeling of the
dividend protection would lead to severe computational problems. To see this
assume that the stock pays a constant dividend yield rate δ. This would change

3In reality is performed by reducing the strike price by the dividend amount with the
restriction that the resulting strike is never negative.
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our model in two ways: The Q-dynamics of the stock price would be different,
and the dynamics of the strike process Kt would have to be changed.

As for the Q-dynamics of the stock price, standard theory immediately gives us

dSt = (rt − δ)Stdt + StσdWB
t .

Furthermore, from the institutional description above we see that in real life
(as opposed to in our simplified model), the dividend protection is done by
decreasing the strike price process with the dividend amount at every dividend
payment. In terms of our model this means that over an infinitesimal interval
[t, t + dt], the strike price should decrease with the amount δStdt. Thus the
Kt-dynamics are given by

dKt = (rtKt − δSt) dt.

This equation can be solved as

KT = e

∫
T

0
rtdt

K0 − δ

∫ T

0

e

∫
T

t
rudu

Stdt

The moral is that in the expression of the contingent claim

X = max [ST − KT , 0]

we now have the unpleasant integral expression
∫ T

0

e

∫ T

t
rudu

Stdt.

Even in the simple case of a deterministic short rate this integral is quite prob-
lematic. It is then basically a sum of lognormally distributed random variables,
and thus we have the same hard computational problems as in the case of an
Asian option.

4 Pricing savings plans with choice of linkage

These plans are common. Typically they give savers an ex-post choice of interest
rates to be paid on their account. With the inception of capital requirements,
many financial institutions have to recognize these options and price them.

4.1 Institutional setup

We use the example of a common bank account from the Israeli context; this
account gives savers the ex-post choice of indexing their savings to an Israeli-
shekel interest rate or a US dollar rate.
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• The saver deposits NIS 100 (“NIS”= Israeli shekels) today in a shekel/dollar
savings account with a maturity of 1 year.

• In one year, the account pays the maximum of:

– NIS 100, indexed to the inflation rate + a shekel interest rate.

– Today’s dollar equivalent of NIS 100 + dollar interest rate.

The savings plan is thus an option to exchange the Israeli interest rate for the
US interest rate, while at the same time taking on the exchange rate risk. Since
the choice is made ex-post, it is clear that both the shekel and the dollar interest
rates offered on such an account must be below their respective market rates.

4.2 Mathematical model

In this section we derive the value of the exchange option described above; the
result is given in equation (18) below.

We consider two economies, one domestic and one foreign, and we introduce the
following notation.

rd = domestic short rate
rf = foreign short rate
It = domestic inflation process

Xt = the exchange rate in terms of domestic currency/foreign currency.
Yt = X−1

t = the exchange rate in terms of foreign currency/ domestic currency.
T = the maturity of the savings plan.

The value of the option is linear in the initial shekel amount invested in the
savings plan; without loss in generality, we assume that this amount is 1 shekel.
In the domestic currency the contingent T -claim Ξd to be priced, is thus given
by

Ξd = max
[
erdT IT , X−1

0 erf T XT

]
In the foreign currency the claim Ξf is given by

Ξf = max
[
erdT IT YT , Y0e

rf T
]

It turns out that it is easier to work with Ξf than with Ξd, and we have

Ξf = max
[
erdT IT YT − Y0e

rf T , 0
]
+ Y0e

rfT .

The price (in the foreign currency) at t = 0 of this claim is now given by

Π (0; Ξf ) = e−rf T EQf
[
max

{
erdT IT YT − erfT Y0, 0

}− erfT Y0

]
= EQf

[
max

{
e(rd−rf )T IT YT − Y0, 0

}]
+ Y0, (14)
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where Qf denotes the risk neutral martingale measure for the foreign market.

At this point we have to make some probabilistic assumptions, and in fact we
assume that we have a Garman-Kohlhagen model for Y . Standard theory then
gives us the Qf dynamics of Y as

dYt = Yt(rf − rd)dt + YtσY dWt. (15)

For simplicity we assume that also the inflation follows a geometric Brownian
motion, with Qf -dynamics given by

dIt = ItαIdt + ItσIdWt. (16)

Note that W is assumed to be two-dimensional, thus allowing for correlation
between Y and I. Also note that economic theory does not say anything about
the mean inflation rate αI under Qf .

When computing the expectation in (14) we cannot use a standard change of
numeraire technique, the reason being that none of the processes Y , I or Y ·I are
price processes of traded assets without dividends. Instead we have to attack
the expectation directly.

To that end we define the process Z as Zt = Yt · It and obtain the following
Qf -dynamics.

dZt = Zt (rf − rd + αI + σY σ?
I ) dt + Zt (σY + σI) dWt.

From this it is easy to see that if we define St by

St = e−(rf−rd+αI+σY σ?
I )tZt,

then we will have the Qf -dynamics

dSt = St (σY + σI) dWt,

the point being that we can interperet St as a stock price in a Black-Scholes
world with zero short rate and Qf as the risk neutral measure. With this
notation we obtain easily

Π (0; Ξf ) = ecTEQf
[
max

[
ST − e−cTY0, 0

]]
+ Y0,

where
c = αI + σY σ?

I .

The expectation above can now be expressed by the Black-Scholes formula for
a call option with strike price e−cT Y0, zero short rate and a volatility given by

σ =
√
‖σY ‖2 + ‖σI‖2 + 2σY σ?

I
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The price, at t = 0 of the claim, expressed in the foreign currency is thus given
by the formula

Π (0; Ξf) = ecT I0Y0N [d1] − Y0N [d2] + Y0, (17)

d1 =
ln (I0) +

(
c + 1

2σ2
)
T

σ
√

T
,

d2 = d1 − σ
√

T .

Finally, the price at t = 0 in domestic terms is given by

Π (0; Ξd) = X0Π(0; Ξf ) = ecT I0N [d1] − N [d2] + 1. (18)

Remark 4.1 For practical purposes it may be more convenient to model Y and
I as

dYt = Yt(rf − rd)dt + YtσY dWY
t ,

dIt = ItαIdt + ItσIdW I
t ,

where now σY and σY are constant scalars, whereas WY and W I are scalar
Wiener processes with local correlation given by dWY

t dW I
t = ρdt.

In this model (which of course is logically equivalent to the one above) we have
the pricing formulas (17)-(18), but now with the notation

c = αI + ρσY σI ,

σ =
√

σ2
Y + σ2

I + 2ρσY σI

5 Pricing convertible bonds

Standard pricing models of convertible bonds concentrate on pricing the bond
and its conversion option at date t = 0 (see, for example, Brennan-Schwartz
1977, Bardhan et.al. 1993). A somewhat less-standard problem is the pricing of
the bond at some date 0 < t < T , where T is the maturity date of the bond. We
consider this problem in this section; again we see that the numeraire approach
gives a relatively simple solution to this problem; the ”trick” is to use the stock
price as the numeraire. This gives a relatively simple pricing formula for the
bond (equation (22) below), which we now derive.

5.1 Institutional setup

A convertible bond involves two underlying objects: a discount bond and a
stock. The more precise assumptions are as follows.

• The bond is a zero coupon bond with face value 1.

13



• The bond matures at a fixed date T1.

• The underlying stock pays no dividends

• At a fixed date T0, with T0 < T1, the bond can be converted to one share
of the stock.

The problem is of course that of pricing, at time t < T0, the convertible bond.

5.2 Mathematical model

We introduce the following notation

S(t) = the price, at time t, of the stock
p(t, T ) = the price, at time t, of a zero-coupon bond of the same risk class.

We now view the convertible bond as a contingent claim Ξ with exercise date
T0. Given the setup above, the claim Ξ is thus given by the expression

X = max [S(T0), p(T0, T1)] .

In order to price this claim we have two obvious possibilities: we can use either
the stock or the zero-coupon bond maturing at T1 as the numeraire. Assuming
that the T1 bond actually is traded we immediately obtain the price as

Π (t;X ) = p(t, T1)ET1
t [max {ZT0 , 1}] ,

where ET1 denotes expectation under the “forward neutral” martingale measure
QT1 with the T1 bond as numeraire. The process Z is defined by

Zt =
S(t)

p(t, T1)
.

We can now simplify and write

max {ZT0 , 1} = max {ZT0 − 1, 0} + 1,

giving us
Π (t;X ) = p(t, T1)ET1

t [max {ZT0 − 1, 0}] + p(t, T1) (19)

In more verbal terms this just says that the price of the convertible bond equals
the price of a conversion option plus the price of the underlying zero coupon
bond. Since we assumed that the T1 bond is traded, we do not have to compute
the price p(t, T1) in the formula above, but instead we simply observe the price
on the market. It thus only remains to compute the expectation above, and this
is obviously the price, at time t, of a European call with strike price 1 on the
price process Z in a world where the short rate equals zero. Thus the numeraire
approach gives a big simplification of the computational problem.

In order to obtain more explicit results, we now make more specific assumptions
about the stock and bond price dynamics.

14



Assumption 5.1 Define, as usual, the forward rates by f(t, T ) = − ∂
∂T ln p(t, T ),

We now make the following assumptions, all under the risk neutral martingale
measure Q.

• The bond market can be described by an HJM model for the forward rates
of the form

df(t, T ) =

(
σf (t, T )

∫ T

t

σ?
f (t, u)du

)
dt + σf (t, T )dWt

where the volatility structure σf (t, T ) is assumed to be deterministic. W
is a (possibly multidimensional) Q-Wiener process.

• The stock price follows a geometric Brownian motion, i.e.

dSt = rtStdt + StσSdWt,

where rt = f(t, t) is the short rate. The row vector σS is assumed to be
constant and deterministic.

In essence we have thus assumed a standard Black-Scholes model for the stock
price S, and a Gaussian forward rate model. The point of this is that it will
lead to (see below) a lognormal distribution for Z, thus allowing us to use a
standard Black-Scholes formula. From the forward rate dynamics above if now
follows (Björk (1999), prop. 15.5) that we have bond price dynamics given by

dp(t, T ) = rtp(t, T )dt − p(t, T )Σp(t, T )dWt,

where the bond price volatility is given by

Σp(t, T ) =
∫ T

t

σf (t, u)du.

We may now attack the expectation in (19), and to this end we compute the
Z-dynamics under QT1 . It follows directly from the Itô formula that the Q-
dynamics of Z are given

dZt = Z(t)αZ(t)dt + Zt {σS + Σp(t, T1)} dWt

where for the moment we do not bother about the drift process αZ . Furthermore
we know from the general theory (see Theorem 2.1) that the following hold

• The Z process is a QT1 martingale (i.e. zero drift term).

• The volatility does not change when we change measure from Q to QT1 .

The QT1 dynamics of Z are thus given by

dZt = ZtσZ(t)dW 1
t (20)
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where
σZ(t) = σS + Σp(t, T1), (21)

and where W 1 is a QT1 Wiener process.

Under the assumptions above the volatility σZ is deterministic, thus guarantee-
ing that Z has a lognormal distribution. We can in fact write

dZt = Zt ‖σZ(t)‖ dV 1
t ,

where V 1 is a scalar QT1 Wiener process. We may thus use a small variation of
the Black-Scholes formula to obtain the final pricing result

Proposition 5.1 The price, at t, of the convertible bond is given by the formula

Π(t;X ) = StN [d1] − p(t, T1)N [d2] + p(t, T1),

where

d1 =
1√

σ2(t, T0)

(
ln
(

St

p(t, T1)

)
+

1
2
σ2(t, T0)

)
,

d2 = d1 −
√

σ2(t, T0),

σ2(t, T0) =
∫ T0

t

‖σZ(u)‖2
du,

σZ(t) = σS +
∫ T1

t

σf (t, s)ds

6 Employee stock ownership plans

6.1 Institutional setup

In employee stock ownership plans (ESOP) it is common to include an option
of essentially the following form: The holder has the right to buy a stock at the
minimum between its price in 6 months and in 1 year minus a rebate (say 15%).
The exercise is one year.

6.2 Mathematical model

In a more general setting the ESOP is a contingent claim X , to be payed out
at time T1, of the form

X = ST − β min [ST1 , ST0 ] , (22)

so in the concrete case above we would have β = 0.85, T0 = 1/2 and T1 = 1.
The problem is to price X at some time t ≤ T0, and to this end we assume a
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standard Black-Scholes model where, under the usual risk neutral measure Q
we have the dynamics

dSt = rStdt + σStdWt, (23)
dBt = rBtdt, (24)

with a deterministic and constant short rate r. The price Π (t;X ) of the option
can obviously be written

Π (t;X ) = St − βΠ(t;Y)

where the T1-claim Y is defined by

Y = min [ST1 , ST0 ] .

In order to compute the price of Y we now basically want to do as follows.

• Perform a suitable change of numeraire.

• Use a standard version of some well known option pricing formula.

The problem with carrying out this small program is that, at the exercise time
T1, the term ST0 does not have a natural interpretation as a spot price of a
traded asset. In order to overcome this difficulty we therefore introduce a new
asset S0 defined by

S0
t =

{
St, 0 ≤ t ≤ T0,

ST0e
r(t−T0), T0 ≤ t ≤ T1.

In other words, S0 can be thought of as the value of a self financing portfolio
where you at t = 0 buy one share of the underlying stock and keep it until
t = T0. At t = T0 you then sell the share and put all the money into the bank
account.

We then have S0
T1

= ST0e
r(T1−T0) so we can now express Y in terms of S0

T1
as

Y = min
[
ST1 , K · S0

T1

]
(25)

where
K = e−r(T1−T0) (26)

The point of this is that S0
T1

in (25) can formally be treated as the price at T1 of
a traded asset. In fact, from the definition above we have the following trivial
Q-dynamics for S0

dS0
t = rS0

t dt + σ0
t S0

t dWt

where the deterministic volatility is defined by

σ0
t =

{
σ, 0 ≤ t ≤ T0,
0, T0 ≤ t ≤ T1.

(27)
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It is now time to perform a change of numeraire, and we can choose either S
or S0 as the numeraire. From a logical point of view the choice is irrelevant,
but the computations become somewhat easier if we choose S0. With S0 as the
numeraire we obtain (always with t < T0) the following pricing formula from
Theorem 2.1

Π (t;Y) = S0
t E0

t,S0
t
[min {ZT1 , K}] (28)

where
Zt =

St

S0
t

is the normalized price process. From (3) we furthermore have

dZt = Zt

[
σ − σ0

t

]
dW 0

t (29)

where W 0 is Q0-Wiener. Using the simple equality

min {ZT1 , K} = ZT1 − max {ZT1 − K, 0} ,

and noting that for t ≤ T0 we have S0
t = St, we obtain from (28)

Π (t; Y ) = StE
0
t,St

[ZT1 ] − StE
0
t,St

[max {ZT1 − K, 0}] .

Since Z is a Q0 martingale (zero drift) and Zt = 1 for t ≤ T0 we have

StE
0
t,St

[ZT1 ] = StZt = St.

It now only remains to compute E0
t,St

[max {ZT1 − K, 0}] but this is just the
price of a European call with strike price K in a world with, a stock price
process Z following GBM as in (29), and zero short rate. From (29), and the
definition of σ0 in (27), the integrated squared volatility for Z over the time
interval [t, T1] is given by

∫ T1

t

(
σ − σ0

u

)2
du = σ2 · (T1 − T0).

From the Black-Scholes formula with zero short rate and deterministic but time
varying volatility we now have

E0
t,St

[max {ZT1 − K, 0}] = ZtN [d1] − KN [d2]

where

d1 =
ln (Zt/K) + 1

2σ2(T1 − T0)
σ
√

T1 − T0

,

d2 = d1 − σ
√

T1 − T0.

Using again the trivial fact that, by definition Zt = 1 for all t ≤ T0, and
collecting the computations above we finally obtain the price of the ESOP as
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Π(t; ESOP ) = St − βStN [d1] + βStKN [d2], (30)

where

d1 =
ln (1/K) + 1

2σ2(T1 − T0)
σ
√

T1 − T0

,

d2 = d1 − σ
√

T1 − T0,

and where K is given by (26).

7 Options with a foreign-currency strike price

In this section we discuss options whose strike price is linked to a non-domestic
currency. We illustrate with the example of an option with a US dollar strike
price on a stock denominated in UK pounds. Such options might be part of
an executive compensation program; such options might be given to motivate
managers to maximize the dollar price of their stock. Another example is an
option where the strike price is CPI-indexed.

7.1 Institutional setup

For purposes of illustration we assume that the underlying security is traded in
the UK in pound sterling and that the option exercise price is in dollars. The
institutional setup is as follows.

• The option is initially (i.e. at t = 0) an at-the-money option, when the
strike price is expressed in pounds.4

• This pound strike price is, at t = 0, converted into dollars.

• The dollar strike price thus computed is kept constant during the life of
the option.

• At the exercise date t = T the holder can pay the fixed dollar strike price
in order to obtain the underlying stock.

• The option is fully dividend protected.

Since the stock is traded in pounds, the fixed dollar strike corresponds to a
randomly changing strike price when expressed in pounds; thus we have a non-
trivial valuation problem. The numeraire approach can be used to simplify the
valuation of such an option. The resulting valuation is given in (36).

4For tax reasons most executive stock options are initially at-the-money.
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7.2 Mathematical model

We model the stock price S (in pounds) as a standard geometric Brownian
motion under the objective probability measure P , and we assume deterministic
short rates rp and rd in the UK and the US market respectively. Since we have
assumed complete dividend protection we may as well assume (from a formal
point of view) that S is without dividends. We thus have the following P -
dynamics for the stock price.

dSt = αStdt + StδSWS
t ,

We denote the dollar/pound exchange rate by X , and assume a standard Garman-
Kohlhagen (1983) model for X . We thus have P -dynamics given by

dXt = αXXdt + XtδXdWX
t ,

Denoting the pound/dollar exchange rate by Y , where Y = 1/X , we immedi-
ately have the dynamics

dYt = αY Y dt + YtδY dWY
t

where αY is of no interest for pricing purposes. Here WS , WX and WY are
scalar Wiener processes and we have the relations

δY = δX (31)
WY = −WX , (32)

dWS
t · dWX

t = ρdt, (33)
dWS

t · dWY
t = −ρdt. (34)

For computational purposes it is sometimes convenient to express the dynamics
in terms of a two dimensional Wiener process W with independent components
intead of using the two correlated processes WX and WS . Logically the two
approaches are equivalent, and in the new W -formalism we then have the P -
dynamics

dSt = αStdt + StσSWt,

dXt = αXXdt + XtσXdWt,

dYt = αY Ytdt + YtσY dWT .

The volatilities σS , σX and σY are two-dimensional row vectors with the prop-
erties that

σY = −σX

‖σX‖2 = δ2
X ,

‖σY ‖2 = δ2
Y ,

‖σS‖2 = δ2
S ,

σXσ?
S = ρδXδS

σY σ?
S = −ρδY δS
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where ? denotes transpose.

The initial strike price expressed in pounds is by definition given by

Kp
0 = S0,

and the corresponding dollar strike price is thus

Kd = Kp
0 · X0 = S0X0.

The dollar strike price is kept constant until the exercise date. However, ex-
pressed in pounds the strike price evolves dynamically as a result of the varying
exchange rate, so the pound strike at maturity is given by

Kp
T = Kd · X−1

T = S0 · X0 · X−1
T . (35)

There are now two natural ways to value this option: we can work in dollars or
in pounds, and initially it is not obvious which way is the easier. We will in fact
perform the calculations in both alternatives and compare the computational
effort. As will be seen below it turms out to be slightly easier to work in dollars
than in pounds.

7.3 Pricing the option in dollars

In this approach we transfer all data into dollars. The stock price, expressed in
dollars, is given by

Sd
t = St · Xt,

so in dollar terms the payout Ξ of the option at maturity is given by the ex-
pression

Ξd = max
[
ST XT − Kd, 0

]
Since the dollar strike Kd is constant we can use the Black-Scholes formula
applied to the dollar price process Sd

t . The Itô formula applied to Sd
t = StXt

immediately gives us the P -dynamics of Sd
t as

dSd
t = Sd

t (α + αX + σSσ?
X) dt + Sd

t (σS + σX) dWt

We can write this as

dSd
t = Sd

t (α + αX + σSσ?
X) dt + Sd

t δS,ddVt

where V is a scalar Wiener process and where

δS,d = ‖σS + σX‖ =
√

δ2
S + δ2

X + 2ρδSδX

is the dollar volatility of the stock price.
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The dollar price (expressed in dollar data) at t of the option is now obtained
directly from the Black-Scholes formula as

Cd
t = Sd

t N [d1] − e−rd(T−t)KdN [d2], (36)

d1 =
ln
(
Sd

t /Kd
)

+
(
rd + 1

2δ2
S,d

)
(T − t)

δS,d

√
T − t

,

d2 = d1 − δS,d

√
T − t.

The corresponding price in pound terms is finally obtained as

Cp
t = Cd

t · 1
Xt

,

so we have the final pricing formula

Cp
t = StN [d1] − e−rd(T−t) S0X0

Xt
N [d2], (37)

d1 =
ln
(

StXt

S0X0

)
+
(
rd + 1

2δ2
S,d

)
(T − t)

δS,d

√
T − t

,

d2 = d1 − δS,d

√
T − t,

δS,d =
√

δ2
S + δ2

X + 2ρδSδX

7.4 Pricing the option directly in pounds

Although this is not immediately obvious, pricing the option directly in pounds
is a bit more complicated than pricing the option in dollars. The pricing prob-
lem, expressed in pound terms, is that of pricing the T -claim Ξp defined by

Ξp = max [ST − Kp
T , 0] .

Using (35) and denoting the pound/dollar exchange rate by Y (where of course
Y = 1/X) we obtain

ΞP = max
[
ST − S0

YT

Y0
, 0
]

.

It is now tempting to use the punds/dollar exchange rate Y as the numeraire but
this is not allowed. The reason is that although Y is the price of a traded asset
(dollar bills) it is not the price of a traded asset without dividends, the obvious
reason being that dollars are put into an American (or perhaps Eurodollar)
account where they will command the interest rate rd. Thus the role of Y is
rather that of the price of an asset with the continuous dividend yield rd. In
order to convert the present situation into the standard case covered by Theorem
2.1 we therefore do as follows.
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• We denote the dollar bank account by Bd with dynamics

dBd
t = rdBd

t dt.

• The value in pounds, of the dollar bank account, is then given by the
process Ŷt, defined by

Ŷ d
t = Bd

t · Yt = Yte
rdt.

• The process Ŷt can now be interpreted as the price process (denoted in
pounds) of a traded asset without dividends.

• We may thus use Ŷt as a numeraire.

Since we have YT = ŶT e−rdT we can write

ΞP = max
[
ST − ỸT e−rdT S0

Y0
, 0
]

.

Using Ŷ as the numeraire we immediately obtain from Theorem 2.1

Π
(
t; ΞP

)
= ŶtE

QŶ
t [max [ZT − K, 0]] , (38)

where QŶ denotes the martingale measure with Ŷ as the numeraire, where Z
is defined by

Zt =
St

Ŷt

,

and where K is given by

K = e−rdT S0

Y0
. (39)

From Theorem 2.1 we know that Z has zero drift under QŶ , and a simple
calculation shows that the QŶ dynamics of Z are given by

dZt = Zt (σS − σY ) dWt.

Thus the expectation in (38) is given by the Black-Scholes formula for a call,
with strike price K, written on an asset with (scalar) volatility

δZ = ‖σS − σY ‖ =
√
‖σS‖2 + ‖σY ‖2 − 2σSσ?

Y =
√

δ2
S + δ2

Y + 2ρδSδY

in a world with zero interst rate. We thus obtain the pricing formula

Π
(
t; ΞP

)
= Ŷt {ZtN [d1] − KN [d2]}

d1 =
1

δZ

√
T − t

{
ln
(

Zt

K

)
+

1
2
δ2
Z(T − t)

}
,

d2 = d1 − δZ

√
T − t
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After simplification this reduces to the pricing formula, which of course coincides
with (37).

CP
t = Π

(
t; ΞP

)
= StN [d1] − Yte

−rd(T−t) S0

Y0
N [d2], (40)

where

d1 =
1

δZ

√
T − t

{
ln
(

StY0

YtS0

)
+
{

rd +
1
2
δ2
Z

}
(T − t)

}
,

d2 = d1 − δZ

√
T − t,

δZ =
√

δ2
S + δ2

Y + 2ρδSδY .

In this case we have thus seen that there were two distinct (but logically equiv-
alent) ways of pricing the option. From the computations above it is also clear
(ex post) that the easiest way was by using the dollar bank account as the
numeraire, rather than using the pound value of the same account.

8 Conclusion

Numeraire methods have been in the derivative pricing literature since papers
by Geman (1989) and Jamshidian (1989). These methods afford a considerable
simplification in the pricing of many complex options; however, they appear
not to be well-known. In this paper we have considered five problems whose
computation is vastly aided by the use of numeraire methods. The first of these
is the pricing of endowment options (discussed in the Journal of Derivatives in
a recent paper by Hoang, Powell, and Shi (1999). We also discuss the pricing of
options where the strike price is denominated in a currency different from that
of the underlying stock, the pricing of savings plans where the choice of interest
paid is ex-post chosen by the saver, the pricing of convertible bonds and the
pricing of employee stock ownership plans.

Numeraire methods are not a panacea for complex option pricing. However,
when there are several risk factors which impact an option’s price, choosing one
of the factors as a numeraire reduces the dimensionality of the computational
problem by one. A clever choice of the numeraire can, in addition, lead to a
significant computational simplification in the option’s pricing.
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