Towards a general theory of bond markets *

Tomas Bjork
Department, of Finance, Stockholm School of Economics

Box 6501, S-113 83 Stockholm SWEDEN

Giovanni Di Masi
Dipartimento di Matematica Pura et Applicata, Universitd di Padova

Via Belzoni 7, 35131 Padova ITALY

Yuri Kabanov
Central Economics and Mathematics Institute
of the Russian Academy of Sciences
and

Laboratoire de Mathématiques, Université de Franche-Comté

16 Route de Gray, F-25030 Besancon Cedex FRANCE

Wolfgang Runggaldier
Dipartimento di Matematica Pura et Applicata, Universitd di Padova

Via Belzoni 7, 35131 Padova ITALY

To appear in
Finance and Stochastics

*The financial support and hospitality of the University of Padua, the Isaac Newton Institute, Cambridge
University, and the Stockholm School of Economics are gratefully acknowledged.



To memory of our friend and colleague Oliviero Lessi.

Abstract

The main purpose of the paper is to provide a mathematical background for the
theory of bond markets similar to that available for stock markets. We suggest two
constructions of stochastic integrals with respect to processes taking values in a space
of continuous functions. Such integrals are used to define the evolution of the value
of a portfolio of bonds corresponding to a trading strategy which is a measure-valued
predictable process. The existence of an equivalent martingale measure is discussed
and HJM-type conditions are derived for a jump-diffusion model. The question of
market completeness is considered as a problem of the range of a certain integral
operator. We introduce a concept of approximate market completeness and show that
a market is approximately complete iff an equivalent martingale measure is unique.

Key words: bond market, term structure of interest rates, stochastic integral, Banach
space-valued integrators, measure-valued portfolio, jump-diffusion model, martingale mea-
sure, arbitrage, market completeness.

1 Introduction

In the last few years a remarkable progress has been made in the understanding of bond
market phenomena. The main issues of the theory developed by a number of researchers in
tight cooperation with practitioners are the term structure of interest rates and the pricing
of derivative securities (caps, floors, swaptions, etc.), see, e.g., books [11], [15], papers [1], [7],
9], [10], [16], [18], [19], [22], [32], [38], and references therein. The standard framework is that
of continuous trading which is based on a stochastic calculus for semimartingales. The great
success of continuous time models for description of stock markets and valuations of options
on stocks strongly influenced research in the term structure of interest rates. In the majority
of papers the dynamics of prices of zero-coupon bonds with maturity € is described by a
diffusion process P;(6), t < 0, where 6 is considered as a continuous parameter. However,
only a few works ([2], [5], [28], [35], and some others) deal with jump-diffusion models in spite
of the evidences in favour of the latter. The subject of the absolute majority of the above
references can be characterized as that of a special theory of bond markets: mathematical
description of price evolution of basic securities and floating interest rates.

The problem of term structure of interests rates is, of course, very important (and one
can even imagine that these key words are synonymous to the mathematical theory of bond
markets). Given an adequate model for security prices one can use it for valuation of
contingent claims and hedging positions by replication of a claim by dynamically rebalanced
portfolios. Here we come to a very important difference of all widely accepted models of
bond markets from that of a stock market:

in the continuous-time bond market model there is naturally a continuum of basic traded
securities (zero-coupon bonds parameterized by their maturities ) while in the standard
model of a stock market there is normally only a finite number of securities.



This observation makes clear that a consistent theory must admit hedging portfolios
which may contain an infinite number and even a continuum of securities. Certainly, this
implies the necessity of a rigorous mathematical definition of such a portfolio. In a stock
market with d underlying assets, a vector ¢ = (¢4, ..., ¢4) representing the quantities of assets
of each type kept at ¢ in a portfolio can be identified with a linear functional (i.e. with an
element of the dual space R% coinciding with RY); a portfolio value V; is the action ¢;P;
of this functional to the price vector P, = (P}, ..., P%) (and this is just a scalar product);
after the work by Harrison and Pliska [17], the most general and widely accepted model
for the dynamics of the latter is a semimartingale while the time-evolution of a portfolio
strategy is described by a predictable process. The classic stochastic calculus provides all
necessary machinery for the model: the integration theory for semimartingales is tailor-made
for mathematical analysis of stock markets.

In the context of a bond market, P, is not a finite-dimensional vector but a price curve,
i.e. an element of some functional vector space; apparently, the Banach space of continuous
functions is adequate to the problem and the idea of considering the evolution of the price
curve P;(.) in a such space has been exploited, e.g., in [7] and [30].

It is natural to extend the definition of a portfolio as a continuous linear functional; in this
case again V; = ¢, P, and, by analogy, one could expect that the relevant mathematics here
is an integration theory with respect to Banach space-valued semimartigales. Surprisingly,
we enter here terra incognita: the existing literature on the infinite-dimensional stochastic
integration does not meet the needs of mathematical finance; moreover, it is not clear what
should be called a semimartingale in this case, see Remark on p. 18 in the recent article by
Laurent Schwartz [33].

In the present paper we suggest two approaches to a stochastic integration which serves
as modelling tool of the bond market theory. The first one, given in Section 2 and inspired by
the book of Métivier [29], is based on the concept of controlled processes as integrators. It is
important to note that our integrands are weakly predictable measure-valued processes; this
not only allows us to avoid problems arising from non-separability of the space of measures
in the total variation topology but also opens a way to practical applications since one can
approximate “theoretical” portfolios by “realistic” strategies involving only a finite (but
arbitrary large) number of securities. We prove in Section 3 that an asset giving an interest
equal to the spot rate (its presence in a “zero-coupon bond market” is usually justified
by some limit procedure) is a portfolio of just maturing bonds; this portfolio involves a
continuum of bonds but instantaneously it contains only a single one.

In Section 4 it is considered a jump-diffusion model, where the price process of each single
bond (i.e. a “section” of the price curve dynamics) is a rather general semimartingale. For
this model, including the majority of those discussed in the literature, we suggest another
approach to define the integral for measure-valued integrands; the integration theory is
reduced via Fubini theorems to the standard stochastic calculus. We prove that, modulo a
slight difference in hypotheses, the alternative construction results in the same process as
the general one. Since the integration theory in this paper is intended only for financial
modelling we are always trying to be on a reasonable level of generality, leaving possible
extensions for the future.

In Section 5 we treat in detail the jump-diffusion model specified through the dynamics



of the forward rate curves. We investigate here the problem of existence of a martingale
measure and derive HJM-type conditions for the coefficients.

Section 6 is devoted to the hedging of contingent claims in a bond market. It is well-
known that in the mathematical theory of security markets the problem of hedging is closely
related to the completeness of a market. There is an informal principle (seems to have been
formulated first by Bensoussan in [3]): to hedge against n sources of randomness one needs
n non-redundant securities besides the numéraire. According to this principle, there is
no completeness in a stock market model based on a Lévy process with continuous jump
spectrum and hence with a continuum of sources of randomness which is too much for a
market with a finite number of stocks. The absence of completeness is one of the principal
objections against seemingly more adequate models driven by a Lévy process.

Fortunately, in a bond market model where there is, by definition, a continuum of securi-
ties one can construct a hedge using strategies involving a continuum of assets. Nevertheless,
it turns out that, in general, one can hedge (even with measure-valued portfolios) in the most
favorable situation only a dense subset in the space of contingent claims. We examine the
problem by considering families of “martingale operators” and their adjoints, “hedging oper-
ators”, and relate the uniqueness of a martingale measure with the injectivity of martingale
operators while the market completeness requires surjectivity of hedging operators. The
latter, being integral operators of the first kind, may have, at best, a dense image and only
in the “degenerate case” of a finite Lévy measure are surjective (iff the martingale operators
are injective). This reasoning leads to the conclusion that the fundamental concept is the
approzimate completeness which is equivalent to the uniqueness of the martingale measure.

In our paper [6] addressed to readers which are mostly interested in the financial coun-
terpart of the theory (and which deals with technically simpler models) we provide some
more specific results on a market completeness and the structure of hedgeable claims.

It is worth to note that in stock market models a continuum of derivative securities is
also implicitly present, say, call options parameterized by the maturity time and/or strikes,
and, therefore, our approach can also be applied to such security markets. Moreover, the
theory developed here gives a hint why real-world financial markets generate an enormous
amount of various derivative securities: typically they are not driven by a finite number of
sources of randomness and the risk averse agents, preferring at least an “approximately”
complete market create a corresponding demand.

At last, Appendix contains stochastic versions of the Fubini theorem for continuous
martingales and random measures.

2 Integration with respect to Cr-valued processes

Let (0, F,F = (F;),P) be a stochastic basis (filtered probability space) satisfying the usual
conditions, and let P = (F;), t € R4, be an adapted process on it with values in the Banach
space of continuous functions Ct (with the uniform norm denoted by ||.||) where, T is either
a compact subset of [0,00], e.g., Cp = C[0,7%] (the space of all continuous functions) or
C%+, the space of continuous function converging to zero at infinity.

We denote by P the predictable o-algebra in 2 X R generated by all real left-continuous



adapted processes.
Let Mt be the space of signed measures on T equipped with the total variation norm
|.|lv. For m € My and f € Cr put

mf = /T F(6)m (d8).

Let M be the o-algebra generated by the weak topology'. Recall that the space My with
the weak topology is separable.
Our aim is to define a stochastic integral

t
6P = / bod P (2.1)
0
for (weakly) predictable measure-valued processes ¢, i.e. for measurable mappings
¢: (@ xRy, P)— (Mg, Mr).

Let £° be the set of elementary integrands, i.e. of processes

(bt <w> = Z [Tix}tutHﬂ(w’ t)mi (2'2)
i=1
where m; € Mr, 0 <1t <ty <...<tp1 <00, I € F,.
For ¢ € £ we set, as usual,

n

¢ : B' = Z(mipﬁi+1/\t - m7Pf7/\T)-[F7 (23)

i=1

To ensure the path regularity of ¢ - P (in other words, to be cadlag) for elementary
integrands we impose on P the following

Assumption 2.1 The process P is weakly reqular: there is a set €y with P(£1) = 1 such
that for any w € Qy and m € Mr the real function mP.(w) = [ P(6,w)m(df) is right-
continuous and with left limits.

To extend the integral to a reasonably large class of integrands we need
Assumption 2.2 There exist a predictable random measure r(dt,du) = l;(du)dt given on

(Ry x U, By ®@U) where (U,U) is some Lusin space, K; := 1+ k([0,t] x U) < oo for finite
t, and a measurable function

p: (QXR+ X UXMT,P@Z/{@MT)_) (R+,B+>

with the following properties:
(a) p(w,t,u,.) is a seminorm on Mr,

'In the language of probability theory: i.e. generated by all mappings m — mf where f € C'p; in the
language of functional analysis this is, of course, weak™® topology.
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(b) p(w,t,u,.) is weakly continuous,

(C) p(L‘J?ta U, m) < Hm||V7

(d) for any T € Ry there is a constant Cp such that for any stopping time 7 < T and
any ¢ € &

Esup|é- P> < CrEK, /T/ P2 (s, u, 6o (ds, du). (2.4)
t<r 0 U

We shall say that (k,p) in the above condition is a control pair for P and that a process
P satisfying Assumption 2.2 is a controlled process.

Clearly, a linear combination of controlled processes is again a controlled process.

Let 7 be a bounded stopping time such that FK? < oo. Let us introduce the linear
space L2 = L2(p, k) of all predictable processes ¢ with values in Mt such that ¢,(¢) < oo,
where ¢, = ¢.(.; 5, p) is a seminorm on L2 defined by

¢2(¢) = EK, /0 ! /U (s, u, 6o)r(ds, du). (2.5)

Lemma 2.3 The linear space E® is dense in L2 in the topology given by q..

Proof. The inclusion £ C L2 holds due to Assumption 2.2.(c). To show that it is dense,
notice that the ball B, := {m: ||m||;, < ¢} is compact in the weak topology of Mr (the
Banach—Alaoglu theorem) and metrizable. Hence, a measurable mapping

¢: (2x R4, P)— (Be, Mt

5.)

can be approximated in the sense of the weak convergence by P-measurable step functions,
i.e. by processes of the form > I 4, (w, t)m; where A; are predictable sets. The properties (b)
and (c) ensure that the approximating sequence converges to ¢ in the seminorm g¢;.

Since the real-valued predictable processes

Z ai[Fi, Xtistig1] (wa t)

(which are a generating set for P, see [13]) are dense in L*(P,dPdK™), we get that the
elements of £ are dense in the set of norm-bounded predictable processes in the topology
given by ¢, and hence in L2. O

Let II; be the vector space of real adapted processes with regular trajectories equipped
with the seminorm 7,(Y) = (Esup,., |Y;|?)'/? (as usual, we identify indistinguishable pro-
cesses). It is well-known that II, is complete with respect to this seminorm.

Thus, the linear mapping ¢ +— Ijg ¢ - P defined on & b and taking values in II,, which is
continuous by (2.4), can be extended to the unique continuous linear mapping from L, into
IL,.

Standard localization arguments allow us to extend the definition of the integral ¢ - P to
all predictable processes ¢ such that

/Ot/UpQ(s,u,@)m(ds,du) <00 a.s. (2.6)

for all finite ¢.



Let (k,p’) be another control pair. Then (k,p”) := (k,p + p') is again a control pair.
Assume that ¢ satisfies (2.6) together with the corresponding relation for (x,p’) and hence
for (k,p") also.

Since the seminorm ¢, (.;k,p + p’) is stronger than ¢.(.; x,p), the integral ¢ - P defined
using (k,p) coincides with that based on (k,p”) and, by symmetry, on (k,p’). Thus, the
integral does not depend on the particular choice of p, and, by similar arguments, on the
particular choice of k. Thus, the definition of the integral (which is a class of indistinguish-
able processes) is independent on the particular choice of a control pair (k,p). We denote
the class of processes for which the integral in the above sense exists by L2 (P) (the set of
weakly predictable processes satisfying (2.6)). One can notice that the integral ¢ - P is a
process which can be approximated uniformly in probability by “elementary” integrals of
the form (2.3).

As usual, for any stopping time o we have ¢ - P, = Ij94¢ - Pwo.

Some properties of the stochastic integral are summarized in the following
Theorem 2.4 Let ¢ € L2, .(P). Then
(a) the process ¢ - P is a (real) semimartingale and for any stopping time T (2.4) holds;
(b) the process ¢ - P is continuous if P is weakly continuous;

(c) if P is a martingale then ¢ - P is a locally square integrable martingale.

Proof. (a) Inequality (2.4) holds for all ¢ € L (P) by definition.

Let H be a real bounded elementary integrand given by H = > &;l;, +,.,) where ; are
Fi,-measurable. For the adapted right-continuous process X := ¢ - P we put H - X :=
2 &( Xy, — Xy,). Tt follows from (2.4) that

Esup |H- X < |H|” B, [ [ p(s.u.0,)n(ds, du)
t<r 0 U

We easily infer from this inequality that for a sequence of bounded elementary integrands H"
uniformly converging to zero the sequence of integrals H" - X, tends to zero in probability.
Thus, X is a semimartingale by the Dellacherie—Bichteler—Mokobodzki theorem, see, [13].

(b) The property is evident for elementary integrands. In the general case the integral is
defined through uniform convergence which preserves continuity.

(¢) From the definition it follows that for an elementary integrand ¢™ the process ¢" - P
is a martingale and E|¢" - P,|> < oo for any 7 such that FK? < oco. If, moreover, T is
such that the right-hand side of (2.4) is finite we conclude, by the approximation, that the
stopped process ¢ - P” is a square integrable martingale. O

Proposition 2.5 Let P, P, be two controlled processes and ¢ be a process integrable with
respect to Py and Py, i.e. ¢ € L'(Py) N L'(P). Then ¢ € LY(P + P) and ¢ - (P + P) =
¢-P+¢- B

Proof. Let (k;,p;) be a control pair for P; such that, with terms indexed by i, the
relation (2.6) holds. Without loss of generality we can assume that U; and U, are distinct.
Put U := U; N Us and define p := p1ly, + pal,, k = kily, + koly,. Clearly, (k,p) is a
control pair for P, + P, and since ¢ satisfies (2.6) the result holds. O
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Remark. The above construction of the stochastic integral goes well without any changes
for an arbitrary Banach space. Certainly, the definition of the control pair can be modified
and generalized in various ways (e.g., one can modify (2.4) by taking the supremum not over
[0, 7] but over [0, 7[ as was done in [29]). A more general integration theory merits a special
study which is beyond of the scope of the present paper.

3 General model of a bond market

1. The forward and spot rates. In the mathematical description of a bond market it
is usually assumed that for fixed § € T the process P,(6), t € [0, 6], gives the dynamics of
the default-free zero-coupon bond (with unit nominal value) maturing at time 0. Evidently,
this process must be strictly positive and Py(0) = 1.

It would be quite natural to impose also the constraint P,(6) < 1 but, following the
tradition, we do not persist on this requirement since it excludes some easily treated models
leading to explicit formulae.

In the continuous-time modelling of bond markets (in contrast with that of stock markets)
the straightforward specification of the evolution of asset prices as a diffusion or jump-
diffusion is not convenient. The main methodology is to start with a model for interest
rates; the general opinion now is in favour of the forward rate though the models based
on the spot rate have their own advantages. We shall follow the same mainstream of ideas
adapting it to our approach which emphasizes the evolution of the whole price curve in the
space of continuous functions in contrast with the traditional point of view that considers
as primary object a family of individual price processes parameterized by bond maturities.

Assumption 3.1 The price curve dynamics is giwen by a controlled process P = (P).
There exists a Cp-valued adapted process f = f(t) such that for any 6 € T

Pi(0) = exp | —/tef(t, s)dsy, t<o. (3.1)

The random variable f(t,6) is called the instantaneous forward spot rate (at time ¢ of
the bond maturing at €) or simply the forward rate. By definition, r; := f(¢,t) is the
instantaneous spot rate or simply the spot rate (called in the literature also the short rate,
instantaneous riskless rate etc.).

Remark. One can assume that P(t,0) is continuously differentiable in § and define the
forward rate in an equivalent way as

0
f(t,0) = —=1n P(0). (3.2)
00

In almost all known models (quite often implicitly) it is assumed that there is a traded

asset that pays interest 7, i.e. the unit of money invested at time zero in this asset results

at ¢ in the amount .
-1 ._
R, = exp{/o rsds}

(one can think about a bank account with the floating rate r;).

8



It is convenient to take this asset as a numéraire, that is to express all other values in the
units of this particular security. Prices calculated in units of the numéraire are called the
discounted prices; in our case the discounting factor is R;. This means that the discounted
price process Z is given by the formula

2(0) = RP(0) = xp { — [ 1ds} R (0). (3.3)

It is instructive to understand a possible reasoning explaining the “existence” of this
numéraire. Let us split the interval [0,¢] into small subintervals |¢;,t,11] and consider the
strategy to invest at time zero a unit amount of money into the bond maturing at ¢, at
the moment ¢; to reinvest the obtained value (which is equal to Py '(¢;—)) into the bond
maturing at f9, and so on. Clearly, under a mild condition of equicontinuity, at time ¢ the
resulting amount is

N o i N
eXp{;}/ti f(ti,S)dS} %exp{grti(ti—kl_ti)}a

and it approximates R;'. In other words, the existence of the asset with the interest r
means that we are allowed to execute a roll-over strategy on just-maturing bonds which
leads to a portfolio involving a continuum of securities.

Up to now the bond price P;(#) has been given only for ¢ < #. To work with processes
defined for all t € Ry we put P,(#) = Ry 'Ry for t > . One can think that after maturity
the bond is transferred automatically into the unit of money in the bank account.

There is another option: reparameterize the model by considering 0 as time to maturity.

2. Portfolios of bonds. We define a (feasible) portfolio or trading strategy as a pair
(¢,m) where ¢ is a P-integrable predictable measure-valued process, 7 is a real predictable
process with

/Ot\ns|ds < 00 (3.4)
for finite ¢.
The wvalue process of such a portfolio is given by
Vilé,n) = ¢ Py + mi B (3.5)
with 8 := R~

We shall consider as admissible only strategies with value processes bounded from below.
A portfolio is said to be self-financing if its increments are caused by price movements
only, i.e.

Vi(g.n)=x+¢- P +n- 5 (3.6)

where z is an initial endowment.

We show now that the roll-over “strategy” of permanent reinvestment of the whole
current value V;_ in the just maturing bond (without involving the “bank account”) is
an admissible portfolio (¢,n) = (V_6,0) where V_ := (V;_) and é; is a unit mass on T



concentrated at the point ¢, and this portfolio gives rise to an asset with interest rate r.
Formally, this means that the linear equation

V=14V.§-P (3.7)

has a solution, the solution is unique and coincides with #. The result (under certain
additional hypotheses) is a corollary of the following two lemmas.

Lemma 3.2 The equation
V=14+V_¢p-P (3.8)

where ¢ s a locally bounded predictable Mr-valued process, has a unique solution in the
class of locally bounded processes with regular paths.

Proof. Let W be the difference of two solutions. Then W = W _¢- P. By localization, we
can assume that ||, ¢, and K are bounded by some constant. It follows from Assumption
2.2 that

¢ ¢
Esup|W_¢- P|* < CrEK; / / P2(s,u, W_¢)k(ds,du) < C | Esup|W,|*ls(U)ds.
s<t JO JU JO

v<s

Thus, W is zero by the Gronwall-Bellman lemma. O

Lemma 3.3 Assume that the following conditions are satisfied:
i) the spot rate r is a reqular process (cadlag);
i) for any finite T we have

limsup | £(t,6) — £(t,1)] = 0; (3.9)

ty<T
iii) in the control pair (k,p) for the price process P the function p has the form
plw,t,u,m) = |mg(w, t,u)] (3.10)

where g(w,t,0,u) is bounded by a constant and right-continuous in t.
Then for any continuous process G' we have

t
Gé-Pt:/ Gryds. (3.11)
0

Proof. Standard localization arguments reduce the problem to the case when G and K
are bounded. Let us consider the approximation of ¢ := G6 by the processes

O (d0) = 3 Glybus,, (d0) 1 (5) (3.12)

=0

with t; = it/n. It is rather obvious that

o P = Z Gr(Pryyy (tis1) — Piy(tiv1)) = Z Gy (1 —exp{ - /fu flti,s)ds}) =
i=0 g

1=0 = i

10



Z 1,7 (L1 — 1) /Grsds (3.13)

due to i) and i)
On the other hand, making use iii) we have:

(00— 02 < CF [ [ 16, = 60)g(s,0) Pl (duds =
t o )
= C’E/O /U 2 |Gsg(s,s,u) — Gr,9(8, tiv1,u)| "L, 4,11 (5)ls(du)ds — 0. (3.14)

Hence the left-hand side of (3.13) converges in probability to the stochastic integral ¢ - P
and (3.11) holds. O
As a corollary of (3.11) we have that

86 P, = /07e Byreds = B, — 1. (3.14)

Thus, under the assumptions of Lemma 3.2 the process § is the solution of (3.7) (which is
unique at least in the class of locally bounded processes).

Remark. One may think that the above reasoning is not correct in some sense since we
extended the bond prices after maturity using the process Ry3. However, the approximation
(3.12) is chosen in such a way that the corresponding integral sum does not involve values
of the bonds after maturities. Of course, the arguments can be repeated for the case when
0 is the time to maturity.

3. Classification of portfolios.

Now we consider discounted bond prices Z;(6) := R;P:(f) and discounted values of a
portfolio V,7 (¢, ;) := R;V;(és, 1) which correspond to a choice of the roll-over strategy as
the numéraire. Clearly, Z,(0) = 1 for t > 6 and V,?(¢,n) = ¢:Z; + n;. For a self-financing
portfolio we have V,Z(¢,n) = x + ¢ - Z;. From now on we shall consider only self-financing
strategies. Since in this case the value process (hence, the process 1) is uniquely defined by
the ¢-component we omit 7 in notations.

For particular models of bond prices one can expect a redundancy of traded assets. It
may happen that a certain value process corresponds to different trading strategies. It is
important to distinguish also portfolios that instantaneously involve only a finite number of
assets. To study different possible situations we introduce the following definitions.

We say that two trading strategies ¢ and ¢’ are equivalent if they have the same value
processes: V(¢) = V(¢') (P-as.). A strategy ¢ is called an n-dimensional if for any t
and almost all w the measure ¢(w,t,df) is concentrated at most in n points of T. We
say that a strategy ¢ is n-reducible if there exists an n-dimensional equivalent strategy but
there is no k-dimensional strategy with & < n. The definitions of countably dimensional
and countably reducible strategies follow the above patterns. Some results concerning the
problem of reducibility are given in [6].

11



4 Jump-diffusion model

1. In this section we consider more specific integrators by assuming that for every fixed 6
the real-valued process P(0) = (P;(0)) is a semimartingale of a rather general form. This
hypothesis leads to a setting which covers the majority of existing models of bond price
processes and provides an important example of application of the theory developed above.
Making use of the imposed particular structure we suggest as alternative a more explicit
construction of the integral for measure-valued processes and show that it results in the
same object.

Let P = (F;) be a Cp-valued process such that for any # € T the real process P(f) =
(P(#)) admits the representation

P,(6) :56(6)—i—/otas(ﬁ)ds—i—/otas(ﬁ)dws—|—/Ot/Xg(s,Jc,6)(u(ds,d:c) (s dr))  (4.1)

where w is a Wiener process with values in R”, p(w, dt, dx) is a P ® X-o-finite integer-valued
random measure (adapted to the filtration), v(w,dt,dz) = A(w,z)dz is its compensator
(dual predictable projection), (X, Xx’) is a Lusin space (in applications, usually, X = R",
or X = N, or a finite set), g(.,0) is a P ® & -measurable function (P is the predictable
o-algebra in 2 x Ry ). The coefficients must be such that all integrals are well-defined and
this requirement is met, of course, by the following

Assumption 4.1 The coefficients of (4.1) are continuous in 0, a(0) and o(0) are predictable
processes with values in R and R™ such that for finite t

t t
/ ||las||ds < oo, / |os||%ds < oo a.s., (4.2)
0 0
g(.,0) is a P ® X-measurable real-valued function such that for finite t

/ot/X (s, 2)||?v(ds, dx) < oo a.s. (4.3)

Put A; = t. In the standard notations of the stochastic calculus for semimartingales
(4.1) can be written as follows:

Pi(6) = 2(6) + a(6) - A, + 0(0) - w, + g(6) * (1 — ). (4.4)

Remark. The definition (4.1) includes as a particular case the process generated by the
Gaussian—Poisson model:

P(O)=(0) + [ ' au(0)ds + / ' a(0)dws + i / "0 0)(dNT = Nds)  (45)

where N' are independent Poisson processes with intensities \;.

2. Let ¢ be a predictable Mrp-valued process such that for all finite ¢
i
/ |psas|ds < o0, (4.6)
0
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t
| 1.0 2ds < oo, (4.7)

and
./ot/X |psg(s, z)*v(ds, dr) < oo (4.8)

where

bea. = [ a.(6)0.(db)
etc. For ¢ satisfying (4.6) — (4.8) we put
t t t
¢poP, = / Psasds —1—/ ¢sosdws +/ / ¢s9(s, x)(u(ds, dx) — v(ds, dx)) (4.9)
Jo Jo 0 Jx
where the first integral in the right-hand side is the ordinary Lebesgue integral and the

second and the third ones are the usual stochastic integrals. In abbreviated notations one
can write (4.9) as

¢ o Py = (da) - A+ (¢0) - wi + (g) * (1 — v)s. (4.10)
Proposition 4.2 (a) Under Assumption 4.1 the process P(0) is controlled and ¢- P, = ¢o P,

for ¢ € £°.
(b) If, moreover, for finite t

t
/ la,||*ds < oo (4.11)
Jo
and ¢ is a predictable process such that (4.6) — (4.8) are fulfilled and also
t
/ |65 ds < 00 (4.12)
0
fort < oo then ¢ € L3,.(P) and ¢- P = ¢ o P.

Proof. (a) Notice that for ¢ € £® of the form ¢ = Ipy), 4,ym we have by the definitions
and the Fubini theorems for ordinary and stochastic integrals (see Appendix) that

6-P=Ir [ ( [ t as(ﬁ)ds> m(d) + Iy [ ( / t as(ﬁ)dws> m(d6)+

+[1“/r </th /Xg(s,x,ﬁ)(,u(ds, dx) — V(dS,d:U)) m(df) =

_ / ” ( / a.(0)m (d&)) ds + I /ff </T US(H)m(d9)> dw,+

+Ir /: / </ s, x,0) (d6’)> (u(ds,dz) — v(ds,dx)) = ¢ o P.

To show that P is a controlled process it is sufficient to check that each integral in (4.1)
defines a controlled process.

13



Let ¢ € £°. For any stopping time 7 we have by the Cauchy-Schwarz inequality that

t T
Esup(/o ¢8asds)2 < EKf.‘/O pg(s,@)d[(g (4.13)

<t

where

t
K =1+ [ s, pals,6.) = ol ]

and @ is the “pseudoinverse”: b® = b~! for b # 0 and 0% = 0.
By the Doob inequality

t T t
Bswp ([ guodu)” 4B [ p2(s.0)lloulPds < AEKT [ q2(6,)dK

t<T

where .
K7 =14 [ oulPds, pols.6)) = 6.0l

Similarly,

E sup (/Ot /X ¢s9(s, x)(p(ds, dx) — V(@lS,dJl:)))2 <A4F /()T/Xpﬁ(s,m,¢s)Hg(s,x)||2V(ds,d:c) <

t<rt

< 4FK/Y /T/ pg(sw, ¢s)k(ds, dx)
0 Jx

where
k(ds,dx) .= ||g(s, 2)||*v(ds,dz), K7 :=1+x([0,t] x X),

Pa(s, 2, 05) = |sg(s, 2)[[lg(s, ).

Thus P is a controlled process.
(b) Notice that, under (4.11), (4.12), one can write instead of (4.13) that for 7 < T < oo

t T - T -
E sup (/0 gbsasds)Q < TE/O |psas)®ds < TEK;"/O p2(s, 05 )dK"

t<t

where ,
Ko o= 1+/ s || 2ds.
0

In view of Proposition 2.5 it is sufficient to consider the case when there is only one integral
in the representation (4.1) of P. E.g., assume that P;(6) is simply the integral with respect
to w. Let 7 be the minimum of N > 0 and the hitting time of the level N by the process
f5llos||?ds. Then the process ¢ satisfying (4.7) is in L2(p,, K,) and the convergence of
integrands ¢" to ¢ in this space means exactly that

E [ 16t0. — gu0,ds 0.
0

Hence, for the approximating sequence of elementary integrands we have that ¢" - PT =
¢™ o PT approach simultaneously ¢ - PT and ¢ o PT. O

Remark. The definition (4.9) does not require neither continuity of P and of the coeffi-
cients of (4.1) in 6 nor the integrability conditions (4.2) — (4.3).
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5 Existence of an equivalent martingale measure for
the jump-difusion model

1. From forward rates to price curves. Suppose that a bond price process is specified
through forward rates, i.e. for 8 € R

0
P(0) = exp | — / f(t.s)ds}, <0, (5.1)
t
where f(t,.) is a Cgr,-valued adapted process and hence the price curves are continuously
differentiable with 9
f(t,0)= —%ln Pi(0). (5.2)

Assumption 5.1 The dynamics of the forward rates is given by
df (t,0) = a(t,0)dt + o(t,0)dw, +/ o(t, x,0)(u(dt,dr) — v(dt,dx)) (5.3)
X

where w is a standard Wiener process in R”, p is a P ® X -o-finite random measure (one
can think that it is the jump measure of a semimartingale) with the continuous compensator
v(dt,dz), the coefficients are continuous in 0, the functions «a(t,0) and o(t,0) are P @ B -
measurable, and 6(t,z,0) is P @ X ® By -measurable.

For all finite t and 0 >t

0 0 0 0
/ / la(u, s)|dsdu < oo, / / o (u, s)[*dsdu < oo, (5.4)
o Ji 0 Ji

and

/OQ/X/tO |6(u, z, s)|*dsv(du, dr) < oco. (5.5)

It is convenient to extend the definitions of the coefficients by putting them equal to zero
for 0 < t.

To abbreviate the formulae we shall use sometimes the notation fi := p—v. The relation
(5.3) means that

£(£.0) = £(0,0) —|—/Otoz(u, Q)du—i—/ota(u, Q)dwu—|—/(:/X5(u,:c,9)/1(du,da:). (5.6)

In particular, for the spot rate r, := f(¢,t) we have

re = f(0,t) + /Ot a(u,t)du + /07t o(u,t)dw, + /07t /X O(u, x, t)u(du, dr). (5.7)

Notice that the integrability conditions (5.4) — (5.5) are fulfilled if the coefficients are
bounded for ¢ and 6 from a bounded set (by a constant depending on w and the set) and
v([0,t] x X) < oo for finite ¢.

Put

A0) = — /f "t 5)ds, (5.8)
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Si(0) = — /tga(t, s)ds, (5.9)

D(t,8,z) = —/feé(t,:c,s)ds. (5.10)

The dynamics of the price curve is given by the following

Proposition 5.2 The discounted bond price process Z;(0) on [0, 0] has the form

Z:(60) = Zo(0) exp{/otAs(Q)ds—i—/ot S,(6 dws+/ [ Dis.x.0)atds dn)}  (5.11)

and satisfies the linear stochastic differential equation

étZT((gi = a(0)dt + S¢(0)dwy —1—/ (t,z,0)n(dt, dx) —1—/ Dtz0) _ 1 D(t,z,0))u(dt, dx)
(5.12)

with )
w(6) = A0) + 515.(0) (5.13)

Proof. Applying the Fubini theorem and its stochastic versions we get from (5.1) and
(5.6) that

InP,(f) = — /tgf(t, s)ds = — /tef(o, s)ds

— /07t /te alu, s)dsdu — /07t /tg o(u, s)dsdw, — /07t /X /tg O(u, x, s)dsp(du, dx)
=— /9 f(0,s)ds — /t /9 a(u, s)dsdu — /t /9 o(u, s)dsdw, — /t/ /“9 o(u, x, s)dsp(du, dz)
+/f03ds+// usdsdu+// usdsdwq,—l—/// (u, z, s)dsp(du, dx)

=In Py(0) + /O/Aq,,(Q)dqu /O/Sq,,(ﬁ)dwu + /O/X D(u,x,0)n(du, dx) + /Olrsds

according to our definitions (5.8) — (5.10) and since the sum of the four integrals in the left-
hand side of the last equality (again by the Fubini theorems) coincides with the expression
for the integrated spot rate

/ Osds+// usduds+// usdw“der/// u, z, ) f(du, dx)ds.

Thus, (5.11) is proved. By the Ito formula we get from (5.11) that

AZ4(0) = Zo—(0)[ As(O)dt + Si(6)duy + / (t, 2, 0)a(dt, da)+

+%|St(9)\2dt + /X (Pt — 1 — D(t,,0))u(dt, dx)]
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and (5.12) holds. O

2. Absence of arbitrage and dynamics under a martingale measure. As usual,
we shall use the notation P; := P|F; (the restriction of P to the o-algebra F;).

Let Q be the set of all probability measures P with P, ~ P, for all finite ¢ and such that
the discounted bond price process Z; := Ry P:(0) is a local P- martingale for every 6 € T.

We say that a model has the EMM-property if the set O is nonempty.

We begin with a comment concerning terminology. In the literature on the term structure
of interest rates the EMM-property (or its slight modification) is quite often referred to as
absence of arbitrage. This is rather confusing since it would be more consistent, as it is
usually done in the theory of stock markets, to separate the “no-arbitrage” or “no-free
lunch” properties which have a transparent economical meaning (impossibility to obtain
“profits” without “risk”) from the more mathematically convenient but difficult to interpret
EMM-property. We use the quotation marks above since the mentioned concepts should be
rigorously defined; one can find different variants in [14] where the problem of no-arbitrage
is solved for a continuous-time market model with a finite number of assets; see also [26]
for an approach based on the notion of a large financial market. Of course, EMM-property
always implies no-arbitrage, see Section 3 in [6].

The EMM-property implies that the coefficients of the model are interrelated and cannot
be chosen in an arbitrary way. The following result (generalizing the well-known observation
of Heath—Jarrow—Morton [18] for the diffusion case) reveals this fact in a remarkably simple
way when the model is specified under a (local) martingale measure.

Proposition 5.3 The probability P € Q iff the following two conditions hold:

// PO 1 — D(s,x,0))v(ds, dr) < oo, (5.14)

/as ds+// Dlsmd) _ 1 — D(s,z,0))v(ds,dr) =0 (5.15)

foranyte Ry.
In the particular case when v(dt,dz) = M(dx)dt, the probability P € Q iff (5.14) holds
for anyt € Ry and

+/ D8 _ 1 — D(t,z,0))M(dz) = 0 (5.16)
(dPdt-a.e.).

Proof. (<) Under (5.14) the representation (5.12) can be rewritten in the following way:

47,(6)
7, (0)

— a,(0)dt + S,(0)dw, + /X (P20 _ 1) (u(dt, dx) — v(dt, dz))+

+ / (PO 1 D(t,x,0))w(dt, d). (5.17)
X

It follows from (5.15) that the process [Z_(0)]™" - Z(6) is a local martingale, hence Z(6) is
also a local martingale, i.e. P € Q.
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(=) In this case the process M := [Z_(0)]"' - Z(#) is a local martingale. Let u

be the jump measure of M and v* be its compensator. By 11.2.29 in [21] we have that
|z| A |2]? * M < oo for finite . Hence

P — 1 AleP =12 % v, = |z| A z)? * v} < 0.
Since |D|? * v; < oo the property (5.14) holds by virtue of the elementary inequality
e? —1-D<C(le” —1|A|eP = 1) + D?)

where C' is a constant. Using (5.17) we infer that M is a local martingale only if the process
given by the left-hand side of (5.15) is indistinguishable from zero. O

Remark. One can observe that the hypothesis v(dt,dz) = \(dz)dt is not a restriction
since (5.15), actually, implies this structure on the set where p has an effect on the price
curve dynamics. We leave the formal statement to the reader.

3. A jump-diffusion model in the Brace—Musiela parameterization. Quite
recently Brace and Musiela [7] (see also [30]) observed that in some aspects it is more
natural to describe the forward rate in the Heath—Jarrow—Morton model using another
parameterization: not in terms of maturity time but in terms of time to maturity. In
particular, in their version the dynamics of the forward rate curve under an equivalent
martingale measure is given by a very simple stochastic differential equation in the space of
continuous functions.

Assume that the Cgr,-valued adapted process r(t,.) := f(t,t + .) is such that for any u
the scalar process r(.,u) admits the representation

Pt 1) = (0, u) —i—/otﬁs(u)ds—l—/otn(u)dws—|—/0t/Xn(s,x,u)ﬁ(ds,d:c) (5.18)

where the coefficients satisfy the integrability conditions: for all finite ¢

/Ot /Ot |Bs(u)|dsdu < oo, /Ot /Ot |7s(u)|?dsdu < oo, (5.19)

and

/Ot/X/Ot In(s, z,u)*dsv(du, dz) < oco. (5.20)

Proposition 5.4 For the forward rates given by (5.18) the discounted bond price process
Z(0) on [0, 0] satisfies the linear stochastic differential equation

étZ*EZ)) = [r(t.0- 1)~ (6.0 + B0~ 1)+ SIT(0 — 0P| e+ T30 — 1)+
+ /X H(t, 2,0 — )a(dt,dz) + /X (MO0 _ 1 _ (¢, 2,0 — 1)) u(dt, do) (5.21)

where

Bi(6) = — /0 " By (w)du, (5.22)
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7(0) = — /0 i (u)du, (5.23)

H(t,z,0) = — /09 n(t, z,u)du. (5.24)

Proof. Put Fy(0) := Z;(0 + t). From the definitions and the Fubini theorems it follows
that

In F,(0) = — /07t rsds — /097’(15, u)du = — /Otr(s7 0)ds — /097’(07 u)du—

_ /ot /09 Bs(u)duds — /Ot /09 Ts(u)dudwg — /Ot /X /09 n(s,x,u)dup(ds, dx).

Applying the Ito formula we easily get the representation

??ig = [~7(6.0) + BO) + ST de + T,(6)duwy+
+ [ (0D (e, do) + [ (700 —1— H(t@, 0)v(dt o). (5.25)

Since
OF (0 —t
ox

dZ,(0) = dF,(0 — t) — Vit = dFi(0 — 1) + Zu(0)r (1,0 — t)at.

the equation (5.25) implies (5.21). O
Similarly to Proposition 5.3 we get as a corollary a certain relation between the coeffi-
cients for the case when the basic probability is a martingale measure.

Proposition 5.5 Assume that v(dt,dz) = M\/(dx)dt. Then the probability P € Q iff

/ / Hitaw) | f (4 2, u)) A\ (da)dt < oo (5.26)
for finite t and u, and
) = r(t,0) = B() — ITOP ~ Ri() (5.27)
(dPdt-a.e.) where
Ri(u) = /X (o0 1 {1, 2 u))\(dx) (5.28)

and the functions By(u), Ti(u), and H(t,x,u) are defined by (5.22) — (5.24).

Remark. The relation (5.27) implies (under a mild integrability assumption) that r(t,.)
is an absolutely continuous function and

() = %T(t )+ %Tt(.) /0 m(v)dv + %Rt(.) (5.29)
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with 5
S-Riu) = - [ (e Dot @, ) Mi(da).

One can deduce from (5.18), (5.29) that if the model is specified under a martingale measure
then the dynamics of the forward rate curve is given by the following stochastic evolution
equation

dr(t,.) = [Ar(t,.) + C(t, V]dt + (. )dw, + /Xn(t,L aldt, da), (5.30)
where A :=0/0u,

Ot,.) == %Tt(.) /0 (v do — /X (2 (e, 2, )\ (d). (5.31)

4. Modeling under the objective probability. For the case when P is a martingale
measure the relations between coefficients of the model for forward rates are simple and
easy to treat. Certainly, the objective probability need not to be a martingale measure and
now we investigate consequences of the EMM-property for this general case assuming for
simplicity that v(dt,dx) = M\(dx)dt.

Proposition 5.6 Let P € Q. Then there exist a predictable process @ with values in R™
and a P ® X -measurable function Y =Y (w,t,x) > 0 with

t
/ |ps|*ds < oo, (5.32)
JO

/Ot /X(,/Y(w) ~ 1)) (dx)ds < oo (5.33)

for finite t such that:
1) the process

‘
Wy = wy — / psds (5.34)
Jo

is Wiener with respect to P; .
2) the random measure U := Yv is the P-compensator of p;
3) the following integrability condition is satisfied:

t
/0 /X (PP 1) (pewpromma Y (5, 2)As(d2)ds < oo (5.35)

for finite t and 0;
4) it holds that for any 0

ay(8) + Si(0)p; + /X (P20 _ 1YY (¢, 2) — D(t, x, )]\ (dar) = 0 (5.36)

dPdt-a.e.
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Proof. Existence of ¢ with the property 1) and satisfying (5.32) is given by the classical
Girsanov theorem (see Th. I11.3.24 in [21] for a general version). Existence of Y > 0 with
the property 2) follows from the Girsanov theorem for random measures (Th. I111.3.17 in
[21]). Since P and P are locally equivalent one can choose Y to be strictly positive. The
property (5.33) holds because by Th. 1V.3.39 in [21] the process (VY — 1)?* v is dominated
by the Hellinger process h(1/2, P,P) which is finite P-a.s. (and hence P-a.s.) according to
Th. IV.2.1 in [21].

Let i be the jump measure of the semimartingale M := [Z_(0)]"" - Z(6) having the
representation (5.12). Notice that AM; = [y (eP?®*9 — 1)u({t}, dr) and

//Rf(t,U)uJ‘"[’e(dt,du) _ //Xf(t,eD(t,m,Q) — )p(dt, da)

M0

for any positive measurable function f. Evidently, for the P -compensator of w we have

the similar property:
/ / F(t,w)oM0(dt, du) = / / f(t, "D — )Y (¢, 2)v(dt, dx).
R J Jx

The process M is a special semimartingale with respect to P. Hence, by Proposition
11.2.29 in [21] wlfjus1y * %" < oo for finite ¢ and (5.35) holds.
Now we get from (5.34) that

/Ot Ss(ﬁ)dwsz/ot Ss(e)dws+/0t S.(60)puds,

and, furthermore, by simple transformations,
(e” = D) Ipamay * 1= (e = D) Ipamoy * (0 — Yv) + (€7 = D)I[psinnyY * v,

D[{‘D|§1} * (/JJ — V) = D[{\D\Sl} * (,LL — YV)t + D[{‘D‘§1}<Y — 1) * U,
[(GD — 1)]{D§1n2} — D]{|D\§1}] * U= F x (,u — YV) + [(GD — 1)]{D§1n2} — D]{|D|§1}]Y * UV

where F' := (eP — 1)I{p<in2y — DIgpj<1y. The right-hand sides of these identities are well-
defined and give the canonical decompositions with respect to P of special semimartingales.
Substitution to (5.12) shows that the predictable process in the canonical decomposition of
M with respect to Pis equal to

/Ot[as(Q) + Ss(0)ps]ds + /Ot /X[(GD("/’M) — )Y (t,z) — D(t, z,0)]v(dt, dx).

But it must be zero and we get (5.36). O

The above proposition means that if P € Q then the “integral” equations (5.36) for
almost all (w,?) have a nonempty set of solutions (p,Y) where p € R*, Y > 0,VY —1 ¢
L*(X, \¢). Moreover, one can chose in these sets a certain measurable selector such that the
integrability properties (5.32), (5.33), and (5.35) are fulfilled.
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Remark. 1t follows from (5.5) and (5.10) that for 6 finite we have
/X D2(t, 2, 0)\ (dz) < oo. (5.37)
In the case when \(X) < oo this implies that
/X ID(t, 2, 0)|\(dz) < oo (5.38)
and, thus, one can transform (5.36) to the simpler form
ar () — /X D(t,z,0)\(dx) + Si(0)p; + /X (P2 _ DY (t, 2)M\(dx) =0 (5.39)

which will be used later.

Now we discuss the reciprocal assertion to Proposition 5.6. Starting from ¢ and Y > 0
satisfying the integrability conditions one can define the local martingale p = (p;) with

Inp;, = /t psdwg — l/t |s|?ds + /t/ InY (s, x)u(ds,dz) + /t/ (1 =Y(s,x))v(ds,dx).
0 2 Jo 0Jx 0 JXx

(5.40)
As usual in the Girsanov theory, it may not be a true martingale (even if the pair (¢,Y)
originates from P by Proposition 5.6 1); including this property as an additional hypothesis,
i.e. assuming that Fp, = 1, t € R, we can define the probability measures P = P for
finite ¢. However, a measure P such that f’i = P, still may not exist and one must exclude
this unpleasant situation related to “noncompactness” of the stochastic basis.

We say that a stochastic basis is sufficiently rich if for any family of probability measures
{Pt} with the property Pt = PS for all s < ¢ there exists a measure P on F such that
P; =P,

Since under the probability measure P, which is locally equivalent to P with the density
process p, the process Z(6) can be written as follows:

dZ,(0) = Z,_(0) {at(e) — /X D(s,z,0)\(dz) + S (0)p: + /X (ePEm0) _1)Y (s, 2)\(dx) | di+

+7Z;(0)S:(0)divy + Z; (0) / (ePE=0 _ 1) (u(dt, dx) — p(dt, dx)), (5.41)
X
the arguments above lead to the following

Proposition 5.7 Suppose that the stochastic basis is sufficiently rich and that the measur-
able functions ¢ and Y (t,z) > 0 satisfy (5.32), (5.37), (5.35), (5.36), and Ep; = 1 for all
finite t. Then the set Q is nonempty.

Remark. To avoid the condition on the stochastic basis (which is not very esthetic) one
can work with a set of density processes or “martingale densities” (see [6]) imposing instead
the more restrictive assumption that Fp. = 1 (then Q will contain a probability which is
absolutely continuous with respect to P).
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6 Uniqueness of the martingale measure and market
completeness

1. Now we study the relation between uniqueness of the martingale measure (this means
that the set Q is a singleton) and market completeness. The model is the same as in Section
5 but the following additional hypotheses will be assumed throughout the end of the section:

Assumption 6.1 (Predictable representation property.) Any local martingale M with re-
spect to P has the form

M, = M0+/Ot @/Jsdws+'/(:/X\Il(s7x)(u(ds7d$) — u(ds, dx)) (6.1)

where ¥ 1s a predictable process, ¥ is a P ® X -measurable function, and

¢
/0 \w8|2ds < 00, (6.2)
V(s x

//X1+\llfsx v(ds,dx) < oo (6.3)

for finite t.

Let the filtration F be generated by w and p. Then there are two important and well-
known cases when the predictable representation property holds:

(a) p is a Poisson random measure, i.e. v is deterministic;

(b) p is the measure associated with a multivariate point process in the sense of [20] (or
[21] with an extra requirement that v([0,¢] x X) < oo for finite ¢) and n = 0 (no Wiener
process).

It turns out that in the latter case the representation property holds for arbitrary n. To
prove this, one can use the criteria Th. II1.4.29 of [21] and, arguing with the conditional
distributions of p given w = y, show the uniqueness of a measure on F,, such that w is a
Wiener process and p has v as compensator.

Notice that the predictable representation property is preserved under a locally absolute
continuous change of the probability measure, see Ch. III of [21] for an extended discussion.

Now all density processes have the form given by (5.40) (hence, they are uniquely defined
by the Girsanov transformation parameters ¢ and Y') and one can combine Propositions 5.6
and 5.7 in the following

Proposition 6.2 Suppose that Assumption 6.1 is fulfilled and the stochastic basis is suffi-
ciently rich. Then Q # O iff there are measurable functions ¢ and Y (t,x) > 0 satisfying
(5.32), (5.37), (5.35), (5.536), and Ep; =1 for all finite t.

Under the measure P defined by the density process p, the properties 1) and 2) of Propo-
sition 5.6 hold.

2. Martingale operators and uniqueness of the martingale measure. One
can observe that the existence results involve “space-time” integrability conditions and also
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“Instantaneous identities” (5.36) or (5.39). Regarding the latter as integral equations it
is easy to formulate the uniqueness results in terms of injectiveness of the corresponding
operators.

We investigate the problem under

Assumption 6.3 (a) The process \(X) is finite.
(b) For almost allw,t and N there exists cy(w,t) < 0o such that |D(w,t,z,0)| < cy(w,t)
forallz € X and 0 < N.

Let us consider the family of continuous linear operators
Ki(w): R" x L'(X, X, \(w,dx)) — Cr, (6.4)

defined by
Kiw) : (6,Y) = Se(w, o + /E Y (2)(eP@hm) 1)\, (w, de). (6.5)

We shall refer to I as “the martingale operators”.
In view of Proposition 5.6 the following result is almost evident.

Proposition 6.4 Under Assumptions 6.1 and 6.3 suppose that Q # (. Then Q is a single-
ton iff dPdt-a.e.
Ker IC;(w) = 0. (6.6)

Corollary 6.5 Suppose that the model coefficients a(t,T), o(t,T), 6(t,x,T), and \(dz) are
deterministic and the martingale measure Q) is unique. Then the Girsanov transformation
parameters @ and Y are deterministic functions, i.e. under () the process W is a Wiener
process with drift and p is a Poisson measure.

Proof. The operators K; do not depend of w and hence (outside the exclusive d Pdt-null
set) the values of the Girsanov transformation parameters corresponding to a fixed t but
different w must satisfy the same equation (5.39) which has a unique solution by (6.6). O

Notice that the operators K;(w) are integral operators of the first kind.

Corollary 6.6 Suppose, in addition to the hypotheses of Corollary 6.5, that a(t,T) = a(T —
t), o(t,T) = o(T —t), 6(t,x,T) = 6(T — t,x), and A\(t,dz) = A(dx). Then the Girsanov
transformation parameters @ and Y do not depend also on t, i.e. under the unique measure
Q € Q the process W is a Wiener process with a constant drift and p is a Poisson measure
wmvaritant under time translations.

The definition (6.5), being very simple, fits well the above claims. However, it has a
certain drawback because it involves the space Cr, with the unpleasant dual. As we shall
see below, it is rather natural to modify a bit the definition of the martingale operators and
impose the following constraint on the model:
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Assumption 6.7 There exists a positive predictable process C' = (Cy) such that
Zy ()P — 11 < Oy ace.,

and
lim Z,_(6)S,(0) =0, lim Z,_(0) (P9 — 1) = 0. (6.7)
Let C%+ be the space of continuous functions on R converging to zero at infinity. Notice
that CE{; = MR, , the space of measures on R, with finite total variation.
The formula

KZ(w): (0,Y) — Zi_(w, )Si(w,.)p + Zi_(w, )/ Y (x)(eP@hm) — 1)\ (w, dx) (6.8)

X

defines a family of linear operators
K7 (w): R" x L*(X, X, \(w,dx)) — Cg, . (6.9)

In other words, K7(w) is the product of the operator K;(w) and the operator Z,(w) of
multiplication by the function Z; (w,.), so, one can write that K7/ = Z,K;. Clearly, the
above results hold also with K substituted by K£Z but the modified definition allows to
exploit a duality arising in the problem of market completeness.

3. Hedging operators and market completeness. Using financial terminology, we
say that a bounded (contingent) T-claim = (which is just a random variable = € L*®(Fr)
is hedgeable (or replicable) if there is a bounded discounted value process VZ such that
E = V7, i.e. there exist a strategy ¢ and an initial endowment x such that = =z + ¢ o Zp
and the integral ¢ o Zr is bounded on [0, T7.

The bond market is said to be complete if all bounded T-claims are hedgeable for every
T € R. and approzximately complete if for any bounded 7T-claim = there exists a sequence
of hedgeable T-claims =" converging to = in L?(Q) for some Q € Q.

We deliberately restrict ourselves to bounded claims in the above definitions since the
space L™ (as well as L°) is invariant under an equivalent change of probability measure
(recall that convergence in probability can be expressed in terms of convergence a.s. of
subsequences). We may thus assume from now on to the end of this subsection (mainly
for notational convenience) that the model is specified under a martingale measure, i.e.
P € 9, and, moreover, this is exactly the measure which is involved in the definition of the
approximate completeness.

Remark. Notice that integrability assumptions under a martingale measure, made in the
definitions of completeness on claims to be hedged (which one can observe in the literature),
are rather awkward and even inconsistent in the context of the problem considered here that
deals with properties of Q.

We consider the family

KZ7*(w) : Mg, — R" x L*(X, X, \(w, dx)) (6.10)
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of hedging operators acting on measures in the following way:

6% Zi—(w, 0) S (w, O)m(d0)
K2 (w) : m— : (6.11)
152 Zi_(w, 0) (eP@ -0 — 1)ym(dh)

Evidently, the operator K/*(w) is adjoint to K7 (w).
We recall that, due to Assumption 6.1, for any = € L?(Fp,P) the martingale M; :=
E(Z|F), t < T, admits the predictable representation

M, = Mo+ /0 " udus + /0 t /X U(s, 2)(p(ds, de) — v(ds, dz)) (6.12)

with My = E= and, since it is square integrable, it follows easily that
E/OT b [2ds < oo, (6.13)
E/OT/X\IJQ(S,I)V(dS,dZE) < 00. (6.14)

The coeflicients of this representation are uniquely defined. More precisely, = — (1, V) is a
continuous linear mapping from L?*(Fr, P) onto L*(P,dPdt) x L*(P & X, dP)\(dz)dt).

Proposition 6.8 The claim = € L*®(Fr) is hedgeable iff there exists a predictable measure-
valued process h = h(t,df) which satisfies the integrability conditions

T
/
0

T 2
E / / / Z,(0) (P10 _ 1) p(t, df)
0o Jx |Jry

and solves on [0,T] (dPdt-a.e.) the equation

2
dt < o0, (6.15)

/R Z,(6)S:(0)h(t, dO)

v(dt,dx) < oo, (6.16)

KZ*h = l \pzf) ] . (6.17)

Proof. Since P € Q we have by Propositions 5.2 and 5.3 that
dZ(0) = Z,_(0)S,(0)dw; + Z,_(0) / (eP@te0) _ 1) (u(ds, dx) — v(ds, dx)). (6.18)
b's

Thus, the discounted value process VZ is of the form

VA= /Ot ( /R+ Z,(6)S,(0)h(s, d6’)> dw,+

+/0t /X </R+ Zs_(é’)(eD(%swﬁ) — 1)h(s, d6’)> (u(ds, dz) — v(ds, dx)) (6.19)

Comparison of (6.12) and (6.19) yields the result. O
As a corollary, we get
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Proposition 6.9
1. The martingale measure is unique iff the mappings K% are injective (a.e.).
2. The market is complete iff the mappings K”* are surjective (a.e.).

The proof of a natural extension of the second assertion which we give below involves a
measurable selection technique. The operator K/*(w) is a mapping to R"x L?(X, X, \(w, dx))
and “cl” means the closure in this space.

Proposition 6.10 The following conditions are equivalent.
(1) The market is approximately complete.
(i) cl(ImK*(w)) = R" x L*(X, X, \(w,dx)) (a.e.).

Proof. (i) < (ii) Let = be a bounded discounted contingent 7-claim to be approximated.
For ¢ > 0 put

FE(t,m) == |K75N (m) — ¢ + | K752 (m) — O(¢, M Z2 00 (any)

where we use superscripts to denote the first and the second “coordinates” in (6.12). Recall
that balls in Mg, are metrizable compacts, hence, (Mg, , Mg, ) is a Lusin space as a count-
able union of Polish spaces. The function F*¢, being P-measurable in (w,t) and continuous
in m, is jointly measurable. Thus, the set-valued mapping

(w,t) = {m € Mg, : F*(w,t,m) <e}

has a P ® Mg, -measurable graph and, by assumption, non-empty values (a.e.). Therefore,
it admits a P-measurable a.e.-selector m*(t, df) (see, e.g., [13]), which “almost” solves the
problem. Indeed, for the value process V7 (h?) = EZ + h® o Z corresponding to the strategy
hi (d0) = Ijp4(0)m=(t, dd) we have

T
EWVZ(h) =) < E/O F(t,m)dt <eT — 0, &0,

but this value process may be not bounded (and even admissible). Notice that the pre-
dictable process C; from Assumption 6.7 is locally bounded, i.e. there exists a sequence of
stopping times o, T oo a.s. such that C; < n for t < o,. Put

he™ (1) = hiLgns (v <nt L r<ony-

Clearly, E|VZ(he™) — VZ(h?)|*> — 0 as n — oo. By Assumption 6.7 we have that

< [ Cihy"(df) < n?

Ry

L 2 0)(ePet0 — 1) do)
Ry

Hence, the value process corresponding to %™ is with bounded jumps. Let h®" := h=" ], 0,0]
where o, is the exit time of V#(h*") from the interval [—n,n]. Then VZ(h*") is a sequence
of headgeable claims converging in L? to VZ (h?). This leads to the desired goal.
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(i) = (ii) Assume that the market is approximately complete, i.e. an arbitrary bounded
T-claim can be approached by a sequence of hedgeable claims converging in L?. Then there
exists a countable set H = {Z7} of bounded hedgeable random variables dense in the Hilbert
space L*(Fr) and closed under linear combinations with rational coefficients; let ()7, ¥7) be
the coefficients in the integral representation of =7 given by (6.12). We continue with the
case n = 0; the arguments can be extended easily for the general case but, in fact, there is
no need in this: one can identify the product space in the right-hand side of (ii) with L2
over an extension of E by n extra points. Of course, we may assume that for all (w,t) one
has ||U"||,; < oo where |.||w: and (.,.). are, respectively, the norm and the scalar product
in L2(X, X, \(w,dz)). Let us denote by H,, the closure in this norm of the set {U™(w, )},
which is, evidently, a linear subspace, and by H it its orthogonal complement.

It is easy to show that there exists a P-measurable function ¥ such that ||¥],, = 1 if
H, # 0. Indeed, let {I(i)} be a sequence of indicator functions generating X and

F(w,f) == inf {Z L inf |10, ) — W (w1, .)||w,t} .
J

Put U(w,t) := I(k(w,t),z) if k(w,t) < co and ¥(w,t) := 0 otherwise. Clearly, ¥ meets the
necessary measurability requirements. Furthermore, there is U™ which is measurable in the
same way and such that all the sections \iﬂr(w, t) are representatives of the projections of
U(w, t) onto H,, (one can orthogonalize {7 (w,t)} preserving measurability and notice that
in this case the Fourier coefficients are obviously predictable). Normalizing the difference
U — U™ we get U with the required properties.

The function ¥ defines by (6.12) with My = 0 a random variable My € L*(Fr) which
is orthogonal, by construction, to all Z7. If (ii) does not hold then Mr is nontrivial. This

leads to an apparent contradiction. O

By experience from the theory of financial markets with finitely many assets one could
expect that the market is complete if and only if the martingale measure is unique, but in
our infinite dimensional setting this is no longer true. Due to the duality relation (Ker K)+ =
cl (Im K*) we obtain instead from the above assertion

Theorem 6.11 The market is approximately complete iff the martingale measure is unique.

Remark. For the above theorem, Assumption 6.3 (a), is not, of course, very pleasant
since it, actually, means that the set Q (always assumed to be non-empty) contains a mea-
sure under which the compensator has such a property. However, it automatically holds in
the important case when p is a multivariate point process with absolutely continuous com-
pensator. We believe that Theorem 6.11 can be extended to a much more general setting.

For a model when all measures \(dz) are concentrated in a finite number of points
(in particular, when the mark space X is finite) and the hedging problem is reduced to
a finite-dimensional system of equations (for each (w,t)), the duality relation is simply
(Ker £)* = Im K*, so in this case we have

Corollary 6.12 Suppose that the measures A\i(dx) are concentrated in a finite number of
points (a.e.). Then the bond market is complete iff the martingale measure is unique.
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In general, the “principle” that uniqueness of () is equivalent to completeness of the
market fails: the set of hedgeable claims may be a strict subset in the set of all claims
L>*(Fr). Clearly, this is the case when D is smooth in x and bounded (so, the image
contains only continuous functions); typically, KZ* is a compact operator and, hence, has
no bounded inverse.

Thus, models with an infinite mark space introduce some completely new features into
the theory, and we also encounter some new problems when it comes to the numerical
computation of hedging portfolios. Namely, the hedging equations (6.17) are, in general,
ill-posed in the sense of Hadamard, i.e. the inverse of K/* restricted to Im K/* may not be
bounded. Hence, a small perturbation of the right-hand side (e.g., due to a small round-off
error) gives rise to large fluctuations in the solution. Thus, a simple approximation scheme
for the calculation of a concrete hedge may lead to great numerical errors. Fortunately, the
literature provides a number of methods to get stable solutions of ill-posed problems.

7 Conclusions

A consistent theory of the zero-coupon bond markets can be based on a setting where the
price curve is considered as a point in the Banach space of continuous functions and its
evolution is described by a random process in this space. In such an approach a portfolio
strategy at a fixed time is identified with a linear functional which is an element of the
conjugate space, i.e. a measure on maturities. The dynamics of a strategy is given by a
weakly predictable measure-valued process.

The needed mathematical tool is a stochastic integration with respect to C-valued pro-
cesses for which our paper suggests a certain general recipe. As a justification of the general
framework, we prove that the asset paying an interest corresponding to the short term in-
terest rate is the value process of a roll-over strategy consisting in permanent reinvestment
in just maturing bonds. Traditionally, the existence of such an asset in a bond market is an
auxiliary hypothesis explained by heuristic arguments.

The integration theory has a more explicit structure for models where the dynamics of
any bond, i.e. evolution of each point of the price curve, is given by a jump-diffusion model.
In this case, one can use a construction involving standard finite-dimensional integrals.
Starting the modelling from the description of the forward rate dynamics we derive HJM-
type conditions for the existence of an equivalent martingale measure.

The formal definition of a portfolio strategy allows to define other economically mean-
ingful properties of a bond market, in particular, market completeness. For a model with
a finite Lévy measure we show that the completeness is equivalent to the uniqueness of
the equivalent martingale measure, a relation which is well-known for stock market models.
However, in the case of an infinite Lévy measure this is no longer true; it happens that the
uniqueness of the equivalent martingale measure is a property that holds iff the market is
approximately complete, i.e. every contingent claim can be approached in a certain sense by
a sequence of hedgeable claims. This result is deduced from duality considerations leading,
moreover, to the conclusion that the hedging problem is ill-posed.

It is worth mentioning that the results of this paper open the door to a systematic use
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of models driven by Lévy processes that give better statistical fitting of real-world financial
data but lead to theoretical difficulties related to absence of completeness. Moreover, the
idea of measure-valued portfolios seems to be useful also in the context of stock markets
augmented by an infinite number of derivative securities or bonds.

One can observe that a number of questions are only briefly touched here and we foresee
further mathematical developments within the framework of the considered approach.

A Appendix: stochastic Fubini theorems

We give formulations of the stochastic Fubini theorems which are used in the present paper.
The proofs for integrals with respect to a martingale can be found in the textbook [31], the
case of random measures is treated in the same way.

Let M be a continuous real martingale, u = p(dt,dxr) a P ® X-o-finite integer-valued
adapted random measure with compensator v = v(dt, dz), and m a measure on (T, Br) with
the finite total variation |u|. Let H = H(w,t,0) and ¥ = VU(w, t,x,0) be, correspondingly,
P ® Bp-measurable and P ® X ® Bp-measurable functions. We denote by H? and U their -
sections, i.e. H? : (w,t) — H(w,t,0); as usual, O is the notation for the optional o-algebra;
mH (or m(H) in ambiguous cases) stands for the integral with respect to m = m(d#).

As in the ordinary Fubini theorem, there is a statement concerning measurability; since
in the stochastic case the integral is defined up to a P-null set, the problem, in fact, is that
of existence of suitably measurable versions.

Proposition A.1 (a) Assume that for each 0 the integral (H?)? - (M), is finite for finite t.
Then there exists an O ® Bp-measurable function U(w,t,0) such that for each 0 the process
U? is a version of the stochastic integral H? - M.

(b) Assume that for each 0 the integral (V%)2 x v, is finite for finite t. Then there exists
an O @ By-measurable function V(w,t,0) such that for each 6 the process V? is a version of
the stochastic integral W x (u — v).

By virtue of these assertions the notations H? - M and ¥’ % (1 — v) always mean the
suitable measurable versions of the integrals.

Proposition A.2 (a) Suppose that for finite t

(mH?) - (M), = | t ( i H?(t,e)m(de)) (M), < o, (A1)

Then the process m(H - M) is indistinguishable from (mH) - M.
(b) Suppose that for finite t

(mU?) % v, = /ot/x </T \Ilz(t,x,ﬁ)m(dﬁ)> v(dt,dx) < oo.

Then the process m(W * (u — v)) is indistinguishable from mW * (u — v).
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Comments. The measurability result has been proved in great generality in [36]. The
interchangeability of the integrals under the assumptions above is almost a folklore (for this
and other versions see [31] with the literature therein and also [37]; the book [12] contains an
extension to Hilbert space-valued Wiener processes) although it is not easy to give a precise
reference except [27] for the case of random measures. We do not consider ramifications of
this result which are delicate and still of current interest. Actually, the stochastic Fubini
theorem is rather unfortunate: even the usually reliable source [20] contains an erroneous
formulation in Th. 5.44 (see p. 161 in [31] for a counterexample and further remarks). The
most general results are given in the recent deep study [27] where the problem is treated
in the framework of vector integration theory (independently, the same approach to the
stochastic Fubini theorem is used in the paper [4] submitted, however, much later).

Acknowledgement. The authors expressed their thanks to Hans Follmer and Christoph
Stricker for helpful discussions.
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