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The Yield Curve

❚ Shifts
❙ parallel
❙ nonparallel
❙ twist in slope
❙ flattening
❙ steepening
❙ butterfly shift

❚ Treasury Returns
❙ level of rates
❙ changes in slope
❙ changes in curvature



Theoretical Spot Rate

❚ Select securities, then the methodology
❙ On-the-run treasuries

❘ bootstrapping

❙ On-the-run treasuries and other off-the-run treasury issues
❘ bootstrapping

❙ Strips
❘ yield = spot rate

❙ All treasury coupon securities and bills
❘ elaborate statistical techniques necessary



Term Structure Theories

❚ Pure Expectation Theory
❙ Drawbacks
❙ Interpretations
❙ Forward Rates and Market Consensus

❚ Biased Expectations Theory
❙ Liquidity Theory
❙ Preferred habitat Theory

❚ Market Segmentation Theory



The Yield Curve
or Spot Yield Curve or Term Structure

• Spot yields vary (rise) with maturity
• expectation that future short rates will rise
• investors unwilling to invest long term unless

rewarded by increased yield

• Pure expectation theory
– forward rates of interest embodied in the term structure are

unbiased estimates of expected future spot rates of interest
• forward rates are biased (future spot rates) due to autocorrelation and

by the amount of “term premium”
– expected returns arising from different maturity strategies are equal

• expected HPR are equal only for specific period, not all future
holding periods



Pure Expectations Theory

• Investors are indifferent between each of
the strategies below:

• Strategy I: Buy 1 year bond today and roll over

• Strategy II: Buy 2 year bond and hold to maturity

• Strategy III: Buy 3 year bond and sell after year two.

• Ignores Uncertainty



Two More Theories
• Long term premium (Liquidity Preference): provides an

upward tilt to long end to compensate for uncertainty of longer term
investments.

– borrowers borrow long, lenders lend short
– uncertainty induces “term premium”

• Segmentation modification : supply and demand for
bonds in various term spectrum segments dictates the current market rate.

– legal and behavioral restrictions create
“preferred” maturity demands

• Compare and contrast three term structure theories.



Measuring Yield Curve Risk

❚ Rate Duration and Key Rate Duration
❙ D(1): (50/100)*2 + (0/100)*0+ (50/100)*0 = 1
❙ D(2): (50/100)*0 + (0/100)*16+ (50/100)*0 = 0
❙ D(3): (50/100)*0 + (0/100)*0+ (50/100)*30 = 15

❘ Effective: Portfolio III: (50/100)*2 + (0/100)*16+ (50/100)*30 = 16

❙ D(1): (0/100)*2 + (100/100)*0+ (0/100)*0 = 0
❙ D(2): (0/100)*0 + (100/100)*16+ (0/100)*0 = 16
❙ D(3): (0/100)*0 + (100/100)*0+ (0/100)*30 = 0

❘ Effective: Portfolio III: (0/100)*2 + (100/100)*16+ (0/100)*30 = 16



Volatility

❚ Measuring Historical Yield Volatility
❙ Determining Number of Observations
❙ Annualizing Standard Deviation
❙ Interpreting the Standard Deviation

❚ Historical versus Implied Volatility
❚ Forecasting Yield Volatility Alternatives

❙ expected value equals zero
❙ weighted observations



Valuing Bonds with Embedded Options

❚ What is an interest rate model?
❙ one factor (binomial), two factor
❙ IE.  MV bond $89.  Model valuation $90 (based on 12% vol.). Model

valuation $86 (based on 15% vol.)

❚ Option Free Bond Valuation
❙ Benchmark Curve
❙ Using Spot Curve or Forward Rates



The Binomial Model

❚ Binomial Interest Rate Tree
❚ Determining the Value of a Node
❚ Constructing the Binomial Interest Rate Tree
❚ Valuing an Option-Free Bond with the Tree

❙ value using binomial tree should be identical to bond value found when
discounting at spot rates or 1 year forward rates.



Valuing the Callable Bond
❚ Determining the Call Option Value

❙ value of call option = value of option free bond - value of callable bond

❚ Volatility and Arbitrage-Free Value
❙ option value increases with volatility; option spread decreases with volatility.
❙ value of callable bond decreases with volatility.

❚ Option Adjusted Spread (OAS)
❙ constant spread that when added to rates (1yr) will make value (arbitrage-tree) equal

to market price.
❙ Volatility dependent
❙ OAS attempts to remove from the nominal spread the amount that is due to the option

risk
❘ a spread
❘ adjusts cash flows for option when computing spread to benchmark



Valuing the Callable Bond

❚ Callable Bond = Non-callable bond - call option.
❙ the greater the value of the call feature, the lower the value of callable bond

relative to that of non-callable bonds.
❙ the level and volatility of interest rates are key factors in giving value to call

feature.
❙ value of option greater the greater the expected volatility

❚ Generally, the greater the variance of expected future interest
rates, the higher value placed on call options; hence, higher
spreads.



Facts About Spreads and OAS

❚ Static spread considers only one interest rate path.
❚ OAS contains MODEL risk.  Must estimate call rule and

volatility.  Different analysts will arrive at different OASs.
❚ OAS uses averaging.  OAS in not the spread the investor

will earn over tsy.
❚ OAS should be used in conjunction with other

measurements.



Valuing and Analyzing a Callable Bond

❚ Modified Duration
❙ Macaulay Duration/[1+ytm/2]
❙ dP/P = -(MD)*(dR)
❙ only good for “small” changes in rates

❚ Convexity
❙ (1/P)(second derivative price/yield)

❚ dP/P = -(MD)(dR) + 1/2(Cvx)(dR)^2
❙ be able to compute approximate price change for interest rate changes.
❙ suppose MD = 3.95 and convexity = 19.45, compute price change if rates

fell 1%.



Effective Convexity and Duration

❚ Effective Duration (vs Modified Duration)

❙ effective used to evaluate bond’s with embedded options
❙ approximation of modified duration
❙ = V- - V+ /(2V0 (delta r))
❙ valid bond pricing model
❙ high interest rate levels, two measurements similar

❚ Effective Convexity (vs Modified Convexity)

❙ =(V+ + V- -2V0) /2V0 (delta y)^2
❙ considers cash flow stream changes - ie. price compression
❙ lower than standard convexity for callable bonds



Factors that Affect Duration

❚ Lower coupon => greater duration
❚ Longer maturity => greater duration
❚ Duration is less than the time to maturity for coupon bonds
❚ The Macaulay duration of a zero coupon bond is its time to maturity
❚ When yields are high, durations are lower than when the general

level of yields is low.



Factors that Affect Convexity

❚ Maturity: the longer the maturity, the greater the convexity
❚ Coupon: the lower the coupon rate the greater the convexity.

Zeros have greater convexity than coupon bonds of the same
maturity.

❚ Coupon: the lower the coupon rate the smaller the convexity.
Zeros have smaller convexity than coupon bonds of same duration.

❚ As yield increases, convexity decreases.



Valuing a Other Bonds
❚ A Putable Bond
❚ A Step-Up Callable Note

❙ when more than one embedded option, determination made at
each node

❚ A Capped Floater
❙ coupon rate is set at begin period and paid at end period; affects

cash flows at nodes



A Convertible Bond

❚ Basic Features
❚ Minimum Value
❚ Market Conversion Price
❚ Current Income vs Common Stock
❚ Downside Risk
❚ Investment Characteristics



Valuation of Interest Rate Derivative
Instruments

❚ Interest Rate Futures Contracts
❙ The Cash and Carry Trade
❙ The Reverse Cash and Carry Trade

❚ Theoretical Futures Price
❙ Theoretical FP

❘ = Price + Pricet(coupon/short rate differential)
• asymmetrical lending and borrowing rates
• cheapest to deliver changes
• interim cash flows change



Interest Rate Swaps

❚ Swap Payments
❙ Floating Rate Payments

❘ Floating Rate Payment = Notional Amount*LIBOR*(Actual#Days/360)

❙ Future Floating Rate Payments
❙ Swap Rate and Swap Spread
❙ Calculate PV of Floating Rate Pay. And PV Notional

❘ Total PVfloating = Total PVfixed

❘ Swap Rate and Swap Spread

❙ Value a Swap



Options

❚ Components of the Option Price
❙ Intrinsic Value
❙ Time Value

❚ Factors that Influence Value of Option on Bond
❙ Price of Underlying Security
❙ Strike Price
❙ Time to Expiration of Option
❙ Exp. Interest Rate Volatility
❙ Short-term Risk Free Rate
❙ Coupon Payment



Option Pricing Models

❚ Black Scholes
❙ risk free rate remains constant
❙ volatility remains constant
❙ log normal distribution for security prices
❙ not good for fixed income securities

❚ Arbitrage-Free Binomial Model
❙ estimate interest rate volatility and project rates forward
❙ price bond at each node
❙ value option at terminal nodes
❙ work backward to determine present value

❚ Black Model
❙ same as Black Scholes - was designed for European style options


