Estimating Term Structure with Penalized Splines

David Ruppert
Operations Research and Industrial Engineering
Cornell University

Joint work with Robert Jarrow and Yan Yu

January 27, 2004

Outline

- Bond prices, forward rates, yields
- Empirical forward rate noisy
- Modelling the forward rate
- Penalized least-squares
- Inadequacy of cross-validation
- Residual analysis checking the noise assumptions
- Corporate term structure and credit spreads
- Asymptotics

Discount Function, Forward Rates, and Yields

• D(0,t) = D(t) is the discount function, the value at time 0 (now) of a zero-coupon bond that pays \$1 at time t.

$$\frac{\text{Price}(t)}{\text{PAR}} = D(t)$$

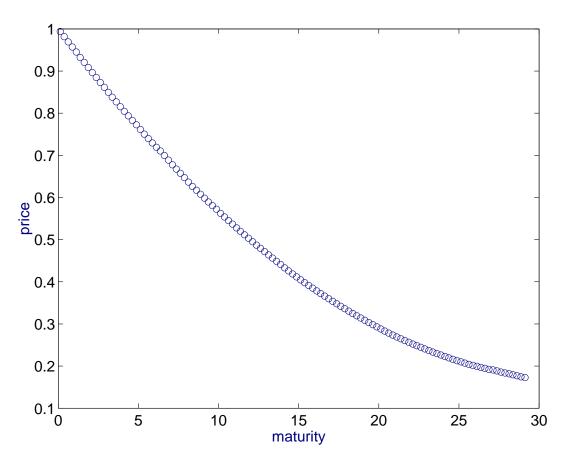
• f(t) is the current forward rate defined by

$$D(t) = \exp\left\{-\int_0^t f(s)ds\right\} \text{ for all } t$$

The yield is the average forward rate, i.e.,

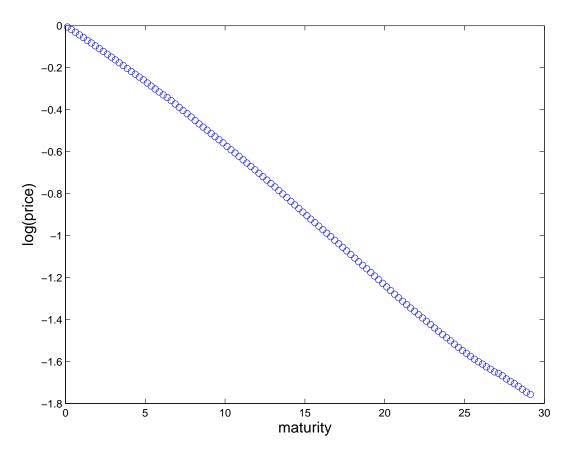
$$y(t) = \frac{1}{t} \int_0^t f(s)ds = -\frac{1}{t} \log\{D(t)\}$$

Discount Function, Forward Rates, and Yields



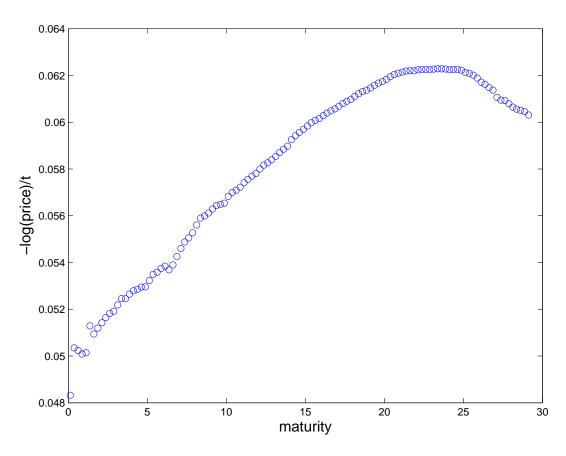
STRIPS on Dec 31, 1995: price = empirical discount function

Prices, Forward Rates, and Yields



STRIPS on Dec 31, 1995: log prices

Discount Function, Forward Rates, and Yields



STRIPS on Dec 31, 1995: empirical yields

Empirical Forward Rate

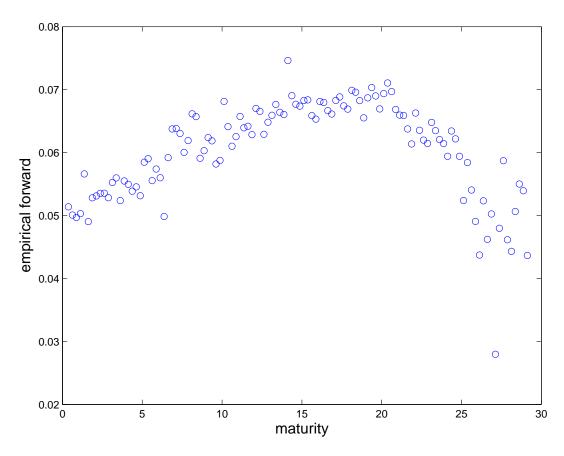
$$D(t) = \exp\left\{-\int_0^t f(s)ds\right\} \text{ for all } t$$

$$f(t) = -\frac{d}{dt}\log\{D(t)\}$$

empirical forward =
$$-\frac{\log\{P(t_{i+1})\} - \log\{P(t_i)\}}{t_{i+1} - t_i}$$

P(t) =observed price at time t

Empirical Forward Rate



STRIPS on Dec 31, 1995: empirical forward rate

Modelling Coupon Bonds

- P_1, \dots, P_n denote observed market prices of n bonds (coupon or zero-coupon)
- Bond i has fixed payments $C_i(t_{i,j})$ due on dates $t_{i,j}, j=1,\ldots,N_i$ ($N_i=1$ for zero-coupon bonds)
- Model price for the ith coupon bond:

$$\widehat{P}_i(\boldsymbol{\delta}) = \sum_{j=1}^{N_i} C_i(t_{i,j}) \exp\left\{-\int_0^{t_{i,j}} f(s, \boldsymbol{\delta}) ds\right\}$$

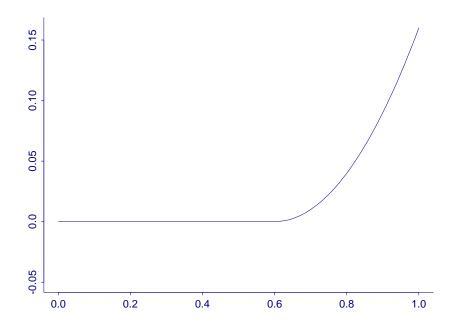
 $f(\cdot, oldsymbol{\delta})$ is a model for the forward rate

Spline Model of Forward Rate

- $f(s, \boldsymbol{\delta}) = \boldsymbol{\delta}^\mathsf{T} \mathbf{B}(s)$
 - $-\mathbf{B}(s)$ is a vector of spline basis functions
 - δ is a vector of spline coefficients
- :. $F(t, \boldsymbol{\delta}) := \int_0^t f(s, \boldsymbol{\delta}) ds = ty(t, \boldsymbol{\delta}) = \boldsymbol{\delta}^\mathsf{T} \mathbf{B}^I(s)$
 - $-\mathbf{B}^{I}(t) := \int_{0}^{t} \mathbf{B}(s) ds.$

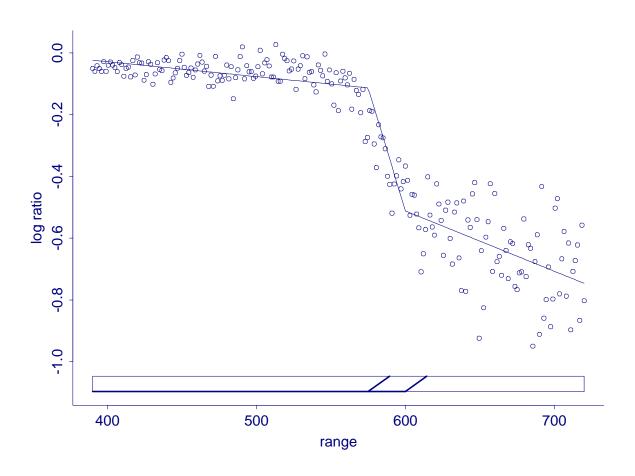
Example: Quadratic Splines

$$\mathbf{B}(s) = (1, s, s^2, (s - \kappa_1)_+^2, \dots, (s - \kappa_K)_+^2)^{\mathsf{T}}$$

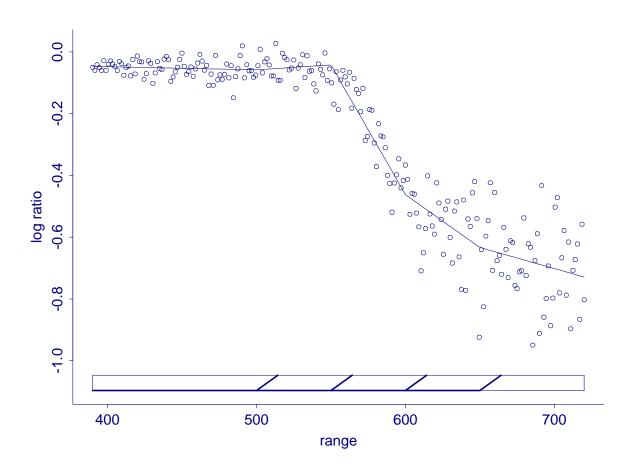


Plus function with knot at 0.6

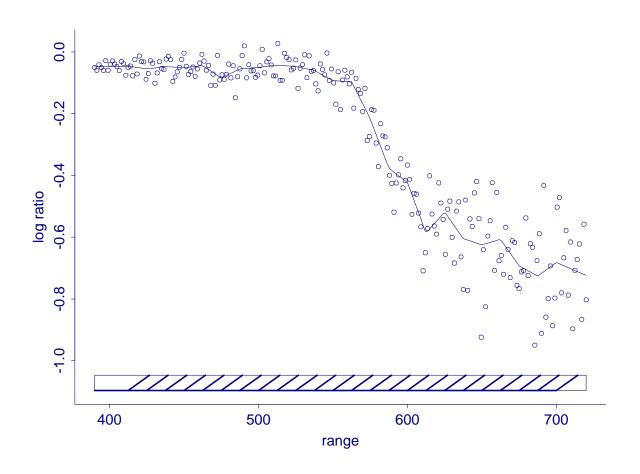
Linear Spline – 2 Knots



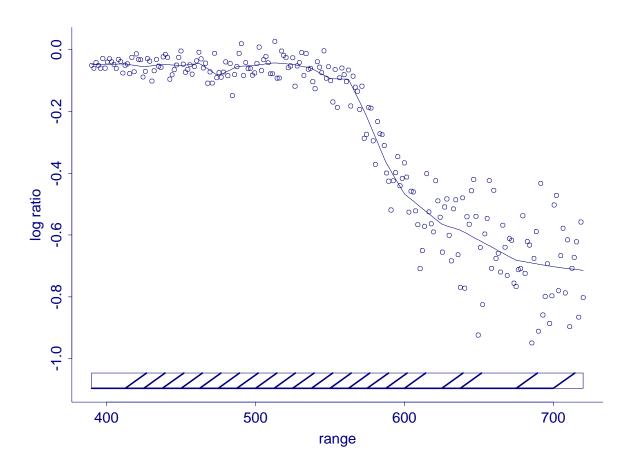
Linear Spline – 4 Knots



Linear Spline – 24 Knots



Lidar Data — Carefully Chosen Knots



There is a better way to get a smooth fit than selecting knots

Modelling the Forward Rate

From before:

$$\mathbf{B}(t) = \left(1, t, \dots, t^p, (t - \kappa_1)_+^p, \dots, (t - \kappa_K)_+^p \right)^{\mathsf{T}}$$

Therefore:

$$\mathbf{B}^{I}(t) := \int_{0}^{t} \mathbf{B}(s) ds = \begin{pmatrix} t & \dots & \frac{t^{p+1}}{p+1} & \frac{(t-\kappa_{1})_{+}^{p+1}}{p+1} & \dots & \frac{(t-\kappa_{K})_{+}^{p+1}}{p+1} \end{pmatrix}^{\mathsf{T}}.$$

Penalized Least-Squares

$$Q_{n,\lambda}(\boldsymbol{\delta}) = \frac{1}{n} \sum_{i=1}^{n} \left[h(P_i) - h\{\widehat{P}_i(\boldsymbol{\delta})\} \right]^2 + \lambda \boldsymbol{\delta}^{\mathsf{T}} \mathbf{G} \boldsymbol{\delta}$$

or equivalently

$$Q_{n,\lambda}(\boldsymbol{\delta}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ h(P_i) - h \left[\sum_{j=1}^{N_i} C_i(t_{i,j}) \exp\left\{ -\boldsymbol{\delta}^\mathsf{T} \mathbf{B}^I(t_{i,j}) \right\} \right] \right\}^2 + \lambda \boldsymbol{\delta}^\mathsf{T} \mathbf{G} \boldsymbol{\delta}.$$

- h is a monotonic transformation: "transform-both-sides" model
- $\lambda \delta^{\mathsf{T}} \mathbf{G} \delta$ is a "roughness" penalty
 - $-\lambda \geq 0$
 - G is positive semi-definite

Penalized Least-Squares

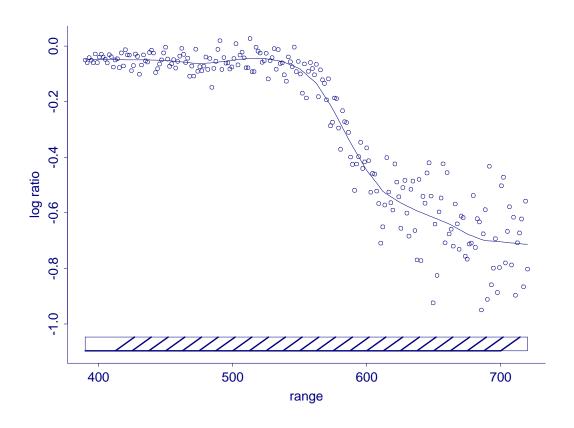
From previous slide:

$$Q_{n,\lambda}(\boldsymbol{\delta}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ h(P_i) - h \left[\sum_{j=1}^{N_i} C_i(t_{i,j}) \exp\left\{ -\boldsymbol{\delta}^\mathsf{T} \mathbf{B}^I(t_{i,j}) \right\} \right] \right\}^2 + \lambda \boldsymbol{\delta}^\mathsf{T} \mathbf{G} \boldsymbol{\delta}.$$

Several sensible choices for G

- 1. G is a diagonal matrix
 - last K diagonal elements equal to one
 - all others zero.
 - penalizes jumps at the knots in the pth derivative of the spline.
- 2. quadratic penalty on the $d{\rm th}$ derivative $\int \{f^{(d)}(s)\}^2\,ds$
 - uses $G_{ij} = \int B_j^{(d)}(t)B_k^{(d)}(t)dt$
 - $-B_j(t)$ is the jth element of $\mathbf{B}(t)$

Linear Spline with 24 Knots Fit by Penalized Least Squares



- Number of knots has little effect on fit provide it is at least 15
- Choice of λ is crucial

Using Zero Coupon Bonds

- Now assume we are using zeros, e.g., STRIPS
- P_i has a single payment of \$1 at time t_i
- Therefore,

$$Q_{n,\lambda}(\boldsymbol{\delta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h(P_i) - h \left[\exp \left\{ -\boldsymbol{\delta}^\mathsf{T} \mathbf{B}^I(t_i) \right\} \right] \right)^2 + \lambda \boldsymbol{\delta}^\mathsf{T} \mathbf{G} \boldsymbol{\delta}$$

Choosing the Knots

- ullet κ_k is the $\frac{k}{(K+1)}$ th sample quantile of $\{t_i\}_{i=1}^n$
- ullet the t_i are nearly equally spaced so the knots are also

There exists a matrix $\mathbf{S}(\lambda)$ such that

$$\begin{pmatrix} \widehat{P}_1 \\ \vdots \\ \widehat{P}_n \end{pmatrix} \approx \mathbf{S}(\lambda) \begin{pmatrix} P_1 \\ \vdots \\ P_n \end{pmatrix}$$

- $S(\lambda)$ is called the smoother matrix or hat matrix
- DF(λ) := trace{S(λ)} is called the degrees of freedom of the fit or the effective number of parameters

Generalized Cross-Validation

$$GCV(\lambda) = \frac{n^{-1} \sum_{i=1}^{n} \left[h(P_i) - h \left\{ \widehat{P}_i(\boldsymbol{\delta}) \right\} \right]^2}{\left\{ 1 - n^{-1} \theta \operatorname{DF}(\lambda) \right\}^2},$$

- one chooses λ to minimize $GCV(\lambda)$
- ullet θ is a user-specified tuning parameter
- $\theta = 1$ is ordinary GCV
- Fisher, Nychka, and Zervos used $\theta = 2$
 - this causes more smoothing
 - Question: why doesn't ordinary GCV work well here?

EBBS

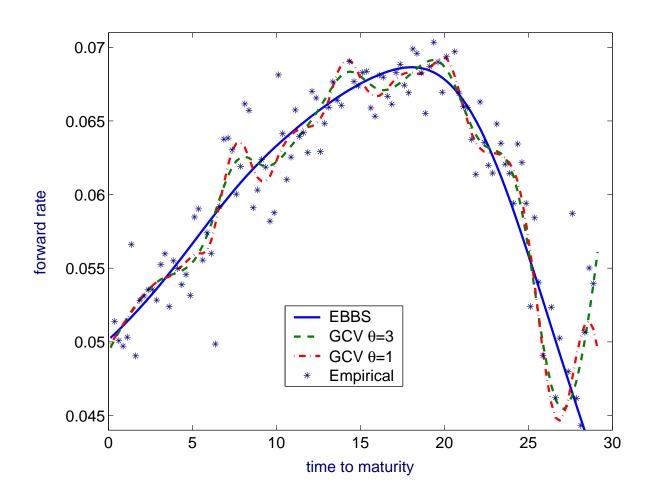
- To estimate MSE add together:
 - estimated squared bias
 - estimated variance
- Gives $MSE(\widehat{f}; t, \lambda)$, the estimated MSE of \widehat{f} at t and λ .
 - then $\sum_{i=1}^{n} \mathsf{MSE}(\widehat{f}; t_i, \lambda)$ is minimized over λ
- EBBS estimates bias at any fixed t by
 - computing the fit at t for a range of values of the smoothing parameter
 - fitting a curve to model bias

EBBS – Estimating Bias

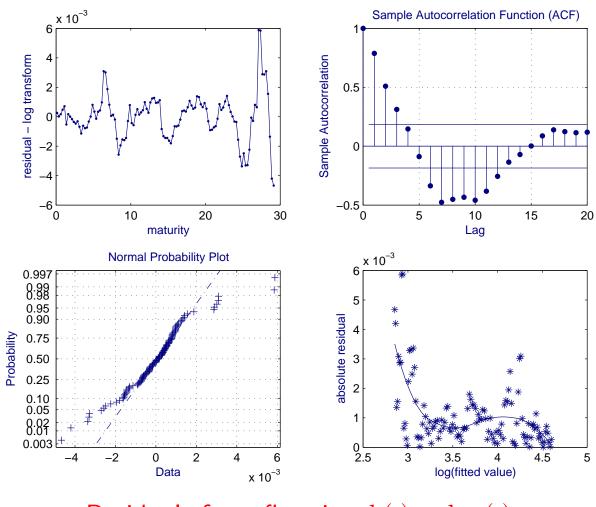
- to the first order, the bias is $\gamma(t)\lambda$ for some $\gamma(t)$
- \bullet Let $\widehat{f}(t,\lambda)$ be \widehat{f} depending on maturity and λ
- ullet Compute $\left\{\lambda_\ell,\widehat{f}(t,\lambda_\ell)
 ight\},\;\ell=1,\ldots,L$
 - $\lambda_1 < \ldots < \lambda_L$ is the grid of values of λ
 - we used L=50 values of λ
 - $-\log_{10}(\lambda_\ell)$ were equally spaced between -7 and 1
 - $-\ \mathrm{DF}(10) = 4.8$ and $\mathrm{DF}(10^{-7}) = 28.9$ for a 40-knot cubic spline fit

EBBS – Estimating Bias

- For any fixed t, fit a straight line to the data $\{(\lambda_i,\widehat{f}(t,\lambda_i):i=1,\ldots,L\}$
- slope of the line is $\widehat{\gamma}(t)$
- estimate of squared bias at t and λ_{ℓ} is $(\widehat{\gamma}(t) \lambda_{\ell})^2$

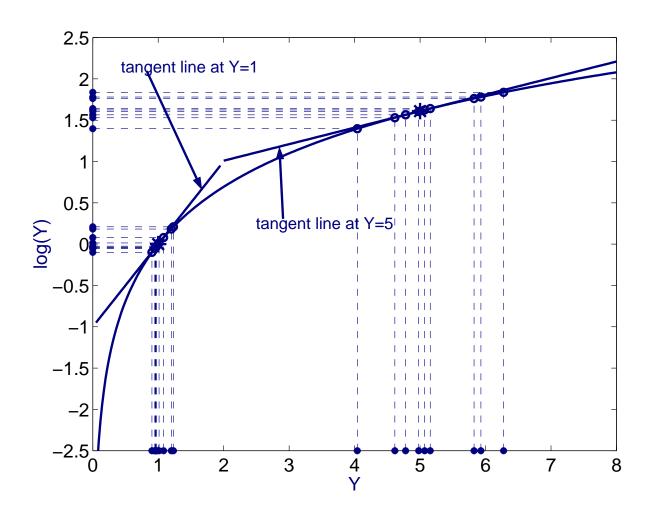


EBBS Fit: Residual Analysis



Residuals from fit using $h(\cdot) = \log(\cdot)$

Geometry of Transformations



Strength of a Transformation

- Suppose $y_1 < y_2$
- strength of a transformation *h*:

strength =
$$\frac{h'(y_2)}{h'(y_1)} - 1$$

• Example:

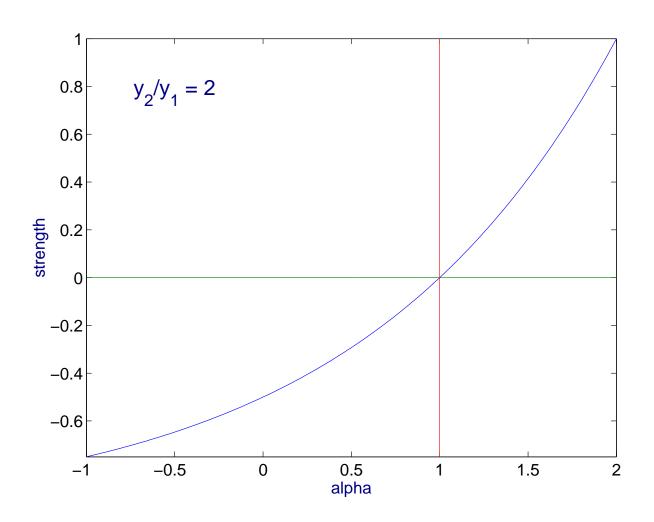
$$h(y; \alpha) = \frac{y^{\alpha} - 1}{\alpha} \text{ if } \alpha \neq 0$$

= $\log(y) \text{ if } \alpha = 0$

strength :=
$$\left(\frac{y_2}{y_1}\right)^{\alpha-1} - 1$$

> 0 if $\alpha > 1$
< 0 if $\alpha < 1$

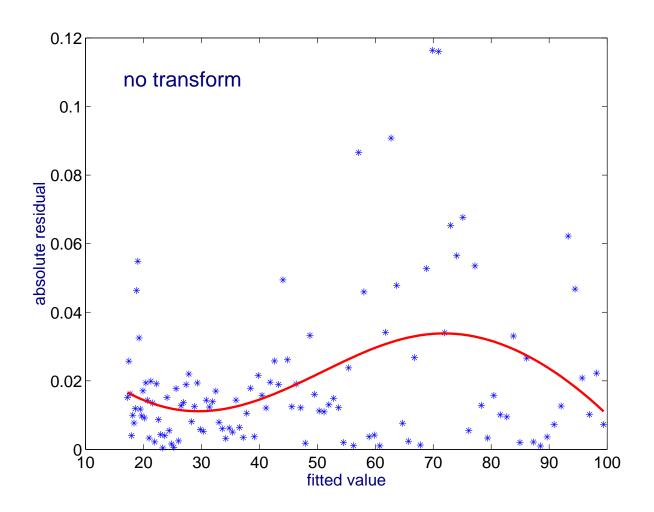
Strength of a Transformation

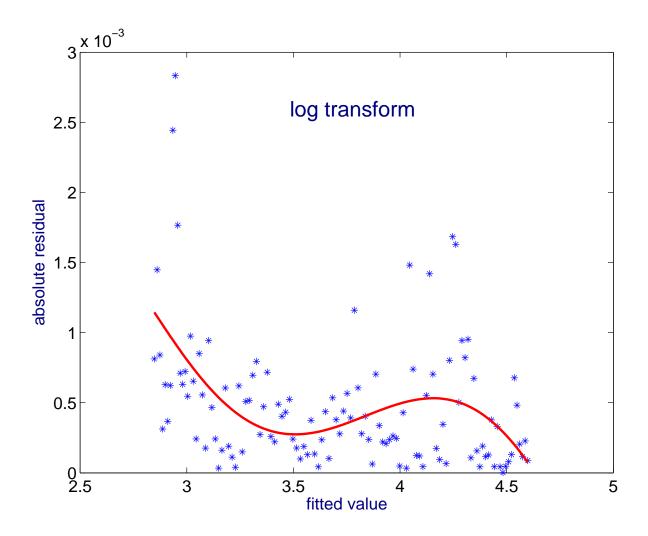


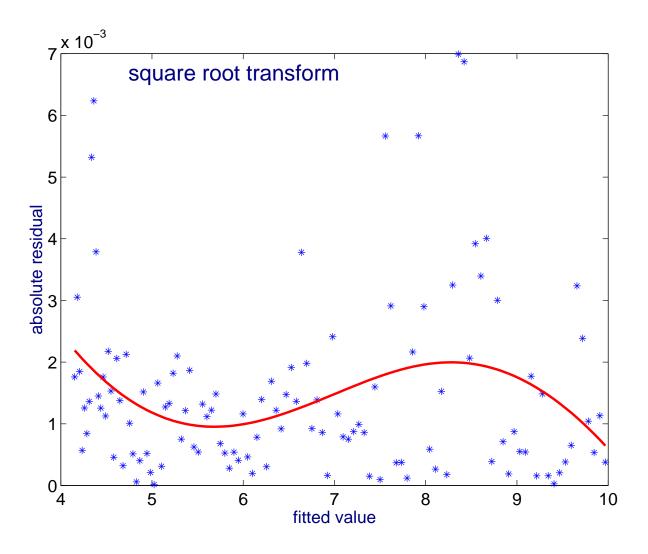
- log is the linearizing transformation
 - convenient
 - induces some heteroscedasticity, but not enough to cause a problem
- $\log\{P(t)\}/t = -$ yield
 - cause severe heteroscedasticity avoid

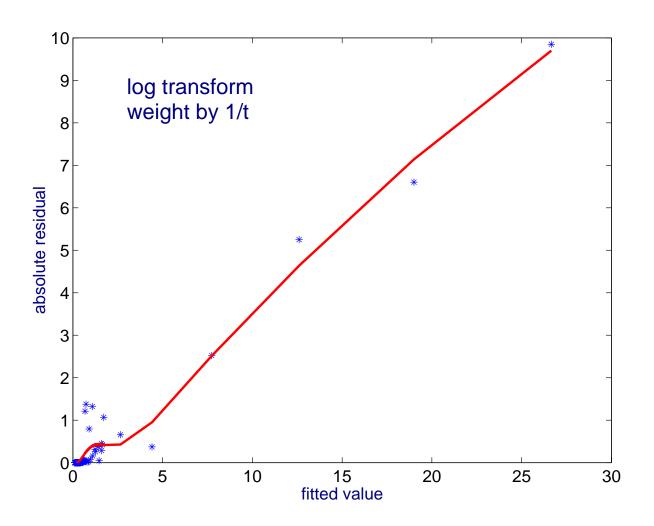
Transformation and weighting should be done primarily to induce the assumed noise distribution, which is:

- normal
- constant variance









Modelling the Correlation

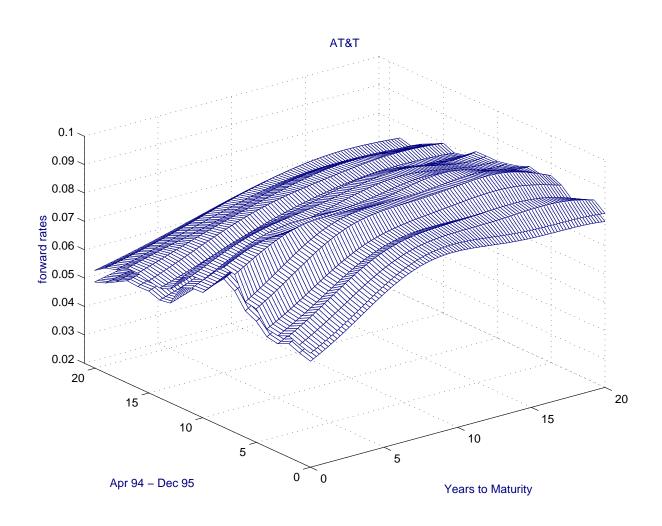
- open problem
- probably not stationary
- simulations show that stationary AR and MA processes do not have the same problem with GCV as seen with actual price data

Modelling Corporate Term Structure

$$f_C(t) = f_{Tr}(t) + \alpha_0 + \alpha_1 t + \alpha_2 t^2$$

- $\alpha_0 + \alpha_1 t + \alpha_2 t^2$ is the credit spread
- H_0 : $\alpha_1 = \alpha_2 = 0$ is accepted for AT&T data
- $\alpha_0 > 0$ for the AT&T data

Modelling Corporate Term Structure



Modelling Corporate Term Structure

Question: Should one smooth over both date and time to maturity?

Asymptotics

The PLS estimator is the solution to

$$\sum_{i=1}^{n} \psi_i(\boldsymbol{\delta}, \lambda, \mathbf{G}) = 0$$

for an appropriate $\psi_i(\cdot,\cdot,\cdot)$

Asymptotics: $\lambda \to 0$

Theorem 1

- ullet let $\{\widehat{oldsymbol{\delta}}_{n,\lambda_n}\}$ be a sequence of penalized least squares estimators
- assume typical "regularity" assumptions
- suppose λ_n is o(1)
- ullet then $\widehat{oldsymbol{\delta}}_n$ is a (strongly) consistent for $oldsymbol{\delta}_0$
- if λ_n is $o(n^{-1/2})$, then

$$\sqrt{n}\left(\widehat{\boldsymbol{\delta}}_{n,\lambda_n}-\boldsymbol{\delta}_0\right)\stackrel{D}{\to} N\left\{0,\sigma^2\Omega^{-1}(\boldsymbol{\delta}_0)\right\},$$

where

$$\Omega(\boldsymbol{\delta}_0) := \lim_n \boldsymbol{\Sigma}_n, \ \boldsymbol{\Sigma}_n = \sigma^{-2} n^{-1} \sum_{i=1}^n E\left\{\psi_i(\boldsymbol{\delta}, \lambda, \mathbf{G}) \psi_i(\boldsymbol{\delta}, \lambda, \mathbf{G})^\mathsf{T}\right\}$$

Asymptotics: λ fixed

- assume $\lambda_n \equiv \lambda$
- the bias does not shrink to 0
 - limit of $\widehat{oldsymbol{\delta}}_{n,\lambda}$ solves

$$\lim_{n \to \infty} E\left\{n^{-1} \sum_{i=1}^{n} \psi_i(\boldsymbol{\delta}, \lambda, \mathbf{G})\right\} = 0$$

• the large sample variance formula is

$$\widehat{\operatorname{Var}}\{\widehat{\boldsymbol{\delta}}(\lambda)\} = \frac{\sigma^2}{n} \left[\{ \boldsymbol{\Sigma}_n + \lambda \mathbf{G} \}^{-1} \boldsymbol{\Sigma}_n \{ \boldsymbol{\Sigma}_n + \lambda \mathbf{G} \}^{-1} \right].$$

Summary

- splines are convenient for estimating term structure
- penalization is better, or at least easier, than knot selection
- EBBS provides a reasonable amount of smoothing
- GCV undersmooths because
 - noise is correlated
 - target function is a derivative
- corporate term structure can be estimated by "borrowing strength" from treasury bonds
- a constant credit spread fits the data reasonably well
- asymptotics are available for inference

References

Jarrow, R., Ruppert, D., and Yu, Y. (2004) Estimating the interest rate term structure of corporate debt with a semiparametric penalized spline model, *JASA*, to appear.

Available at:

http://www.orie.cornell.edu/~davidr

- see "Recent Papers"
- also see "Recent Talks" for these slides

References

- Ruppert, D. (2004) *Statistics and Finance: An Introduction*, Springer, New York splines, term structure, transformations
- Ruppert, D., Wand, M.P., and Carroll, R.J. (2003) *Semiparametric Regression*, Cambridge University Press, New York splines
- Carroll, R.J. and Ruppert, D. (1988), *Transformation and Weighting in Regression*, Chapman & Hall, New York. transform-both-sides